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ABSTRACT

Methods of Lagrangian data assimilation (LaDA) require carefully chosen sites for optimal drifter deployments. In

this work, we investigate a directed drifter deployment strategy with a recently developed LaDA method employing an

augmented state vector formulation for an Ensemble Kalman filter. We test our directed drifter deployment strategy by

targeting Lagrangian coherent flow structures of an unsteady double gyre flow to analyse how different release sites

influence the performance of the method. We consider four different launch methods; a uniform launch, a saddle launch

in which hyperbolic trajectories are targeted, a vortex centre launch, and a mixed launch targeting both saddles and

centres. We show that global errors in the flow field require good dispersion of the drifters which can be realized with

the saddle launch. Local errors on the other hand are effectively reduced by targeting specific flow features. In general,

we conclude that it is best to target the strongest hyperbolic trajectories for shorter forecasts although vortex centres can

produce good drifter dispersion upon bifurcating on longer time-scales.

1. Introduction

Increasing interest in Lagrangian data has led to recent develop-

ments in using such data for improving predictions of the ocean

(Carter, 1989; Kamachi and O’Brien, 1995; Molcard et al., 2003;

Özgökmen et al., 2003). These methods rely on reconstructing

Eulerian velocity information from consecutive measurements

of drifter positions which are then assimilated into Eulerian flow

models. An alternative method, developed by Kuznetsov et al.

(2003) and Ide et al. (2002), which employs an augmented state

vector formulation together with an Extended Kalman filter, has

been shown to maximize the information content in compari-

son to the above approaches for Lagrangian data assimilation

(LaDA). In stark contrast to the aforementioned methods, the

augmented state vector formulation allows one to evolve the er-

ror correlations between the Eulerian flow variables and drifter

coordinates in a way that is entirely consistent with the evolution

of error correlations in Eulerian data assimilation. The method of

Kuznetsov et al. (2003) and Ide et al. (2002), therefore, bypasses

the need to introduce approximations in the reconstruction of
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Eulerian velocity information. The augmented state vector for-

mulation has recently been applied, together with an Ensemble

Kalman filter (EnKF), to a shallow water model of the ocean by

Salman et al. (2006). The work of Salman et al. clearly illus-

trated the success of the method by establishing that the filter is

stable provided that data is assimilated more frequently than the

Lagrangian autocorrelation time-scale (TL ). Methods that recon-

struct Eulerian velocity information, on the other hand, report

a maximum allowable time-interval of 0.2TL . The augmented

state vector formulation is, therefore, indispensable in scenarios

where infrequent measurements are available.

Salman et al. (2006) carefully analysed the performance of the

method with respect to variations in different parameters, includ-

ing the number of ensembles, the localization of the covariance

matrix, and the drifter release sites. Of these parameters, the

most difficult to understand, and yet perhaps most important, is

the initial launch sites of the drifters. The root of the difficulty is

two-fold; firstly it has been known for sometime now that simple

unsteady two-dimensional velocity fields can give rise to chaotic

advection in the motion of Lagrangian material particles (Aref,

1984; Aref and El Naschie, 1994). Such chaotic behaviour has

come to be known as Lagrangian chaos and reflects a degree of

unpredictability in the motion of material particles. Given that a

good first order approximation that describes the motion of floats

and drifters is to assume that they behave as material particles

(Bower, 1991), understanding their motion in unsteady flows

is extremely non-trivial. In light of these results, understanding
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how drifter release locations affect the performance of our LaDA

requires a more in depth understanding of what controls the tra-

jectories of these drifters. The above difficulty is compounded by

a second non-linear effect in that the velocity field that governs

the motion of the drifters is part of the state vector that is being

updated by our assimilation algorithm. This sets in a two-way

coupling between the positions of the drifters and the their im-

pact on the method. With such complications, the preliminary

results presented in Salman et al. (2006) regarding the influence

of different release sites on the performance of the method are

not fully conclusive.

In this study, we aim to provide a more in depth and di-

rect understanding of how different initial drifter placements

can affect the performance of the LaDA method presented in

Salman et al. (2006). Our approach will be to employ recent

ideas from dynamical systems theory (Jones and Winkler, 2002)

to extract Lagrangian coherent structures (LCS) from our numer-

ically computed flows. These Lagrangian structures have been

studied extensively for geophysical flows in recent years and are

understood to orchestrate the evolution and motion of material

particles (see Wiggins, 2005, for a recent review). They provide

a geometric approach to analyse the motion of particles in un-

steady 2-D velocity fields. By extracting such structures from

our flow, the complications that arise from the non-linear depen-

dence of the drifter positions on the underlying advecting flow

field reduce to understanding the evolution of a set of material

lines that delineate such flow structures.

