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Ready access to emerging databases of gene annotation and func-
tional pathways has shifted assessments of differential expression in
DNA microarray studies from single genes to groups of genes with
shared biological function. This paper takes a critical look at exist-
ing methods for assessing the differential expression of a group of
genes (functional category), and provides some suggestions for im-
proved performance. We begin by presenting a general framework, in
which the set of genes in a functional category is compared to the
complementary set of genes on the array. The framework includes
tests for overrepresentation of a category within a list of significant
genes, and methods that consider continuous measures of differential
expression. Existing tests are divided into two classes. Class 1 tests
assume gene-specific measures of differential expression are indepen-
dent, despite overwhelming evidence of positive correlation. Analytic
and simulated results are presented that demonstrate Class 1 tests are
strongly anti-conservative in practice. Class 2 tests account for gene
correlation, typically through array permutation that by construction
has proper Type I error control for the induced null. However, both
Class 1 and Class 2 tests use a null hypothesis that all genes have the
same degree of differential expression. We introduce a more sensible
and general (Class 3) null under which the profile of differential ex-
pression is the same within the category and complement. Under this
broader null, Class 2 tests are shown to be conservative. We propose
standard bootstrap methods for testing against the Class 3 null and
demonstrate they provide valid Type I error control and more power
than array permutation in simulated datasets and real microarray
experiments.

1. Introduction. DNA microarrays allow researchers to simultaneously
measure the coexpression of thousands of genes. They are widely used in
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biology and medicine to study the relationships between transcriptional ex-
pression and cellular processes or disease states. A primary application of
microarrays is the identification of genes with differing expression across ex-
perimental conditions, or having significant association with a clinical out-
come. Hereafter we will generically refer to the condition or clinical outcome
as the response for each array, and the association between expression and
response as differential expression (DE).

Analyses of DE often proceed in a gene-by-gene manner, in which the asso-
ciation between the response and the expression of each gene is
assessed individually. A variety of methods have been proposed, includ-
ing standard parametric tests, permutation and resampling-based meth-
ods, and Bayesian techniques [Dudoit et al. (2002), Newton et al. (2004) and
Tusher, Tibshirani and Chu (2001)]. Using these methods, investigators can
produce a ranked list of genes significantly associated to the response that
may account for multiple testing through control of the family-wise error
rate (FWER) or false discovery rate (FDR).

Although gene-specific analyses have yielded tremendous insight into the
role of individual genes, they do not provide a mechanism for identifying
larger-scale biological phenomena. With the ready availability of compre-
hensive annotation databases such as Gene Ontology (GO) [Ashburner et al.
(2000)], researchers can now explore the coordinated involvement of gene cat-
egories, namely, sets of genes with shared annotation or function. A general
framework is warranted for evaluating methods that test the associations of
an entire category to the response of interest, and will allow a more system-
atic understanding of DE across the genome.

Beginning with Virtaneva et al. (2001), a number of procedures have been
presented as ways to assess the association between a response and the ex-
pression of a gene category. The most commonly used tests begin with a
list of genes deemed significant and look for over-representation of category
members within the gene-list, using Fisher’s Exact Test or other tests of as-
sociation for 2× 2 contingency tables [see Barry, Nobel and Wright (2005)
for a list of references]. Other approaches more directly use the gene-specific
measures of DE, rather than collapsing the data to the dichotomous outcome
of significant association with the response. In these methods tests are con-
structed to compare the association of genes using the average differences of
gene-specific statistics [Kim and Volsky (2005) and Boorsma et al. (2005)],
or rank-based procedures for two-sample comparisons [Mootha et al. (2003),
Barry, Nobel and Wright (2005) and Ben-shaul, Bergman and Soreq (2005)].

Gene category testing is now widely performed, and results are frequently
reported without independent verification. As pointed out in a recent review
by Allison, Cui, Page et al. (2006), even fundamental issues such as the for-
mal definition of the underlying null hypothesis and a proper analysis of
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Type I error have not been provided for many of the methods in the litera-
ture. Recent work by Goeman and Buhlmann (2007) addresses some of the
issues surrounding the assumptions of independence in gene category testing,
while suggesting that commonly used methods fail to test for a more direct
hypothesis of DE among the category members. Dudoit et al. (2007) have
also described a very general framework for hypothesis testing that captures
most existing methods for testing gene categories and proposes bootstrap-
based testing. However, there remains a clear need to differentiate among
existing methods in order to examine their strengths and potential deficien-
cies, and to place gene category testing on a firm statistical foundation.

1.1. Contributions. In this paper we provide a careful, extended exam-
ination of gene category testing and discuss how a standard application
of bootstrap methodology offers improved performance and flexibility over
some of the existing methods in the literature. We begin by defining a frame-
work for gene category testing, which is general enough to include the major-
ity of the existing methods in the literature. Within our framework, existing
gene category methods can be divided into two distinct classes of procedures
as defined by the following null hypotheses:

1. Gene-specific statistics are independent and identically distributed;
2. Gene-specific statistics follow a common null distribution, though they

may be dependent.

Several shortcomings of these null hypotheses are demonstrated through
analytic derivations and simulations using an example dataset.

We propose a broader null hypothesis that allows for arbitrary dependence
between the expression of different genes, as well as varying degrees of as-
sociation between the expression of a given gene and the response. Under
this more general null, array permutation approaches can be quite conser-
vative. The conservativeness can be explained in part through an analytical
argument which shows that the maximum variance of the category-wide
test statistic occurs under the special case induced by array permutation.
To remedy this problem, we suggest a simple bootstrap-based test that is
consistent with the general null hypothesis. We demonstrate the utility of
the bootstrap test on a breast cancer dataset, and discuss other advantages
that bootstrap-based tests have over array permutation procedures.

2. Notation and general framework for gene category tests. Let x be an
m×nmatrix containing the observed expression data for an experiment with
m genes and n arrays. Let xij be the element of the matrix corresponding
to the ith gene in the jth array. The expression profile for gene i is the
row vector xi∗, and the expression values of array j are represented by the
column vector x∗j . We use lowercase letters to denote observed values, and
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uppercase (i.e., X, Xij , Xi∗, and X∗j) to denote random versions of these
quantities. The array-specific response information is denoted by y, with
element yj corresponding to array j. The response can be categorical (e.g.,
tumor grade or experimental group assignment) or continuous (e.g., survival
time), and could potentially be multivariate. A category is represented by a
subset C ⊆ {1, . . . ,m} such that i ∈C if and only if gene i is a member of the
category. The size of a category C will be denoted by mC =

∑m
i=1 I{i ∈C}.

For any category C, its complement will be denoted by C̄, and is of size
mC̄ =m−mC .

We adopt the terminology of Barry, Nobel and Wright (2005), where it
is noted that hypothesis tests of gene categories can be viewed as two-stage
procedures (see Box 1). In the first stage, a local statistic measures the
association between the expression profile of each gene and the response.
We denote the local statistic of gene i by Ti = T (Xi∗,y) and let ti be the
corresponding value based on observed data. In a two-condition experiment,
the local statistic might be a t-statistic or average fold change. For more
complex datasets, such as those with censored survival data, a local statistic
derived from a Cox proportional hazard model may be used to test for
association between gene expression and patient outcome. In many cases,
T is an estimate of an underlying gene-specific parameter that governs the
association between response and expression. In the two-condition example
above, the related parameters would be a scaled difference of means and
a ratio of population means, respectively. Properties of local statistics are
examined more fully in Section 5.3.

In the second stage of a gene category test, a global statistic exam-
ines the differential expression within the gene category through the col-
lection of local statistics. The global statistic can be generally denoted by
U = U(T1, . . . , Tm :C), and in the following sections we describe many of
the functional forms of U(·) that have been utilized in the literature. In
the most commonly employed tests of gene categories, U(·) compares the
local statistics of genes within a category C to those in its complement.
Methods focus on either detecting a difference in the proportion of genes
with significant DE, or determining a shift in the average local statistic of
the category against its complement. Goeman and Buhlmann (2007) have
argued that comparing a category to its complement creates an unnecessary
conflict between these methods and the gene-specific tests. However, alter-
natively proposed methods that directly test the DE within a category have
their own drawbacks. For many direct tests, the null hypothesis will tend to
be rejected more often for large categories than small categories. This will be
true even if the genes in the category are chosen at random. For this reason,
we will limit our focus to tests that compare a category to its complement.

Among the current methods for analyzing gene categories, there are var-
ious ways to classify the tests that have been proposed (e.g., by the choice
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of global statistic). In terms of Type I error control, we argue that the more
meaningful distinction is based on the implicit null hypotheses, as described
in the following sections. Most existing procedures can be roughly divided
according to whether array permutation is used, but we note that additional
requirements must be placed on the local statistics in order for the inference
to be sensible.

Throughout our paper we treat the categories to which a gene belongs as
a fixed property of the gene.

Box 1: Common elements of gene category tests

Gene category tests are typically two-stage procedures requiring
the following statistics:

• A local statistic that measures the association between
the response (e.g., experimental condition) and the ex-
pression of each gene.

• A global statistic that examines the local statistics
within a category, often in comparison to those of its
complement.

For each global statistic there are two broad classes of hypoth-
esis tests:

1. Parametric or rank-based procedures that assume inde-
pendent and identically distributed local statistics, or
alternatively, gene permutation methods that induce
the same approximate null.

2. Array permutation methods which maintain the corre-
lation structure while inducing a null of no associations
with the response.

Error rate controlling or estimating procedures address the mul-
tiple comparisons from testing many categories.

3. Class 1 gene category tests. Global test statistics detect an increased
level of DE among the genes within a category. Many testing procedures
use traditional methods for comparing independent samples from two pop-
ulations. In the proposals for these methods, the null hypothesis is rarely
stated, and without discussion of the appropriateness of the underlying as-
sumptions. While a variety of global statistics have been employed in these
tests, and p-values are obtained from both exact and approximate distribu-
tional assumptions, we note the null hypotheses have a common form.

Definition 1. A gene category test is of Class 1 if it assumes (or in-
duces through gene permutation) the null hypothesis that the local statistics
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T1, . . . , Tm are independent and identically distributed (i.i.d.), namely,

H0 : T1, T2, . . . , Tm are i.i.d. with Ti ∼ F,(3.1)

where F can take any form.

3.1. A survey of global test statistics. The global statistics proposed for
Class 1 tests fall into two groups. “Categorical” statistics rely on a list of
significant genes to have been identified by a prior gene-specific analysis,
while “continuous” global statistics incorporate real-valued measures of DE
for each gene, without reference to a list of significant genes. To illustrate
the variety of global statistics that have been proposed in the literature, we
present two examples from each group and give a brief description of the
corresponding nonresampling based Class 1 tests. A one-sided form of each
test is given, because in most applications one is only interested in categories
showing more association with the response than their complements. We
note it is conceivable to conduct a one-sided test in the opposite direction;
for instance, one could look for relative stability within a set of housekeeping
genes.

Categorical statistics. Gene-list enrichment methods have been developed
as a post hoc means of testing a category once the genes with signifi-
cant DE have been identified. Let Γ denote the rejection region for local
statistics that produces the list of significant genes. Categorical methods
consider only the dichotomous outcomes of the m gene-specific hypothe-
sis tests, and the extent of DE within C and C̄ can therefore be summa-
rized by a 2× 2 contingency table [illustrated in Supplementary Figure 1,
Barry, Nobel and Wright (2008)].

Traditional tests for contingency tables have been utilized in various gene
category analyses, including the χ2 test of homogeneity, Fisher’s Exact test,
and slight variations on these tests for contingency tables. In the classical
derivation of such tests, binary variables I{T1 ∈ Γ}, . . . , I{Tm ∈ Γ} are as-
sumed to be independent with probabilities of rejection P (Ti ∈ Γ) = πC for
i ∈ C and P (Ti ∈ Γ) = πC̄ for i ∈ C̄ . The tests are designed to have power
to detect departures from (3.1) of the form πC ≥ πC̄ under the assumption
that the indicator variables are i.i.d. It is worthwhile to note that the Class 1
null is sufficient, but not necessary, for the dichotomous outcomes to be i.i.d.
under a given Γ. However, (3.1) guarantees the categorical null holds for any
possible choice of rejection region. We also note that Γ may at times be de-
fined in a data-dependent manner, such as when using an error controlling
procedure in defining the significant gene list. This violates the assumption
of independent test results, even if expression is uncorrelated between genes.

The most common test in gene-list enrichment methods is Fisher’s Exact
Test. Formally, this is a conditional test based on the total number of rejected



TESTING GENE CATEGORIES IN MICROARRAYS 7

hypotheses, R=
∑m

i=1 I{Ti ∈ Γ}. The global statistic can be represented as
the number of genes in the category that are rejected, namely,

UF =
∑

i∈C

I{Ti ∈ Γ}.(3.2)

Given R, an exact p-value can be obtained from the hypergeometric distri-
bution.

In several gene-list enrichment software packages, the unconditional χ2

test of homogeneity is proposed as an approximate test for large categories
[Draghici et al. (2003) and Beißbarth and Speed (2004)]. The one-sided ver-
sion of this test is equivalent to the difference in proportions test originally
proposed by Pearson (1911). The associated global statistic can be written
in the form

UP =
π̂C − π̂C̄

σ̂P
=

1

mC · σ̂P

∑

i∈C

I{Ti ∈ Γ} −
1

mC̄ · σ̂P

∑

i′∈C̄

I{Ti′ ∈ Γ},(3.3)

where σ̂P is the traditional estimated standard deviation of the difference in
proportions. Under the Class 1 null, the central limit theorem ensures that
the two proportions are asymptotically normal for large mC and mC̄ , such
than a Z-test can be performed on UP .

Given the variety of methods for generating gene-lists, it is not always
clear whether it is appropriate to condition on R, but in general, exact tests
are favored for their ability to handle small categories. For moderately sized
categories, we note there will be little difference between the exact condi-
tional and the following approximate unconditional test. For this reason, we
will restrict our attention to UF in the simulations performed in Section 4.

Continuous statistics. In contrast to gene-list type tests, it is also possible
to directly compare the observed associations of expression and response
without an intermediate gene list. One straightforward global statistic is the
average difference in local statistics between a category and complement,
namely,

UD =
µ̂C − µ̂C̄

σ̂D
=

1

mC · σ̂D

∑

i∈C

Ti −
1

mC̄ · σ̂D

∑

i′∈C̄

Ti′ ,(3.4)

which has power to detect an increase in the expected value of local statistics
in the category, µC =E[Ti|i ∈C], relative to the complement, µC̄ =E[Ti|i ∈
C̄] [as illustrated in Supplementary Figure 1, Barry, Nobel and Wright (2008)].
Several hypothesis tests based on the average difference have been proposed,
including a Z-test performed where σ̂D is the standard deviation of all m
local statistics [Kim and Volsky (2005)], and a t-test performed where σ̂D
is the pooled sample variance of the local statistics [Boorsma et al. (2005)].
In the remainder of this paper we will focus on the t-test version of UD, but
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note for a typical category where mC ≪ m, the variance estimates in the
two approaches will be similar, yielding comparable results.

The global statistic in (3.4) may not be robust to outliers or skewness in
the local statistics. Rank-based global statistics avoid this shortcoming, as
they are invariant to monotone transformations of the local statistics. The
Wilcoxon rank sum statistic,

UW =
∑

i∈C

Rank(Ti),(3.5)

is designed to test a median difference in the two populations of local statis-
tics and has been implemented in GOStat by Beißbarth and Speed (2004).
Under the Class 1 null hypothesis, the discrete CDF of UW is known once
mC and mC̄ are specified. Hypothesis testing then proceeds using an exact
procedure or a normal approximation to UW .