While this approach has proven to be successful in a number of

studies conducted to date (Poje and Haller, 1999; Coulliette and

Wiggins, 2000; Jones and Winkler, 2002; Kuznetsov et al., 2002;

Mancho et al., 2004), we are posed with an additional difficulty

here due to the two-way coupling between the drifter positions

and the velocity field that arises from assimilation. To simplify

the problem in this study, we will focus on a twin-experiment

configuration in which the flow field for the synthetic ‘truth’

is known. Under such idealized conditions, we can extract the

LCS for the true state and use this as our template for the directed

launch of drifters. The approach we will adopt will, therefore,

build on the ideas used by Poje et al. (2002), and Toner and Poje

(2004) to study how initial drifter placements influences the per-

formance of our LaDA method. By targeting the Lagrangian flow

structures of the ‘true’ system, we are able to simplify the prob-

lem drastically. At the same time, it enables us to focus on the

structures of most relevance since it is these structures that con-

trol the motion of the drifter positions being assimilated into the

model. This simplification also serves as a relevant benchmark

case for future studies geared towards the design of an observing

system for the optimal deployment of drifters for use with our

LaDA formulation. In such a case, one is interested in where

to release drifters to improve ocean forecasting without prior

knowledge of the ‘true’ state of the system. The design of such

a system introduces major challenges and it, therefore, helps to

understand how the flow structures affect our data assimilation

method under the more idealized scenario of a twin-experiment

setup. This in turn would allow us to determine how much im-

provement we can expect to gain from directed drifter placement

in relation to random drifter placement before embarking on the

involved design of such an observing system. A similar approach

has been adopted in the study of Molcard et al. (2006) who anal-

ysed how directed drifter deployment affected the convergence of

the data assimilation method developed by Molcard et al. (2003)

and Özgökmen et al. (2003). As stated earlier, however, the for-

mulation of our LaDA scheme is fundamentally different from

these methods. The work presented here, therefore, provides an

essential first step towards the development of a Lagrangian ob-

serving system for the methods developed by Ide et al. (2002),

Kuznetsov et al. (2003) and Salman et al. (2006).

The remainder of the paper is organized into four main sec-

tions. We begin in Section 2 by stating the main elements of our

LaDA method that is based on the use of the EnKF. The mathe-

matical model used in this study together with the problem setup

is briefly described in Section 3. We then describe how we com-

pute the LCS for our double gyre flow and present results using

two different methods. The first method computes relative disper-

sion, produced by integrating material particles in forward and

backward time, to locate regions of maximal stretching within

the flow. The second method employs the idea of straddling one

of the stable or unstable directions of a distinguished hyperbolic

trajectory (DHT) to compute the Lagrangian structures of inter-

est. These Lagrangian templates are used to identify different

release sites for sets of drifters that consequently have very dif-

ferent dispersion characteristics. Results are subsequently pre-

sented in Section 4 to quantify how targeting specific regions

of the flow can affect our data assimilation method. We end in

Section 5 with conclusions of the main results.

2. Ensemble Kalman filter for Lagrangian data

In this section, we will summarize the key elements of the for-

mulation developed by Salman et al. (2006), Kuznetsov et al.

(2003) and Ide et al. (2002) for assimilating Lagrangian data.

We begin by writing our system of equations governing the

(NF × 1) flow state vector, xF , and the (2ND × 1) drifter state

vector, xD , of our ND drifters in terms of the augmented state vec-

tor, x = (xT
F , xT

D)T . Using an ensemble forecast with NE members,

we have

dx f
j

dt
= m j (x j , t), j = 1, · · · , NE . (1)

Here, the subscript j denotes the ensemble member, the super-

script f denotes the system forecast, and mj is the evolution

operator. Using this augmented system of equations for each

member of the ensemble, we can define the corresponding co-

variance matrix by

P f = 1

NE − 1

NE∑
j=1

(
x f

j − x f
)(

x f
j − x f

)T
. (2)

Tellus 60A (2008), 2



DRIFTER DEPLOYMENT IN LAGRANGIAN DATA ASSIMILATION 323

We note that the covariance matrix can be expressed in block

matrix form as

P f =
(

P f
F F P f

F D

P f
DF P f

DD

)
. (3)

PF F , PF D , PDF , and PDD are (NF × NF ), (NF × 2ND), (2ND ×
NF ), and (2ND × 2ND) matrices, respectively. They correspond

to correlations between the flow and drifter parts of the state

vector. The mean of the state vector taken over the ensemble is

denoted by an overline in eq. (2) and is defined as

x f = 1

NE

NE∑
j=1

x f
j . (4)

When Lagrangian measurements become available, the analysis

state of the system, denoted by xa , can be obtained using the

perturbed observation EnKF (Evensen, 1994, 2003). The filter

updates each ensemble member by

xa
j = x f

j + Kd j , (5)

where the Kalman gain matrix is defined as

K =
(
ρF D ◦ PF D

ρDD ◦ PDD

) (
ρDD ◦ PDD + R

)−1
, (6)

and the innovation vector dj is given by

d j = yo − Kx f
D, j + ε̃

f
j . (7)

The observation vector yo represents noisy spatial coordinates

of the drifters in the zonal and meridional directions. Both the

noise in the drifters’ positions and the perturbations to the obser-

vations given by ε̃
f
j are drawn from a gaussian distribution with

a covariance matrix equal to R. The latter is also made to satisfy

the condition 1/NE
∑NE

j=1 ε̃
f
j = 0.

In eq. (6), the operator ◦ denotes the Schur product between

two matrices. The elements of the matrix ρ correspond to a

distance-dependent correlation function . We have used the cor-

relation function given by Gaspari and Cohn (1999) which is

smooth and has compact support.

3. Flow model and experimental setup

The model we employ in this study is very similar to the one

used in the work of Salman et al. (2006). The model is an ide-

alized ocean model with a square domain configuration whose

size in the zonal and meridional directions are denoted by Lx and

Ly , respectively. As described in Cushman (1994) and Pedlosky

(1986), the flow within this domain can be modeled by the re-

duced gravity shallow water system of equations which are given

by

∂h

∂t
= −∂(hu)

∂x
− ∂(hv)

∂ y
, (8)

∂u

∂t
= −u · ∇u + f v − g′ ∂h

∂x
+ Fu + 1

h

(
∂τxx

∂x
+ ∂τxy

∂ y

)
,

∂v

∂t
= −u · ∇v − f u − g′ ∂h

∂ y
+ 1

h

(
∂τyx

∂x
+ ∂τyy

∂ y

)
. (9)

h is the surface height, (u, v) is the fluid-velocity vector, g′ is

the reduced gravity, Fu is a horizontal wind-forcing acting in the

zonal direction, and f is the Coriolis parameter. We invoke the

β-plane approximation allowing the Coriolis term to be ex-

pressed as

f = fo + β y, (10)

where fo and β are constants. A zonal wind-forcing of the form

Fu = −τo

ρHo(t)
cos (2π y/L y), (11)

Ho(t) = 1

Lx L y

∫ Lx

0

∫ L y

0

h(x, y, t) dx dy, (12)

is employed in this work where x and y are the coordinates in the

zonal and meridional directions measured from the western and

southern boundaries of our flow domain, respectively, τo is the

wind stress, ρ is the density of water, and Ho(t) is the average

water depth.

In contrast to the study presented in Salman et al. (2006), we

have replaced the dissipation term by the form proposed by Schär

and Smith (1993). This is given by

τi j = μh

(
∂ui

∂x j
+ ∂u j

∂xi
− δi j

∂uk

∂xk

)
, (13)

for all possible permutations of the indices i and j, which can take

the two cartesian components x or y, and μ denotes a (constant)

eddy viscosity of the flow. This form of the dissipation term

has been employed as it leads to a self-consistent formulation of

the shallow-water system of equations as further discussed by

Shchepetkin and O’Brien (1996) and Gent (1993). In particular,

the resulting equations satisfy energy and momentum conserva-

tion principles that are otherwise violated with the form of the

dissipation employed in Salman et al. (2006).

The above equations are supplemented with the boundary and

initial conditions given by

u(x, y, t)|∂� = 0, v(x, y, t)|∂� = 0, (14)

u(x, y, 0) = 0, v(x, y, 0) = 0, h(x, y, 0) = Ho, (15)

where ∂� represents the boundaries of our flow domain. To setup

a double gyre circulation, we solved the above equations with

the model parameters given in Table 1.

Equations (8)–(9) were discretized on a uniform mesh with

(nx × ny) = (100 × 100) grid points which corresponds to a grid

spacing of (	x × 	y) = (20 km × 20 km). This produces a

set of NF = 2(nx − 1)(ny − 1) + nx ny equations for the flow

which correspond to the flow state vector xF . In addition, a set of
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Table 1. Parameters prescribed for the reduced

gravity shallow water system of equations

Property Value

Lx 2000 km

Ly 2000 km

fo 6 × 10−5 s−1

β 2 × 10−11 m−1 s−1

Ho 500 m

g′ 0.02 ms−2

ρ 1000 kg m−3

τo 0.05 N m−2

	x 20 km

	y 20 km

	t 12 min

μ 400 m2 s−1

2ND equations corresponding to the zonal and meridional coor-

dinates of the ND drifters was integrated together with the flow.

The drifters were assumed to be advected as material particles

by the flow field. A twin-experiment setup was used for our

assimilation experiments. The synthetic truth (control run) was

obtained by integrating the model for 12 yr from an initial flow

at rest using an average water depth of Ho = 500 m. The flow

for the forecast was made up of an ensemble consisting of 80

members. The ensemble was generated by perturbing the initial

height field of each member so that the mean water depth taken

over the ensemble is given by Ho = 550 m. A gaussian distribu-

tion with a variance of σh = 50 m was used to generate Ho for

the different members of the ensemble. Each member was then

integrated forward in time for a 12 yr period to produce a set of

flows corresponding to the different initial height fields. At the

beginning of the 13th year, drifters were released into the true

flow. Each drifter was initialized at a specified location within

the flow domain and then integrated with our true flow over a pe-

riod of 2 yr to generate a set of true trajectories. The observation

errors corresponding to these drifter trajectories were taken to

be distributed as independent gaussians with the same statistics;

that is

E[ε(tk)εT (tl )] = δklσ
2I,

E[ε(tk)] = E[ε(tk)] = 0, (16)

where σ was taken to be 200 m in this work. Each ensemble

member of our forecast model was then integrated over the same

2 yr time interval using a corresponding set of perturbed drifters

with the same error statistics as those given in eq. (16).

When performing our assimilation experiments, we fixed the

assimilation time interval to be equal to 1 d. This is well within

the Lagrangian autocorrelation time-scale of 10 d for this flow

(Salman et al., 2006). Consequently, we avoided the potential

problems of filter divergence that can arise with the use of larger

time intervals.

4. Results

4.1. Computation of Lagrangian coherent structures

In this work, we will employ our knowledge of the ‘true’ velocity

field to extract the desired LCS that control the motion of the ob-

served drifter positions. The computation of LCS from a numer-

ically computed velocity field with general time dependence is a

topic that has received much attention in recent years (Wiggins,

2005). In general, the first step with any such method is to

locate distinguished hyperbolic trajectories (DHTs) associated

with the flow given over some finite time interval [t0, t1]. For

time-periodic flows, such points can easily be identified as the

fixed points of an appropriately chosen Poincaré map of the flow.