A Kolmogorov–Smirnov type global statistic has also been implemented
in another rank-based Class 1 procedure [Ben-shaul, Bergman and Soreq
(2005)]. However, the Kolmogorov–Smirnov statistic has been criticized in
gene category testing for being sensitive to departures that do not necessar-
ily reflect increasing DE in the category [Damian and Gorfine (2004)]. For
example, a category with no DE but with local statistics that all happen to
be nearly identical would be considered significant by these tests. For this
reason, we restrict our focus to UD and UW when considering continuous
global statistics.

3.2. Gene permutation. Several permutation-based methods have pro-
posed randomly reordering the rows of the data matrix to determine category
significance [Ashburner et al. (2000), Pavlidis et al. (2004) and Zhong et al.
(2004)]. In this setup, the collection of local statistics remains unchanged
while the category assignments are randomized. Gene permutation effec-
tively induces the Class 1 null hypothesis in (3.1), with the distribution
of each reassigned local statistic equaling the empirical distribution of all
observed values, F̂ (t) =m−1∑m

i=1 I{ti ≤ t}. Exhaustive permutation of the
gene assignments will be identical to a Fisher’s Exact Test of UF and a
Wilcoxon rank sum test of UW . Although gene permutation has limited use-
fulness for global statistics with traditional tests for the null stated in (3.1), it
has proven to be useful in more complex global statistics [Efron and Tibshirani
(2007)], and also maintains the correlation between tests of overlapping cat-
egories, despite inducing independent local statistics.

We emphasize that gene-permutation procedures (which are also called
“gene-shuffling”) follow a reasonable and principled development, if one is
willing to assume the category assignments in C are random. Then the null
hypothesis is that C and the expression data X are independent. Under
these assumptions, gene permutation reflects inference conditioned on the
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expression data. However, as we detail later, Class 1 tests, including those
based on gene permutation, are sensitive to correlation of expression of genes
within categories, regardless of DE. Such correlation represents a departure
from the assumption of independence of X and C, but is unrelated to DE.
Following our perspective that gene category assignments are fixed, we view
gene permutation procedures as Class 1.

4. The effect of correlation on Class 1 tests. In this section we examine
more closely the assumption of independent local statistics, and how vio-
lations of this assumption effect the performance of Class 1 tests. We note
that correlation of local statistics arises naturally from correlation of ex-
pression among genes. A simulation study based on a real microarray data
set exhibits the extreme anti-conservative behavior of Class 1 tests in the
presence of realistic levels of correlation in expression.

4.1. Correlations in expression and local statistics. Let the population
correlation between genes i and i′ be given as ρXi,i′ = Corr(Xij ,Xi′j). For

experimental designs with independent arrays, a natural estimate of ρXi,i′ is
the sample correlation coefficient, ri,i′ . The distributions of global statistics
for Class 1 tests are directly affected by the correlation between local statis-
tics, ρTi,i′ = Corr(Ti, Ti′). In the special case that T takes the linear form

T (Xi∗,y) =
∑n

j=1 a(yj) · Xij for some function a(·), it is easy to see that

ρTi,i′ = ρXi,i′ . An example of a linear local statistic would be fold change on
the log-scale.

In general, the relationship between ρXi,i′ and ρTi,i′ does not have a simple
analytic form, although it can be shown numerically to often be monotone
and approximately linear for one-sided local statistics. Indeed, Monte Carlo
simulations of gene expression data (Figure 1) demonstrate that a nearly
linear relationship holds for several standard experimental designs and cor-
responding measures of DE. This includes using a Student’s t as the local
statistic for a two-condition study, and a Wald-type statistic for regress-
ing expression on censored time-to-event data through a Cox proportional
hazards model. For such local statistics, ρXi,i′ ≈ ρTi,i′ so that the sample cor-

relation coefficients of gene expression can be used as estimates of {ρTi,i′}
in determining the properties of global statistics. However, the two correla-
tions have a nonlinear relationship for “undirected” local statistics, such as
an analysis of variance F -statistic [Figure 1(b)].

4.2. Variance inflation. The effects of pairwise correlation on Class 1
tests can be illustrated by deriving the true variances of the global statistics
UD and UW in the presence of dependence.
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(a) (b) (c)

Fig. 1. Correlations between gene expression levels induce correlations in local statis-
tics. Monte Carlo simulations of standard Gaussian expression for two genes under sev-
eral experimental designs: (a) a two-sample comparison with a Student ’s t-statistic; (b)
four-sample comparison with an ANOVA F -statistic; (c) survival using a Wald test from
a univariate Cox-proportional hazard model. For each design, sample correlation was ob-
served across 100 gene pairs and n= 40 arrays with equally sized groups or exponentially
distributed event and censor times. The median and representative (0.05, 0.95) quantile
intervals are shown from 200 simulations. Similar results are obtained when simulating
heteroscedastic genes.

For the average difference global statistic UD, a simple calculation shows
that the true variance of the statistic will differ from that under the i.i.d.
null in Class 1 tests by three additional terms:

Var[µ̂C − µ̂C̄ ]

= Vari.i.d.[µ̂C − µ̂C̄ ](4.1)

×

(
1 +

mC̄(mC − 1)

m
ρC +

mC(mC̄ − 1)

m
ρC̄ −

mC ·mC̄

m
ρC,C̄

)
,

where the quantities

ρC =
1

mC · (mC − 1)

∑

i∈C

∑

i′∈C
i′ 6=i

ρTi,i′ ,(4.2)

ρC̄ =
1

mC̄ · (mC̄ − 1)

∑

i/∈C

∑

i′ /∈C
i′ 6=i

ρTi,i′ ,(4.3)

ρC,C̄ =
1

mC ·mC̄

∑

i∈C

∑

i′ /∈C

ρTi,i′(4.4)

are related to the average pairwise correlations within the category (4.2),
within its complement (4.3), and across the two gene sets (4.4). We note
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that ρC can vary greatly across categories, while ρC̄ and ρC,C̄ will be close
to the average pairwise correlation of all genes on the array and near zero in
most datasets. For a moderately sized category where mC̄ ≈m, the ration
of variances in (4.1), Var[µ̂C − µ̂C̄ ]/Vari.i.d.[µ̂C − µ̂C̄ ], is approximately 1 +
(mC − 1) · ρC . This ratio measures the variance inflation of UD over what
is assumed by (3.1), and as a consequence, the category exhibiting positive
correlation will tend to have anti-conservative Class 1 tests of significance
DE.

For the Wilcoxon rank sum global statistic, the true variance will depend
on the common distribution F of local statistics, as defined in (3.1). In
the special case that local statistics are marginally normally distributed,
with common mean, unit variances, and pairwise correlations {ρTi,i′}, then

Var[UW ] is given by

Var[UW ] =
1

2π

∑

i∈C

∑

i′∈C

∑

h/∈C

∑

h′ /∈C

sin−1
( ρTi,i′ + ρTh,h′ − ρTi′,h − ρTi,h′√

(2− 2ρTi,h) · (2− 2ρTi′,h′)

)
.(4.5)

The derivation of (4.5) is provided in the Supplementary material
[Barry, Nobel and Wright (2008)] and is analogous to the classic work of
Gastwirth and Rubin (1971) on the effect of dependence on the Wilcoxon
rank sum. If the local statistics within a category were all positively corre-
lated and the complementary set of genes were independent, this variance
is easily shown to be strictly greater than what is assumed under the Class
1 null, Vari.i.d.[UW ] =mC ·mC̄ · (m+ 1)/12.