However, for flows with general time-dependence, the DHTs are

aperiodic in time. Identifying them, therefore, requires the use of

alternative methods that have found varying degrees of success

in different applications. The first approach is based on the idea

that for flows having a Lagrangian time-scale much shorter than

the Eulerian time-scale, the DHTs can be expected to lie close

to an instantaneous saddle point (ISP). The precise conditions

under which this property holds have been derived by Haller

and Poje (1998) and applied to a double gyre flow of the ocean.

In general, the separation between the Lagrangian and Eulerian

flow time-scales is a property of many geophysical flows includ-

ing the double gyre flow which we will consider in this work.

This method will provide one way that we will employ to identify

regions that can potentially have hyperbolic trajectories.

A second method that has proven useful in locating DHTs

is to compute the relative dispersion (Jones and Winkler, 2002)

or direct Lyapunov exponent (DLE) (Haller, 2001) in forward

and backward time for a given flow field. Coherent structures

are then delineated by ridges in the DLE (or relative dispersion)

fields. These methods have been demonstrated to work well in

regions of the flow not dominated by shear. In shear dominated

regions, however, the computed DLE fields can give rise to spu-

rious flow structures. This was illustrated with a particular ex-

ample by Haller (2002) who showed that a shear flow with an

inflection point can produce a ridge in the DLE field. The prob-

lem is attributed to the fact that both relative dispersion and the

DLE identify regions of large stretching. Since a shear flow with

an inflection point has an anonymously large stretching near

the inflection point, spurious structures tend to emerge. Another

disadvantage of these methods is that they are computationally

expensive requiring the integration of a large number of parti-

cles. This is traded off, however, by the fact that they provide a

direct method to identify DHTs for a general class of flows. Our

experience shows that it is useful to use both the straddling and

DLE (or relative dispersion) methods to gain information about

the LCS of a given flow (Salman et al., 2007). For these reasons,

we have opted to employ both methods in this work. We will

begin by computing the DLE that provides a global portrait of

the distribution of the coherent structures in our flow. We are
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Fig. 1. Finite time DLEs computed in forward and backward time on the 60th day to extract repelling and attracting material lines, respectively. The

intersections of the two sets of lines are also shown and indicate regions of distinguished hyperbolic trajectories (DHTs). Axes represent length in

metres.

ultimately interested in targeting a few structures, however,

that can produce the maximal dispersion characteristics for our

drifters. We will, therefore, also employ the first method de-

scribed above to identify the strongest ISPs (those with the

largest—in absolute terms—eigenvalues). This can give a good

indication of the strength of the DHT as we will show in the

results that we will present below.

Figure 1 shows plots of the DLEs computed in forward and

backward time at the 60th day of the 13th year. The time inter-

val for integration was set to 50 d. Integration made in forward

time is used to reveal repelling material lines whilst integra-

tion made in backward time is used to reveal attracting material

lines. These attracting/ repelling material lines are approximate

finite-time generalizations of unstable/stable manifolds of time-

periodic flows. They orchestrate how water parcels are advected

by the underlying flow field and reveal regions that can lead to

rapid dispersion of the drifters. From the figures, we observe

that most of the underlying structure is located close to the west-

ern boundary within the mid-latitude jet. We also notice that

significant shearing is present in the flow which gives rise to

spurious structures (those with significantly lower values of the

DLE field). To clarify the structures of most relevance, we have

re-plotted the two fields in Fig. 1c. A lower threshold has been

applied in this case to remove most of the spurious structures

present in Fig. 1a and b. Here the pink values depict repelling

material lines whilst grey depict attracting material lines. The

two DLE fields have been overlayed on one another to identify

regions where the extrema of the two fields intersect. Such inter-

sections give a potential indication of where DHTs are located

within the flow. We have employed this approach to identify three

hyperbolic trajectories as indicated in Fig. 1c. We note that, in

general, the repelling and attracting material lines will intersect

at many locations. In selecting the intersections shown in Fig. 1c,

we have made use of the fact that for our double gyre flow, we ex-

pect the DHTs to be located close to the ISPs. This is illustrated in

the corresponding plots of the instantaneous height (streamline

field), shown in Fig. 2a, in which the ISPs are indicated by the

cross-hairs. The cross-hairs have been scaled according to the

magnitude of their respective eigenvalues and indicate that

the three trajectories we have identified correspond to regions

of strong hyperbolicity. We can, therefore, expect rapid disper-

sion of the drifters that straddle the respective repelling material

lines of these DHTs.

In order to refine the computations of the attracting and re-

pelling material lines presented in Fig. 2a, we have used the

method of straddling used by Malhotra and Wiggins (1998) and

also employed in the work of Salman et al. (2007) in combi-

nation with the DLE method. The idea here is to initialize a

small material line segment close to the DHT and straddling one

of its corresponding stable or unstable directions. For attracting

material lines, we initialize a segment straddling the stable di-

rection and integrate forward in time. The process is reversed

for computing repelling material lines with the integration be-

ing performed in backward time. Haller and Poje (1998) showed

that for geophysical flows, in which a clear separation exists be-

tween the Lagrangian and Eulerian flow time-scales, the stable

and unstable directions of the DHTs are approximately aligned

with the stable and unstable eigenvectors of the nearby ISP. We

have, therefore, used this property to initialize our line segments

close to the ISPs and straddling the respective eigenvectors as

required. We point out that while this approach can potentially

introduce an error in terms of the initial placement of the ma-

terial line with respect to the structures of interest, the errors

converge to zero at an exponential rate with respect to the time

of integration. This property is a characteristic of DHTs and can

be exploited in their computation.

Figure 2b shows plots of the attracting and repelling material

lines corresponding to the DHTs identified in Fig. 2a. Also pre-

sented are the motion of drifters that have been initialized in six

groups of three. Drifters in three of the groups are initialized at

Tellus 60A (2008), 2
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Fig. 2. Contour plots of height (streamline) field with corresponding LCS at different times. Instantaneous saddle points are indicated with

cross-hairs, and elliptic points are indicated with a circle. The length of the cross-hairs are proportional to the magnitude of the eigenvalues of the

saddle points. Triangles indicate the different sets of drifter positions at various times. (a)(i)–(iii), show LCS computed from the DLE method with

repelling material lines plotted in red and attracting material lines plotted in grey. The LCS shown in (b)(i)–(iii) were computed using the straddling

method with repelling material lines plotted in magenta and attracting material lines plotted in black. LCS shown in (a)(ii) correspond to those

presented in Fig. 1(c). Axes represent length in metres.

positions straddling a repelling material line so that after some

time they disperse rapidly as they encounter the respective DHT.

The other three sets of drifters are initialized within the cores of

three vortices. These drifters remain in these vortices through-

out most of the first year. We will use the sets of drifters shown

in Fig. 2b to determine how they affect the performance of our

LaDA method presented in Section 2.

4.2. Lagrangian data assimilation

Before presenting assimilation results for our drifter deployment

strategy, we first need to prescribe several key parameters for our

data assimilation simulations. Clearly, the method will stongly

depend on the localization radius employed in our EnKF. The

study of Salman et al. (2006) indicated that a localization ra-

dius of r
loc

= 600 km provided optimal results. To verify that

this figure continues to hold for our modified form of the gov-

erning flow equations (i.e. with different form of the dissipation

term), we have repeated these assimilation experiments. As in

Salman et al., we have tested three values of r
loc

and used 36

drifters uniformly distributed throughout the flow domain in each

case.

Results are presented in Fig. 3 in terms of the time history for

the kinetic energy and height field norms. Here we define the

error norms for the flow field and the drifters by

|KE|t =

⎡⎢⎢⎢⎢⎢⎢⎣

nx−1,
ny −1∑
i=1,
j=1

(
u f

i, j − ut
i, j

)2

+
(
v

f
i, j − vt

i, j

)2

nx −1,
ny −1∑
i=1,
j=1

(
ut

i, j

)2 + (
vt

i, j

)2

⎤⎥⎥⎥⎥⎥⎥⎦

1/2

(17)
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Fig. 3. Effect of localization radius on the convergence of the error

norms.

|h|t =

⎡⎢⎢⎢⎢⎢⎢⎣

nx ,
ny∑

i=1,
j=1

(
h f

i, j − ht
i, j

)2

nx ,
ny∑

i=1,
j=1

(
ht

i, j

)2

⎤⎥⎥⎥⎥⎥⎥⎦

1/2

(18)

|xD|t =

⎡⎢⎢⎢⎣
ND∑
i=1

(
x f

D,i − xt
D,i

)2

+
(

y f
D,i − yt

D,i

)2

σ 2 ND

⎤⎥⎥⎥⎦
1/2

, (19)

where overbars denote ensemble mean quantities. We note that,

for the results to be presented in the remainder of this study, day

0 corresponds to the beginning of the 13th year. All three as-

similation experiments show a reduction in the error norms with

respect to the case without assimilation. The results also clearly

indicate that as rloc is increased, the initial rate of convergence in

both norms also increases. However, while the convergence for

both rloc = 300 km and rloc = 600 km is more or less monotonic

over the length of the simulation, this is clearly not the case for

rloc = 1200 km. This is best seen in the norm of the height field

which reveals a gradual increase at around 25 d. Moreover, the

norm in the kinetic energy field at 330 d with rloc = 1200 km

is greater than the case with rloc = 600 km. As pointed out by

Fig. 4. Effect of number of drifters used on the convergence of the

error norms.

Hamill et al. (2001), this degradation in the convergence of the

method for large rloc occurs as a result of spurious noisy cor-

relations that exist in the covariance matrix. We will, therefore,

use rloc = 600 km in the remainder of this work which we have

clearly shown to be the optimum value for our modified system

of equations.

A second key parameter that can have an important impact

on the convergence of the method is the number of drifters re-

leased into the flow. The previous study conducted by Salman

et al. (2006) indicated a value of 36 drifters uniformly released

into the flow provided optimal results. Increasing the number of

drifters beyond this value did not significantly alter the results.