Correlation between local statistics will also affect the distributions of
UF and UP . However, the variance of these categorical global statistics
in the presence of correlation will further depend on both the distribu-
tion F and the rejection region Γ. In the next subsection we present a
simple simulation study illustrating the effect of gene correlation on Class
1 tests for annotated categories in a real microarray dataset. The anti-
conservative behavior of a Class 1 test using the global statistic UF is
explored in the recent work of Goeman and Buhlmann (2007), who con-
sidered simulated Gaussian expression data in which the pairwise correla-
tion of genes is fixed and equal, and categories are of a fixed size. The
simulation study below attempts to capture the more complicated correla-
tion structures and variable sizes of functional categories that occur in real
data.

4.3. A simulation study. A two-condition experiment was simulated us-
ing a subset of the lung carcinoma microarrays from Bhattacharjee et al.
(2001). We first selected 100 adenocarcinoma samples at random from the
dataset, that contains expression estimates for 7299 genes [see
Barry, Nobel and Wright (2005) for data pre-processing steps]. Among the
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(a) (b)

Fig. 2. Poor performance of Class 1 tests. (a) Empirical CDFs of pooled p-values (1823
categories over 1000 simulations) for the Class 1 Fisher’s Exact Test, Student ’s t-test,
and Wilcoxon rank sum test generated under the null hypothesis in (5.1). (b) The same
data are plotted on the log-10 scale to demonstrate the disproportionate number of small
p-values that results from incorrect variance estimates.

available genes, 1823 GO and Pfam categories were identified with at least 5
members. The within-category average pairwise sample correlations ranged
from −0.09 to 0.93, with more than 86% of the categories having values
greater than the average pairwise correlation across the entire array (0.012).
This increase in correlation within categories illustrates the common ob-
servation that coexpression among genes is associated with gene function
[Lee et al. (2004)].

One thousand binary response vectors with equal numbers of zeros and
ones were generated at random, and used to assign the arrays to one of
two conditions. The random assignment of arrays ensured that the resulting
datasets had no association between expression and experimental condition
for any gene, and thus, no category is expected to have a greater degree of DE
than any other. We note that the expression matrix is held constant across
simulations, so that the sample gene–gene correlations {ri,i′} remained fixed.

For each realization of the response vector, a pooled-variance t-statistic
was used as the local statistic, and global statistics UF , UD and UW were
computed. For the Fisher’s Exact Test statistic, UF , the rejection region was
equal to values exceeding t98,0.95 = 1.66. For each global statistic and each
category, the different Class 1 tests produced a nominal p-value for every
generated response vector. Empirical CDFs of the nominal p-values pooled
across all categories and all realizations demonstrate their extreme nonuni-
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formity under the induced null hypothesis, confirming the poor performance
of Class 1 tests (Figure 2).

The average Type I error of these tests was estimated as the proportion of
p-values under simulations that fall below a target α level. Table 1 displays
that, for each global statistic, the corresponding Class 1 tests reject far
more hypotheses than expected. Moreover, the anti-conservative behavior of
these tests increases for smaller target α values. Even though the gene-list
enrichment methods are slightly less anti-conservative than the continuous
methods, this is offset by their potential loss in power from dichotomizing
local statistics.

To illustrate how this behavior also affects the family-wise error rate
among the L = 1823 categories, we applied a Bonferroni correction to the
nominal p-values. Since for the randomized data all categories are truly null,
the FWER is estimated by

FWER =
1

1000

1000∑

b=1

I

{
L∑

h=1

I

{
pb,h <

α

L

}
> 0

}
,(4.6)

where pb,h is the Class 1 p-value for category h under realization b. There
is substantial overlap in the membership of gene categories from annota-
tions such as Gene Ontology, and thus tests will be positively correlated
accordingly. Therefore, the use of Bonferroni thresholds might be thought
to be overly stringent in controlling the FWER, providing some protection
against anti-conservative Class 1 p-values. However, for α= 0.05, the real-
ized FWER in (4.6) is far greater than the target level (UF : 0.776, UD : 0.925
and UW : 0.918). The extreme anti-conservative behavior of the Class 1 tests
of all global statistics suggests a different approach is needed to conduct
valid gene category tests.

5. Class 2 tests and array permutation. The null hypothesis of Class 1
tests is violated by the correlations present in gene expression data, and
we demonstrate the resulting anti-conservative behavior. For this reason, a
second class of gene category tests is warranted that can identify increases
in DE within a category, while properly accounting for correlation.

Definition 2. Class 2 gene category tests are defined by the assumed
or induced null hypothesis that the local statistics T1, . . . , Tm are possibly
dependent and identically distributed. More precisely,

H0 : T1, T2, . . . , Tm are identically distributed with Ti ∼ F0,(5.1)

where F0 corresponds to a lack of association between expression and the
response of interest. No assumptions are made about dependence among
the Tis.
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In order for (5.1) to hold in a given experimental design, an appropriate
form of T (·) must be selected to ensure local statistics are marginally iden-
tically distributed. In the following section we describe a sufficient property
of local statistics to induce (5.1) under a global null of all genes having no
DE.

5.1. δ-determined local statistics. In gene category testing, the true as-
sociation between the expression of an individual gene and a real- or vector-
valued response can often be summarized by a single fixed parameter δ
that depends on their (unknown) joint distribution. In the absence of any
association, the parameter frequently assumes a known null-value. Accord-
ingly, the local statistic T (·) is chosen for its utility in conducting hypothesis
tests against the null value of the parameter. To illustrate, consider a two-
condition experiment where the response vector y takes values of 1 or 2,
indicating the sample condition of each array. If the expression of gene i has
expectation µ1i and µ2i under the two respective conditions, and common
variance σ2

i , then a natural measure of association is the scaled difference in
means

δi =
µ1i − µ2i

σi ·
√
1/n1 + 1/n2

.(5.2)

Here and below, δi denotes the value of the association parameter for gene i.
In this case, the gene-specific null hypothesis of interest is H0,i : δi = 0, and
the pooled-variance t-statistic is a natural choice of local statistic [Galitski et al.
(1999)]. When the expression levels of gene i are normally distributed,
and independent from sample to sample, the local statistic follows a t-
distribution with noncentrality parameter δi, which reduces to a central
t-distribution when δi = 0.

In general, a function T (·) is a proper choice of test statistic for a null
of the form H0 : δ = d when the distribution F (T |δi = d) of T given δ =
d is known and does not depend on any nuisance parameters. When the
distribution of T (·) can be specified in this manner for any choice of d, we
refer to its distribution as being δ-determined. This property is important in
the basic theory of interval estimation and pivotal quantities; if F (T |δ = d) is
δ-determined, it can be used as a pivotal quantity to construct a confidence
set for δ [Casella and Berger (2002)]. In the particular example presented
above, a Student’s t is δ-determined by (5.2).

The δ-determined property is important when conducting gene category
tests; if the distribution of T is δ-determined, then differences in nuisance
parameters do not influence the comparison of a category against its com-
plement. To illustrate, consider a two-condition experiment with δ defined
as (5.2). Here the gene-specific means and variances of expression are con-
sidered nuisance parameters. Suppose that for each gene one directly uses
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the modified t-statistic from the SAM software [Tusher, Tibshirani and Chu
(2001)] as the local statistic. This statistic contains a constant in the denom-
inator that effectively penalizes lowly-expressed genes in order to improve
the FDR of a gene-list. Due to the presence of this constant, the SAM t-
statistic is not δ-determined, as its distribution depends on the means and
variances of gene expression. Now consider a category consisting primarily of
highly-expressed housekeeping genes. Under a global null in which no genes
are differentially expressed, and thus no category should be considered sig-
nificant, highly expressed genes have an increased chance of being ranked
above lowly-expressed genes when using the SAM statistic. Thus, a category
with highly expressed genes is more likely to be (falsely) declared significant,
regardless of whether one uses a categorical or continuous global statistic.
Categories with lowly-expressed genes would experience the opposite effect.

When a δ-determined local statistic is chosen and a unique value, d0, of
the parameter corresponds to a lack of association between expression and
response, the Class 2 null can be restated as H0 : δ1 = · · · = δm = d0. For
the remainder of the paper, we will only consider local statistics that are
δ-determined, or approximately so when n is large.

5.2. Array permutation. If the pairwise correlations {ρTi,i′} of the local
statistics are known, a Class 2 test can be constructed for the average dif-
ference statistic UD using its true variance, as derived in (4.1). Similarly, an
approximate Z-test for the Wilcoxon rank sum statistic UW can be designed
using (4.5) if local statistics are approximately normal. However, since the
correlations are generally unknown, a particular form of permutation can be
used as an alternative means of approximately inducing the Class 2 null.

In many common microarray experiments, each mRNA sample consti-
tutes an independent unit. By permuting the column vectors of X, or equiv-
alently the response vector y, an empirical null distribution is achieved in
which there is no association between gene expression and the response. Ar-
ray permutation was first used in Virtaneva et al. (2001) to test categories
of genes, and then implemented in GSEA for a Kolmogorov–Smirnov global
statistic [Mootha et al. (2003)], and in SAFE for any chosen global statistic
[Barry, Nobel and Wright (2005)]. More recently, other global statistics have
been proposed for use with array permutation, including a weighted version
of GSEA [Subramanian et al. (2005)] and a standardized truncated mean
that is more sensitive to directional changes [Efron and Tibshirani (2007)].
These reports note that array permutation does not change the correlations
in expression among genes, and thus the gene-specific measures of DE re-
main dependent. Also, when using array permutation the resampled local
statistics are conditional on the observed dataset, such that their empirical
distributions are not exactly identically distributed, and only approximately
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follow the Class 2 null. However, if one uses the gene-specific empirical p-
values as local statistics, then every local statistic will exactly follow the
discrete uniform distribution under permutation, guaranteeing (5.1).

5.3. Simulated coverage of Class 2 tests. The randomized datasets from
(4.3) were used to evaluate Class 2 tests of each global statistic based on
array permutation. Here the tests are ensured to be of proper size, since the
randomization procedure in the simulation and the array permutation in the
test both employ the same sampling process. We confirmed this by obtaining
empirical p-values for each category and each realization of the response
vector (Table 1). Due to the computational burdens of both simulation and
permutation, only 1000 resamples were taken for each test, so the smallest
possible empirical p-value was 0.001. The Class 2 Fisher’s Exact Test results
are notably conservative, due to the numerous tied global statistics that
occur in small categories. The slight misspecification of Type I error for UP ,
UD and UW reflects only sampling variability. These results demonstrate
Class 2 tests of gene categories generally outperform Class 1 tests based on
the assumption of gene independence.

6. A more general null for gene category tests. Although Class 2 tests of
gene categories appropriately account for the correlation structure of gene
expression data, they share with Class 1 procedures the shortcoming of
assuming a null hypothesis under which local statistics are identically dis-
tributed. This assumption is not necessary when considering whether a gene
category exhibits a greater degree of differential expression than its comple-
ment. For example, suppose 20% of the genes are differentially expressed to

Table 1

The ratio of realized Type I error rates to target α levels

Fisher’s, UF Student’s t, UD Wilcoxon, UW

Class 1 tests
α= 0.1 1.19 1.82 1.86
α= 0.01 3.40 5.92 5.83
α= 0.001 13.4 25.2 23.5
α= 1e–4 65.6 130 116
α= 1e–5 367 769 677
α= 1e–6 2213 4974 4245

Class 2 tests
α= 0.1 0.39 1.01 1.01
α= 0.01 0.21 1.01 1.01
α= 0.001 0.14 1.03 1.01
α= 1e–4 NA NA NA
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the same degree (where δi equals a common nonnull value d), and the remain-
ing genes have no association with the response (δi equals the null value d0).
Any category in which 20% of the genes are differentially expressed should
not be considered “special.” However, the Class 2 null, which is induced by
array permutation, is clearly violated under this scenario.

Based on this simple example, we propose the following less restrictive,
and more biologically realistic, null hypothesis of gene categories. Instead
of requiring the local statistics of all genes to be identically distributed, we
allow each to fall into one of K ≤mC strata that correspond to a different
marginal distribution for the statistic. No conditions are imposed on the
dependence of the local statistics. The null can be formalized as follows.

Definition 3. Let K ≥ 1 and let G1, . . . ,GK be distinct, fixed dis-
tributions. Let the local statistics T1, . . . , Tm have marginal distributions
F1, . . . , Fm and let C ⊂ {1, . . . ,m} be a gene category. Assume that each
Fi ∈ {G1, . . . ,GK} and that βC,k = m−1

C

∑
i∈C I{Fi = Gk} and βC̄,k =

m−1
C̄

∑
i∈C̄ I{Fi =Gk} are the proportions of genes from C and C̄, respec-

tively, whose local statistics are distributed as Gk. The Class 3 null hypoth-
esis is the following:

H0 :βC,k = βC̄,k ≡ βk, k = 1, . . . ,K,(6.1)

where the distributions G1, . . . ,GK can take any form.

The Class 1 and Class 2 null hypotheses are then special cases of (6.1)
with K = 1 stratum. When DE can be assessed in terms of an association
parameter δ, and the local statistic is δ-determined [e.g., the scaled differ-
ence in means (5.2) and the Student’s t-statistic], the strata can be directly
related to different degrees of association with the response. In this case,
the Class 3 null hypothesis is equivalent to the statement that the empirical
distributions of δs in C and C̄ are identical.

Dudoit et al. (2007) apply a general approach to multiple testing to a fam-
ily of problems involving simultaneous testing of annotation-based profiles
using gene expression data. Their work provides a framework for multiple
testing of associations between what the authors term gene-annotation pro-
files and gene-parameter profiles. The former include gene categories and GO
terms. The latter are population based quantities that encompass measures
of association between the expression of a gene and a binary or continu-
ous response, including a scaled difference (or ratio) of means. When local
statistics are δ-determined, the Class 2 and Class 3 nulls considered here
can be placed within that framework, with the vector of gene-parameter
profiles playing a role analogous to the gene association parameters δ. We
note that the Wilcoxon global statistic is not linear in the sense described
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in Dudoit et al. (2007), and therefore is not covered by their theoretical
developments.

In the following subsections we discuss simple bootstrap-based tests that:
(a) maintain the correlation structure of the expression data and (b) demon-
strate approximate Type I error control under different realizations of the
Class 3 null. Simulations of microarray data reveal that tests based on boot-
strap resampling of arrays clearly outperform array permutation tests that
induce a Class 2 null. Further examination of the distributional properties
of UW and UD indicate the poor performance of array permutation in this
more general setting. Finally, we illustrate through simulation the increased
power of Class 3 tests under a defined set of alternative hypotheses.

6.1. Defining the bootstrap-based tests. Standard bootstrap methodol-
ogy assumes that the observed data can be divided into independent units
derived from an unknown probability model. Resampling from the empir-
ical distribution of the observed data enables one to form approximate
confidence intervals without parametric assumptions [Efron and Tibshirani
(1998)]. For most microarray experiments, the independent sampling unit is
the joint vector {x∗j , yj} containing m gene expression measurements and
response information for a single mRNA sample. To approximate the un-
known probability model of the data, bootstrap procedures resample the
joint vectors with replacement. Let b= (b1, . . . , bn) be a resampling vector
whose elements are independent and uniformly distributed over the integers
{1, . . . , n}. Associated with b is a resampled response y∗b = (yb1 , . . . , ybn),
and a resampled expression matrix in which the measurements of gene i
are given by x∗b

i· = (xib1 , . . . , xibn). From the resampled data, local statis-
tics t∗bi = T (x∗b

i· ,y
∗b), and a global statistic u∗b = U(t∗b1 , . . . , t∗bm :C) may be

calculated in the usual way. Let B denote the total number of bootstrap
samples.