Given that we are interested in using our drifter deployment strat-

egy to obtain the best results with the fewest possible number of

drifters, we have explored how reducing the number of uniformly

distributed drifters affected our results. Figure 4 shows the con-

vergence of the kinetic energy and height flow fields for five

different cases in which the total number of drifters uniformly

released into the flow was varied from 4 to 36. The results clearly

indicate that best results are obtained with 36 drifters. However,

the gain made in the convergence of the method diminishes with

an increasing number of drifters. In particular, there is a signifi-

cant improvement in increasing the drifters from four to nine in

comparison to improvements made beyond nine drifters. Given

this observation, we have chosen to focus on the use of nine
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Table 2. Initial drifter locations used in the uniform launch and

directed launch simulations

Launch method Drifter number Coordinates (km)

Saddle (red) 1 (220.5,1211.0)

2 (230.5,1231.0)

3 (205.5,1231.0)

Saddle (blue) 4 (238.5,1066.8)

5 (263.5,1062.0)

6 (270.5,1087.0)

Saddle (green) 7 (365.0,617.5)

8 (390.0,622.5)

9 (365.0,642.5)

Centre (yellow) 10 (143.4,1361.5)

11 (168.4,1361.5)

12 (168.4,1386.5)

13 (188.5,624.7)

14 (218.5,624.7)

15 (218.5,654.7)

16 (629.5,950.0)

17 (664.5,950.0)

18 (664.5,980.0)

Uniform 19 (500.0,500.0)

20 (1000.0,500.0)

21 (1500.0,500.0)

22 (500.0,1000.0)

23 (1000.0,1000.0)

24 (1500.0,1000.0)

25 (500.0,1500.0)

26 (1000.0,1500.0)

27 (1500.0,1500.0)

drifters for our optimal deployment strategy. Our aim is to see

how a directed drifter deployment strategy with only nine drifters

will compare with the results obtained with a uniform drifter de-

ployment strategy.

The sets of drifters used in our directed drifter deployment

studies are those shown in Fig. 2b with their corresponding

initial release locations given in Table 2. Also included in the

table are the initial drifter deployment locations used in the uni-

Fig. 5. Contour plots of the assimilated mean height (streamline) field at 300 d with corresponding drifter trajectories obtained by integrating over a

time interval of 300 d. Axes represent length in metres.

form launch with nine drifters. As stated earlier, six groups of

drifters were employed in the directed drifter deployment with

each group containing three drifters. Three of these groups were

deployed so as to straddle repelling material lines of associated

DHTs whilst the remaining three groups were released within

vortex centres. We have divided our directed drifter deployment

data assimilation experiments using these drifters into three dif-

ferent cases. In the first case, we considered the set of drifters

targeting DHTs. In the second case, we considered the set of

drifters targeting only vortex centres. Finally, in the third case,

we employed a drifter released within each of the vortex cores

and two of the three groups of drifters targeting DHTs. This in-

cluded drifters 1, 2, 3, 7, 8, 9, 10, 13 and 16. A total of nine

drifters was used in each one of these assimilation experiments.

To illustrate the distinctive nature of the drifter motion in the

four assimilation experiments (including the case with nine uni-

formly released drifters), we have plotted their trajectories over

the time interval [0, 300] d. These are shown in Fig. 5 for each

of the uniform, saddle, centre, and mixed drifter launch cases.

Figure 5a, which corresponds to the uniform case, shows a good

coverage of the flow by the drifter trajectories and can be directly

attributed to the initially disparate drifter placements. The saddle

case shown in Fig. 5b illustrates that DHTs can produce rapid

drifter dispersion leading to good flow coverage even though

the drifters were initially placed in clusters of three. The centre

launch (Fig. 5c) shows the least spread in the drifter trajectories

with drifters being trapped within their respective vortices. The

mixed case is a combination of the centre and saddle cases and

produces an intermediate level of dispersion. We will now begin

to analyse how such different drifter trajectories influence the

convergence of our LaDA method.

Figure 6 presents results over an assimilation time interval of

330 d for the three cases of directed drifter deployment described

above. Also included for comparison is the case of uniformly re-

leased 3 × 3 drifters and a case without data assimilation. Results

for the kinetic energy norm shown in Fig. 6a indicate that in all

three cases in which a directed drifter deployment was used, the

convergence is initially much faster than in the case of uniformly

released drifters. After a period of about 200 d, however, the vor-

tex centre launch shows a gradual rise in the norm of the kinetic
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Fig. 6. Effect of initial drifter deployment on the convergence of the error norms.

energy and reveals the poorest performance of the four assim-

ilation experiments considered. The cause of this gradual error

increase is discussed later in this section. The case in which

DHTs are targeted, reveals the same level of convergence as

the uniform case at the end of 330 d. However, by far the best

convergence is obtained with the mixed launch. Results for the

convergence of the height norm presented in Fig. 6b reveal a

different trend. In this case, the uniformly released drifters pro-

duce the fastest convergence with the saddle launch eventually

resulting in similar norms after 330 d. The mixed launch is seen

to produce a slightly poorer convergence but, as in the kinetic

energy norms, the poorest results are obtained with the vortex

centres. In all the cases considered above, the assimilated drifter

trajectories are seen to track the true drifters as indicated by the

non-dimensionalized drifter error norms presented in Fig. 6c.

To understand why the results for the kinetic energy and height

field norms have different trends with respect to the various

drifter launch sites, a more detailed inspection of the assimi-

lated flow field is required. We begin by considering contour

plots of the height field. Figure 7 presents contour plots of the

height anomaly at three different times for all four assimilation

experiments. Also shown in Fig. 7a are the corresponding plots

for the control run (synthetic truth). Overlayed on the plots for

the cases with assimilation are the ensemble mean positions of

the nine drifters to illustrate how the flow field is updated by

the motion of the drifters. Results for the case with uniformly

released drifters are shown in Fig. 7b. The gradual convergence

of the height field to that of the control run can be seen from the

increasing coverage of the flow with negatively valued contours

of the height anomaly. Results for the saddle launch are shown

in Fig. 7c. At earlier times, we observe the corrections are con-

fined closer to the western boundary where most of the drifters

are initially released. As the drifters disperse, they provide

more widespread coverage of the flow. Therefore, at later times,

the height anomaly field is qualitatively similar to the uniform

case and is consistent with the global error norms presented in

Fig. 6b. Comparing these results with the case corresponding to

the vortex centre launch presented in Fig. 7d reveals some stark

differences. In particular, the drifters remain trapped within the

eddies which themselves remain confined to the western bound-

ary region of the flow. This lack of dispersion in the drifters re-

sults in the height field being updated only locally. Consequently,

the flow close to the eastern boundary remains with unrealisti-

cally high levels of the height anomaly field. This accounts for

the poorer global trend in the norm of the height field observed in

Fig. 6b. Finally, the results for the mixed launch reveal a trend

that is more characteristic of the saddle case although the height

anomalies are less well represented close to the upper boundary

after 300 d.

To provide a clearer representation of how errors are reduced

in the four different cases, we have computed contour plots of

the root mean square errors of the height field. The results are

presented in a similar arrangement to that used in Fig. 7. Consid-

ering the case of uniformly released drifters as shown in Fig. 8a,

we observe the errors are initially reduced within the central part

of the flow domain and far away from the boundaries. As time

progresses and drifters disperse, the flow is gradually adjusted

in remote regions including the boundaries. By 300 d, the error

has been almost entirely eliminated. In comparison, the saddle

launch presented in Fig. 8b reveals the errors are initially reduced

closer to the western boundary. As the drifters rapidly disperse

following their encounter with the respective DHTs, the flow is

adjusted until the errors have been uniformly reduced throughout

the flow. The poorer convergence with the case of vortex centres

is very clearly illustrated in Fig. 8c. The results clearly show

that a significant part of the flow has not been adjusted by the

data assimilation method. Finally, the mixed case reveals results

that are most similar to the saddle launch albeit that, after 300 d,

the overall errors are slightly higher. The results presented here

are fully consistent with those presented in Fig. 7 and clearly

illustrate the impact that different drifter deployment strategies

have on the assimilated flow field.

We will now consider how errors associated with the velocity

field are influenced by assimilating different drifter data. In par-

ticular, we want to identify why the errors observed in Fig. 6a

for the norms of the kinetic energy have a different trend from

the norms of the height field presented in Fig. 6b. Contour plots

of the root mean square errors of the kinetic energy field are pre-

sented in Fig. 9. A feature which immediately stands out from

the plots presented here is that, even at the very early stages of the
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Fig. 7. Contour plots of true and assimilated height anomaly fields (h − Ht
o) for different deployment strategies with corresponding positions of the

ensemble mean drifter locations. Axes represent length in metres.
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Fig. 8. Contour plots of the root mean square error of the height field for different deployment strategies with corresponding positions of the

ensemble mean drifter locations. Axes represent length in metres.
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Fig. 9. Contour plots of the root mean square error of the kinetic energy field for different deployment strategies with corresponding positions of the

ensemble mean drifter locations. Axes represent length in metres.
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Fig. 10. Effect of initial drifter deployment on the convergence of the

error norms for longer forecasts.

data assimilation, the errors are primarily localized close to the

separation point of the western boundary currents. This region

of the flow is highly active containing the formation of vortices

from the unsteady meandering jet. Therefore, unlike the errors

for the height field, the errors for the velocity are localized to

energetic regions of the flow. Recognizing this key point helps to

Fig. 11. Contour plots of the height (streamline) field of the synthetic truth with corresponding positions of the drifters to illustrate how bifurcations

in the flow affect their evolution. Axes represent length in metres.

explain the differences observed in the behaviour of the norms

for these two quantities. Now focusing on the case of the uniform

drifter launch shown in Fig. 9a, we observe that the drifters are

initially placed in the open ocean far away from the energetic

western boundary eddies. This results in a slight delay in the

correction of this part of the flow, as shown in Fig. 9a(i) and (ii),

and explains the slower initial convergence observed in Fig. 6a

relative to the three directed drifter deployment cases. The saddle

launch on the other hand, as with the centre and mixed launches,

show that, after 25 d, a significant percentage of the error has

been removed [see Fig. 9b(i), c(i) and d(i)]. In all three cases,

the placement of the drifters closer to the western boundary re-

sults in improved convergence at earlier times. For longer times,

the dispersion of the drifters in the saddle case helps to elim-

inate almost all of the errors. The centre launch on the other

hand degrades after a sufficiently long time. The problem is at-

tributed to an eddy that forms in the region where the maximum

errors are seen in Fig. 9c(iii) [see also Fig. 7d(iii)]. Without suf-

ficient drifter dispersion, the eddies containing the drifters are

well represented while other energetic eddies remote from the

drifters can not be correctly forecast. Best results for the kinetic

energy errors are, however, predicted with the mixed launch as

shown in Fig. 9d. In this case, drifters released within the eddies

help to suppress errors within these energetic regions of the flow

whilst errors in remote regions can be corrected by the disper-

sion of the remaining drifters. Therefore, while the saddle launch

proves to be optimal in removing errors in the height field, the

mixed launch is most effective at removing errors in the velocity

field.