Standard procedures can be used to generate bootstrap confidence in-
tervals for the parameter θ = E[U ]. In the context of looking for increased
amounts of DE, one would define a one-sided confidence interval of size
α by its lower bound Lα. Arguably, the simplest procedure for producing
the one-sided confidence interval via bootstrap resampling is the quantile
method [Efron (1979)], in which Lα is the sample α-quantile of the resam-
pled values: u∗(B·α). The quantile method is straightforward to compute and

invariant under monotone transformations of the global statistics. However,
its coverage may be poor when the sample size is small [Efron (1987)], due
to the difficulty of estimating the tail distribution of the global statistic.
Alternatively, if one assumes that the global statistic is approximately nor-
mal, a confidence interval can be generated from the t-distribution using
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bootstrap-based estimates of the moments of UW [Efron (1979)]. The re-
sulting one-sided confidence interval has a lower bound given by

ū∗ − ŝe∗(U) · tn−1,1−α,(6.2)

where

ū∗ =
1

B

B∑

b=1

u∗b and ŝe∗(U) =

[∑B
b=1(u

∗
b − ū∗)2

B − 1

]1/2
.(6.3)

Hypothesis testing with the bootstrap was originally proposed by Efron
as being applicable when the distribution of a test statistic was unknown un-
der a null hypothesis (due to nuisance parameters) but could be induced by
bootstrap-resampling [Efron and Tibshirani (1998)]. Hall and Wilson (1991)
have proposed that bootstrap-based tests can also be constructed when the
empirical distributions of resampled statistics do not directly relate to H0 if
a “pivot test” is used. In the setting of gene categories, this would relate to
testing for the exclusion of some null value, θ0 =EH0 [U ], from a confidence
interval defined by the populations of resampled global statistics. These tests
are of particular use for the Class 3 null, which would be difficult to induce
directly through the resampling the arrays in a way that also maintains
gene-correlation.

We generally favor using the Wilcoxon rank sum global statistic, UW , for
gene category tests, because it is a robust and transformation-invariant mea-
sure of average difference that avoids the arbitrariness the gene-list methods
have of choosing a rejection region. The following theorem establishes the
expectation of the Wilcoxon global statistic UW is a constant, θ0, under all
realizations that the stratified null hypothesis (6.1).

Theorem 1. Suppose that for each i the local statistic Ti of gene i has
distribution Fi ∈ {G1, . . . ,GK} and that P (Ti = Tj) = 0 for i 6= j. Then for

any category C ⊂ {1, . . . ,m} such that βC,k = βC̄,k = βk for each stratum

k = 1, . . . ,K,

E[UW ] =
mC · (m+1)

2
.(6.4)

(See Appendix A for the proof.) Note that the expectation is constant,
regardless of the number of strata K, the proportions {β1, . . . , βK}, and the
distributions {G1, . . . ,GK}. Similar derivations demonstrate that the global
statistics UD and UP have a fixed expectation of 0 under (6.1), allowing for
the construction of a test based on bootstrap resampling.

The Class-3 bootstrap tests advocated here are based on standard boot-
strap confidence intervals. Dudoit et al. (2007) also propose bootstrap tests
within the multiple testing framework considered in their paper. Specialized
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to the setting of the Class 3 null, their bootstrap procedure is essentially
similar to the quantile-based method we discuss above. Dodd et al. (2006)
have also applied bootstrap resampling to category testing in the context
of differential expression between cancerous and normal human tissue, in
which a genelist was interrogated with the Pearson-type global statistic,
UP . Many of the arguments we present in the following sections in support
of bootstrap testing can be applied to the procedures in Dudoit et al. (2007)
and Dodd et al. (2006).

In contrast to the global statistics mentioned above, the expectation of
the global statistic employed in Fisher’s Exact test depends on the K gene-
specific distributions, and the expectation of the Kolmogorov–Smirnov type
global statistic used in Mootha et al. (2003) depends on both the marginal
distribution of the local statistics, and their correlation structure. As a conse-
quence, one cannot test for exclusion of a null value from confidence intervals
of these two global statistics.

The following simulations of various Class 3 nulls were designed to eval-
uate the Type I and II errors of bootstrap-based tests for both continuous
global statistics, UW and UD. These results demonstrate that array permu-
tation is clearly inferior in this setting.

6.2. Type I error under a simulated Class 3 null. The randomized lung
cancer dataset described in Section 4.3 is extended to evaluate the Type I
error incurred by permutation- and bootstrap-based tests of UW and UD

under (6.1). A Student’s t is used as the local statistic for DE across the
simulated conditions; under the assumption the gene expression values ap-
proximately follow normality, each distributional strata is determined by the
association parameter δ given in (5.2). We investigated several null hypothe-
ses with K = 2 strata of genes relating to no DE (δi = 0) and positive DE
(δi = d > 0). To artificially generate different degrees of DE in a particular
gene, the expression values were first standardized to have variance 1; then
d ·

√
1/n1 + 1/n2 was added to those values xij with condition yj = 1. Sim-

ulations were run using three different levels of DE, d= 1,3 and 5, and also
for three proportions of DE, β = 1/5,1/3 and 1/2. For each proportion, we
selected a subset of nonoverlapping categories with the property that β ·mC

is an integer. This resulted in 41 categories being considered for β = 1/5, 40
categories for β = 1/3 and 34 categories for β = 1/2. The selected categories
exhibited a wide range of correlation in expression, reflective of that seen
across the entire dataset.

For each of 10000 randomizations of tumor status, the permutation- and
quantile bootstrap-based hypothesis tests were conducted using 2000 per-
mutations and resamples, respectively. Simulations indicate that B = 200
resamples are typically sufficient for the moment estimates in the bootstrap
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Fig. 3. Performance of gene category tests using bootstrap-quantile (green), bootstrap-t
(red), and array permutation (blue) methods, for the continuous global statistics UW and
UD , and various Class 3 null hypotheses. The range of Type I errors of different categories
is shown for (a) four proportions of DE, β, and (b) for four levels of DE; (c) the aver-
age Type I errors of UW and UD for different α levels under a Class 3 null with d = 3
and β = 1/3; (d) the Type I error for α= 0.05 is plotted for each category against their
estimated Class 1 variance inflation, 1+ (mC − 1) · ρ̂C , as derived from (4.1).
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t-intervals, and were used accordingly. Type I error was determined by com-
paring the empirically derived p-values to various α levels (Figure 3). For a
target α= 0.05, the bootstrap Type I error was only slightly inflated, and re-
mained relatively unchanged regardless of β and d, whereas the Type I error
of permutation testing dropped dramatically as either parameter diverged
from 0. For d= 3 and β = 1/3, the minimum empirical p-values obtained un-
der permutation were 0.0055 and 0.001 for UW and UD respectively, which
are several orders of magnitude higher than what would be expected with
proper Type I error control.

These findings illustrate the Class 2 tests based on array permutation are
overly conservative under the broader null. In order to better understand
the conservative behavior of array permutation, we note that it induces
a special case of (6.1) under which the local statistics are approximately
identically distributed (5.1). We return to the variance of the Wilcoxon
global statistic derived in (4.5), and define the following type of positively
correlated category.

Definition 4. For local statistics T1, . . . , Tm with correlations {ρTi,i′},

a category C ⊆ {1, . . . ,m} will be called correlation dominant if for every
{i, i′} ∈C and {h,h′} /∈C it is true that ρTi,i′ ≥ ρTi,h and ρTi,h ≤ ρTh,h′ , in other
words, correlations within the category and its complement are greater than
those between the category and its complement.

In the following theorem we establish that, for normally distributed local
statistics, the variance of the Wilcoxon global statistic UW is maximized
under the K = 1 null given in (5.1) for all correlation dominant categories.