In all the results presented thus far, the centre launch has pro-

duced the poorest convergence history in the norms of the flow

field. However, if we consider what happens over longer fore-

casts, we observe a sudden change in the trends of the error

norms. This is vividly clear in the results presented in Fig. 10 in

which a sudden and sharp fall in the norms is seen for both the
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height and the velocity fields at around 350 d. After 730 d, despite

the drastic reduction in the error of the velocity field, the errors

are still substantially higher than the other three cases. The errors

in the height field on the other hand converge to a point where they

are of the same level as the uniform launch case. We have already

observed that errors in the height field tend to be more global than

errors in the velocity field. The trends observed in Fig. 10b for the

height field, therefore, suggest a mechanism whereby the drifters

within the vortex centres must have undergone rapid dispersion.

This is indeed the case as evidenced from plots of the drifter

locations at later times shown in Fig. 11. We observe that at

350 d, one of the drifters has escaped from the vortex within

which it was initially released. The mechanism responsible for

the escape of the drifter is triggered by a bifurcation of the vortex

centre with a saddle point leading to the annihilation of the vor-

tex. At 400 d, a similar fate beholds the drifters trapped within

the second vortex. Therefore, by 500 d, the drifters have mi-

grated eastwards assisted by the meandering jet. This expul-

sion of the drifters to the eastern part of the flow allows errors

in this region of the flow to be corrected which could not be

accomplished whilst the drifters were trapped within the vor-

tices. These results show that forecasts made over times that

are longer than the Eulerian flow time-scales are determined by

transformations within the geometry of the flow due to finitely

lived structures. Forecasts made from Lagrangian data over

longer times will, therefore, be strikingly different from shorter

forecasts.

5. Conclusions

We have presented a thorough investigation to demonstrate how

judiciously chosen drifter deployment sites can have a major

impact on the convergence of a LaDA method that employs an

augmented state vector together with an EnKF formulation. This

is in part because the method we have developed corrects the flow

field through correlations obtained from a covariance matrix of

the augmented state vector. Since a correlation function is needed

to suppress undesirable noisy correlations between drifters and

remote regions of the flow, only the local flow field can be modi-

fied by a given drifter. Such an approach is becoming standard in

almost all operational forms of the EnKF. Consequently, the dis-

persion characteristics of Lagrangian drifter trajectories, which

are governed by the underlying flow geometry, will strongly in-

fluence the performance of the method.

We have attempted to quantify the dependence of the method

on these drifter trajectories by extracting LCS of the underlying

flow field. Such structures uncover the underlying flow geometry

that directly control the motion of Lagrangian drifters. By using

these structures together with a directed drifter deployment strat-

egy that targets vortex centres or DHTs of the flow, we were able

to realize drifter trajectories with contrasting dispersion charac-

teristics. In this study, we compared four different launch sites;

a uniform drifter deployment within the ocean basin, a saddle

launch strategy, a vortex launch strategy, and a mixed combina-

tion of saddle and vortex centre launches. In all cases, we have

used a total of nine drifters. The different cases were tested on

a twin experiment data assimilation configuration in which the

model forecast was generated by perturbing the initial height

field of the control run (synthetic truth) simulation. Our results

showed that the convergence of the height and velocity fields

produced by the different launch strategies had strikingly dif-

ferent time histories. In particular, the mixed launch produced

the best convergence for the velocity field whereas the uniform

and saddle launches were best at minimizing the errors in the

height field. These contrasting behaviours are linked to the dif-

ferent nature of the errors in the two fields. In general, errors in

the height field were associated with an elevated water depth on

average over the entire ocean basin. This was a direct manifes-

tation of the errors introduced in the initial conditions and lead

to a globally distributed error in the height field. The errors in

the velocity field, on the other hand, are directly correlated to

the location of the western boundary currents, the meandering

mid-latitude jet, and the Sverdrup gyres and are more local in

nature. These results suggest that good dispersion characteristics

for the drifters are needed to remove global errors while local

errors are best removed by targeting specific energetic regions

of the flow. We have also found that bifurcations of coherent

flow structures in the underlying flow field can trigger unex-

pected rapid dispersion of drifters initially released within such

coherent vortices. Forecasts made over longer time-scales can,

therefore, produce results that are markedly different from those

obtained with shorter forecasts.

The results presented in this study have been obtained in the

context of a model problem based on a twin-experiment config-

uration in which the true flow is known a priori. This simplifying

assumption was used to allow us to extract LCS associated with

the true flow field which ultimately determine the dispersion

characteristics of the drifters. For the results obtained in this

study to be applicable in practice, this simplifying assumption

needs to be relaxed. In particular, LCS of the forecast should

be used to determine the optimum launch sites of the drifters.

In addition, most operational models that are used in forecast-

ing centres are three-dimensional and exhibit a greater degree

of variability between the forecast and the ‘truth’. While further

work is needed to address these issues, we point out that some

recent results by Lermusiaux et al. (2005, 2006) indicate that

robust LCS can persist even in the presence of significant un-

certainties in the flow field. These results provide a positive sign

that the ideas presented in this work may readily generalize to

more complex flow scenarios in which the truth is not known a

priori.
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