Theorem 2. Let T1, . . . , Tm be random variables that follow a multi-

variate normal distribution with means δ1, . . . , δm, unit variances and corre-

lations {ρTi,i′}. For a correlation dominant gene category C, the variance of

UW has a global maximum at δ1 = δ2 = · · ·= δm = d.

Because array permutation induces the special case of (6.1) where the vari-
ance of UW is maximum, it is reasonable that the tests will tend to become
conservative under Class 3 null hypothesis that depart from (5.1). Although
the complex structure of gene correlation would likely prevent any real cat-
egory from meeting the strict criterion of being correlation dominant, the
conservativeness of array permutation tests is seen across all categories in
the randomized datasets (Figure 3). We have also confirmed these results in
two-condition datasets simulated from a multivariate Gaussian model (not
shown). The equal conservativeness of UD remains to be explored in full de-
tail, but we suggest that the pooled-variance estimate used in standardizing
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the global statistics similarly overestimates the true variance in the Class 3
null hypotheses with more than 1 stratum of DE.

While in the simulations presented above both bootstrap methods main-
tained their approximately correct Type I error throughout, we have found
that in simulated expression data with a smaller sample size of n= 20 arrays,
the quantile-based method becomes more anti-conservative at small target α,
since many microarray datasets can be of this size, and the quantile-interval
also requires more resamples to conduct tests with small α. Further, as UW

is the sum of mC · (m−mC) pairwise comparisons of local statistics, approx-
imate normality follows from the Central Limit Theorem when the average
correlation between these terms is not extreme and mC is large. Histograms
of resampled global statistics confirm that the approximation to the normal
distribution is appropriate for the large number of genes in a typical mi-
croarray experiment. Therefore, we prefer the bootstrap Student’s t-interval
for more general use in Class 3 tests of gene categories.

6.3. Power under simulated alternatives. To assess the relative power of
the bootstrap tests over array permutation, alternative hypotheses must be
specified that relate to increased amounts of DE in a gene category. When the
differential expression of a gene can be measured in terms of an association
parameter δ, an average increase of DE within the category relative to its
complement can be written as

HA :
K∑

i=1

βC,k · dk >
K∑

i=1

βC̄,k · dk.(6.5)

For these alternatives, the Wilcoxon rank sum UW is well suited to identi-
fying increased amounts of DE in a robust manner.

In the randomized lung carcinoma dataset, realizations of (6.5) can be
achieved by applying an additive or multiplicative constant to all gene-
specific parameters within the category. More precisely, if {δ0i : i ∈ C} are
the association parameters of a category under the Class 3 null, we consider
HA to be either of the form {δAi = c+δ0i : i ∈C} or {δAi = c ·δ0i : i ∈C}. In this
way, power curves can be displayed across a single axis by varying c. Figure
4 illustrates the effects when the constant is applied in an additive manner
for K = 2 strata of DE and nonDE genes, and in a multiplicative manner
for an example with K = 5 strata. The results demonstrate considerable
improvements in power of the bootstrap methods over array permutation.

7. Analysis of a survival microarray dataset. The breast cancer survival
dataset from Chang et al. (2005) are used to illustrate the utility of boot-
strap resampling as compared to array permutation. A total of n = 295
breast cancer samples were analyzed on Agilent microarrays, and normal-
ized gene expression estimates were obtained for a subset of m= 11176 genes
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Fig. 4. Average power of permutation- and bootstrap-based gene category tests as one
departs from Class 3 nulls. Results based on randomized microarray data and real GO
categories, and applying (a) an additive constant to K = 2 classes of genes with 1/3
differentially expressed at d = 1 (as shown by the CDF in the inset graphs), and (b) a
multiplicative constant to K = 5 classes of genes with {dk} equally spaced between 0 and
1. Both scenarios exhibit more power to detect the alternative using the bootstrap tests.

that are annotated to at least one of 1348 GO terms (details on normaliza-
tion, filtering, and formation of gene categories are omitted, but available
from the authors). Survival times and censoring indicators were available for
each array. Wald statistics from univariate Cox proportional hazard models
were used as local statistics to reflect the association between expression and
patient outcome.

We employed the Wilcoxon rank-sum UW as a the global statistic for
the permutation and bootstrap-based tests; results were obtained from 1000
permutations/resamples of the data, respectively. The p-values produced by

Table 2

Number of significant GO categories for target α
levels

Perm Boot-q Boot-t

α= 0.1 195 222 220
α= 0.05 129 157 160
α= 0.01 56 72 85
α= 0.005 36 63 73
α= 0.001 12 40 48
α= 3.7e–5∗ NA NA 28

∗Bonferroni cutoff.
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the bootstrap quantile and t-intervals were in good agreement across the
set of categories (rank correlation > 0.999), reflecting the fact that the dis-
tributions of resampled global statistics were nearly normally distributed.
The permutation test also showed good agreement with the bootstrap (rank
correlation of 0.977 with bootstrap results), but a distinct difference was
observed in the number of categories achieving various levels of significance
(Table 2). The improved power of the bootstrap methods is evidenced by
the increased number of significant categories, with 48 declared significant
via bootstrapping at α = 0.001, but only 12 declared significant via per-
mutation. The minimal possible p-value of the permutation and bootstrap-
quantile tests are limited by the 1000 resamples that were taken of the data.
The bootstrap t-interval does not have this restriction, and 28 categories
were observed to pass the conservative Bonferroni threshold for α = 0.05.
Because of the iterative procedure for estimates from the Cox-proportional
hazard model, taking additional resamples of the dataset was computation-
ally infeasible, and would be prohibitive when trying to control the FWER
across such a large number of categories.

8. Discussion. We have used the terminology of local and global statis-
tics as presented in SAFE [Barry, Nobel and Wright (2005)] to describe ex-
isting methods for testing differential expression within a gene category. By
classifying methods according to their assumed null hypotheses, we illustrate
a number of shortcomings of these methods. We propose a novel bootstrap-
based approach that uniquely allows both for genes within a category and
its complement to be correlated, and that maintains proper error control
under a more biologically sensible null hypothesis than has been implicitly
used by other methods.

As a last but very important advantage to the bootstrap-based procedure,
we note that by resampling with replacement, the bootstrap can incorpo-
rate covariate information in a sensible manner. In permutation testing, by
inducing a null that breaks the association between the response and ex-
pression, the covariate information can no longer be linked to both. Thus, a
researcher is forced to choose the part of the data to remain linked to the co-
variate. By resampling the data jointly, the bootstrap allows the relationship
between all three variable types to be maintained. The proper consideration
of covariates is just one area of potential improvement, as gene category
testing moves toward greater statistical maturity.

APPENDIX A: PROOF TO THEOREM 1

The following elementary lemma is useful in evaluating the expectation
of UW .
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Lemma A.1. Let T1 and T2 be distributed as G1 and G2 and assume

that P (T1 = T2) = 0. Define µ(G1,G2) ≡ E[I{T1 > T2}], then µ(G1,G2) =
1− µ(G2,G1) and µ(G1,G2) = 1/2 when G1 =G2.

The expectation of UW is calculated by decomposing themC ·mC̄ pairwise
comparison of T s into the K2 different terms involving µ(Gk,Gk′):

E[UW ] =E

[∑

i∈C

Rank(Ti)

]
=E

[
mC · (mC +1)

2
+

∑

i∈C

∑

h/∈C

I{Ti >Th}

]

=
mC · (mC +1)

2
+

K∑

k=1

K∑

k′=1

∑

i∈C
Fi=Gk

∑

h/∈C
Fh=G

k′

µ(Gk,Gk′)

=
mC · (mC +1)

2
+

K∑

k=1

K∑

k′=1

mC · βk ·mC̄ · βk′ · µ(Gk,Gk′)

=
mC · (mC +1)

2

+mC ·mC̄

[
K∑

k=1

β2
k

2
+

∑

k′<k

βk · βk′ [µ(Gk,Gk′) + µ(Gk′ ,Gk)]

]

=
mC · (mC +1)

2
+mC ·mC̄

[
K∑

k=1

β2
k

2
+

∑

k′<k

βk · βk′

]

=
mC · (mC +1)

2
+

mC ·mC̄

2

[
K∑

k=1

βk

]2

=
mC · (mC +1)

2
+

mC ·mC̄

2
=

mC · (m+ 1)

2
,

such that E[UW ] is invariant to the number of strata K, their proportionate
sizes {β1, . . . , βK}, and local statistic distributions {G1, . . .GK}.

APPENDIX B: PROOF TO THEOREM 2

The following lemma regarding the bivariate normal distribution is useful
for establishing an inequality for Var[UW ].

Lemma B.2. For the bivariate normal distribution, the following is true

for the function f(x, y) = Φ2(x, y;ρ)−Φ(x) ·Φ(y):

1. f(0,0) is a global maximum when ρ > 0,
2. f(0,0) is a global minimum when ρ < 0,
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3. f(x, y) = 0 when ρ= 0.

Proof. The first derivatives of f(x, y) are

∂f

∂x
(x, y) =

∂

∂x
(Φ2(x, y;ρ)−Φ(x) ·Φ(y))∝Φ

(
y − ρx√
1− ρ2

)
−Φ(y)

and ∂f
∂y has an analogous form due to symmetry. Since Φ is a strictly in-

creasing function, setting the derivatives equal to zero leads to the following
equations:

y − ρx=
√
1− ρ2 · y,

x− ρy =
√
1− ρ2 · x,

for which {x= 0, y = 0} is the only solution when ρ 6= 0. Since (0,0) is the
only stationary point, a second derivative test can be used to determine
whether it is a global minimum or maximum [Thomas and Finney (1992)].
The second derivatives are solved to be

∂2f

∂x2
(x, y) = φ′(x)

[
Φ

(
y − ρx√
1− ρ2

)
−Φ(y)

]

+ φ(x) · φ

(
y − ρx√
1− ρ2

)
·

−ρ√
1− ρ2

,

∂2f

∂y2
(x, y) = φ′(y)

[
Φ

(
x− ρy√
1− ρ2

)
−Φ(x)

]

+ φ(y) · φ

(
x− ρy√
1− ρ2

)
·

−ρ√
1− ρ2

,

∂2f

∂x∂y
(x, y) = φ(x) ·

[
φ

(
y− ρx√
1− ρ2

)
·

1√
1− ρ2

− φ(y)

]

=
∂2f

∂y ∂x
(x, y).

At the point {x= 0, y = 0} the derivatives are equal to

∂2f

∂y2
(0,0) =

∂2f

∂x2
(0,0) = φ(0)2 ·

−ρ√
1− ρ2

,

(B.1)
∂2f

∂x∂y
(0,0) =

∂2f

∂y ∂x
(0,0) = φ(0) ·

[
φ(0) ·

1√
1− ρ2

− φ(0)

]

and the discriminant takes the form

D(0,0) =
∂2f

∂x2
(0,0) ·

∂2f

∂y2
(0,0)−

∂2f

∂x∂y
(0,0)2
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=

(
φ(0)2 ·

−ρ√
1− ρ2

)2

−

(
φ(0) ·

[
φ(0) ·

1√
1− ρ2

− φ(0)

])2

(B.2)

= φ(0)4
(

ρ2

1− ρ2
−

(1−
√
1− ρ2)2

1− ρ2

)

= φ(0)4 · 2 ·

√
1− ρ2 − (1− ρ2)

1− ρ2
.

Since
√
1− ρ2 > (1− ρ2) for all nonzero ρ ∈ (−1,1), (B.2) is strictly posi-

tive, proving that either a minimum or a maximum must exist. From the
second derivatives in (B.1), one can show that f(0,0) is a minimum when
ρ < 0 and a maximum when ρ > 0. Last, f(x, y) is exactly 0 when ρ= 0 by
independence. �

The variance of UW can be decomposed using the Mann–Whitney form
of the statistic:

Var[UW ] = Var

[∑

i∈C

Rank(Ti)

]

=Var

[
mC · (mC + 1)

2
+

∑

i∈C

∑

h∈C̄

I{Ti > Th}

]
(B.3)

=
∑

i∈C

∑

i′∈C

∑

h/∈C

∑

h′ /∈C

Cov[I{Ti > Th}, I{Ti′ > Th′}],

where

Cov[I{Ti > Th}, I{Ti′ >Th′}]

=E[I{Ti > Th} · I{Ti′ > Th′}]−E[I{Ti > Th}] ·E[I{Ti′ > Th′}]

= P ({Th − Ti < 0} ∩ {Th′ − Ti′ < 0})−P (Th − Ti < 0)

×P (Th′ − Ti′ < 0).

Under (6.1) and the Gaussian assumption, the paired differences in lo-
cal statistics follow noncentral bivariate normal distributions with marginal
means δh − δi and δh′ − δi′ . Each covariance term can be written as

Φ2(δh − δi, δh′ − δi′ ;ρ)−Φ(δh − δi) ·Φ(δh′ − δi′),(B.4)

where Φ and Φ2 represent the CDFs of a univariate and bivariate normal
distributions with unit variance, and ρ is defined as

ρ=
ρTi,i′ + ρTh,h′ − ρTi′,h − ρTi,h′√
(2− 2ρTi,h) · (2− 2ρTi′,h′)

.(B.5)
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We consider in turn the several forms of ρ that arise in (B.4).
When i= i′ and h= h′, ρ is proportional to 2− 2 ·ρTi,h, which is a positive

quantity except when the genes are perfectly correlated which is ruled out
by the definition of a correlation dominant category. From Lemma B.2, (B.3)
is maximized when δi = δh. Since this is true for all {i, h} pairs of category
and complement genes, a global maximum of the summed covariances will
occur when all local statistics have the same mean.

When i= i′ and h 6= h′, ρ is proportional to 1+ ρTi,i′ − ρTi′,h− ρTi,h′ and will
be greater than 0 for a correlation dominant category such that a maximum
occurs when δi = δh = δh′ . An analogous argument holds for when i 6= i′ and
h= h′.

For i 6= i′ and h 6= h′, either ρ will be positive if (ρTi,i′ +ρTh,h′)> (ρTi′,h+ρTi,h′)

so that (B.4) is maximized when δh = δi and δh′ = δi′ , or ρ will be exactly 0
if (ρTi,i′ + ρTh,h′) = (ρTi′,h+ ρTi,h′) and (B.4) will be constant. This inequality of
summed correlations is again guaranteed for correlation dominant categories.

This proves a global maximum for Var[UW ] is achieved at δ1 = δ2 = · · ·=
δm = d since only in this case will every covariance term in (B.3) be either
maximized, or a constant.

SUPPLEMENTARY MATERIAL

Supplement A: Measures of differential expression in gene category test-
ing (Figure) (doi: 10.1214/07-AOAS146SUPPA; .pdf). In gene category test-
ing, global statistics typically fall into two groups: “categorical” statistics
that rely on a list of significant genes to be identified, and “continuous”
statistics that incorporate real-valued measures of gene-specific differential
expression. The following figure illustrates the two data types using the no-
tation framework described in the article.

Supplement B: Variance of the Wilcoxon rank sum statistic under cor-
relation (Theorem) (doi: 10.1214/07-AOAS146SUPPB; .pdf). The variance
of the Wilcoxon rank sum global statistic in equation (4.5) is derived in the
following theorem under the assumption of dependent and identically dis-
tributed Gaussian local statistics. The proof is presented using the notation
framework described in the article, and is analogous to the classic work of
Gastwirth and Rubin.
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