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Summary

The kinetochore is a control module that both powers and
regulates chromosome segregation in mitosis and meiosis.
The kinetochore-microtubule interface is remarkably fluid,
with the microtubules growing and shrinking at their point

of attachment to the kinetochore. Furthermore, the
kinetochore itself is highly dynamic, its makeup changing

kinetochore components are highly dynamic and that
some cycle between kinetochores and spindle poles along
microtubules. Further studies of the kinetochore-
microtubule interface are illuminating: (1) the role of
the Ndc80 complex and components of the Ran-GTPase
system in microtubule attachment, force generation and

as cells enter mitosis and as it encounters microtubules.
Active kinetochores have yet to be isolated or reconstituted,
and so the structure remains enigmatic. Nonetheless, recent
advances in genetic, bioinformatic and imaging technology
mean we are now beginning to understand how
kinetochores assemble, bind to microtubules and release
them when the connections made are inappropriate, and
also how they influence microtubule behaviour. Recent
work has begun to elucidate a pathway of kinetochore
assembly in animal cells; the work has revealed that many

microtubule-dependent inactivation of kinetochore spindle

checkpoint activity; (2) the role of chromosomal passenger
proteins in the correction of kinetochore attachment

errors; and (3) the function of microtubule plus-end

tracking proteins, motor depolymerases and other proteins
in kinetochore movement on microtubules and movement
coupled to microtubule poleward flux.

Key words: Kinetochore, Microtubule, CENP proteins, Ndc80,
Dynein, Centromere, Chromosomal passengers, Aurora B, Ran

Introduction

2000; Kapoor and Compton, 2002; Howard and Hyman, 2003).

The remarkable movements of chromosomes in mitosis afdere we focus on the animal kinetochore and in particular the
initiated, controlled and monitored by kinetochores, which arénterface between the outer kinetochore domain and spindle
structures that form the interface between the chromosom&gcrotubules (for reviews, see Fukagawa, 2004; Amor et al.,
and the microtubules of the mitotic spindle. Kinetochores 02004). [For reviews of budding and fission yeast kinetochores
animal cells can be subdivided into two regions. The inne@nd plant kinetochores, see Yu et al. and others (Yu et al., 2000;
kinetochore normally forms on highly repetitive DNA Kitagawa and Hieter, 2001; Cheeseman et al., 2002b; Biggins
sequences and assembles into a specialized form of chromagind Walczak, 2003; McAinsh et al., 2003; Cleveland et al., 2003;
that persists throughout the cell cycle. The outer kinetochoné/estermann et al., 2003; Houben and Schubert, 2003; Hall et
is a proteinaceous structure with many dynamic componeng., 2004).]
that assembles and functions only during mitosis. Kinetochore
functions include attachment of chromosomes to the spindle | )
microtubules, monitoring those attachments, activating Animal kinetochore structure
signalling (checkpoint) pathway to delay cell-cycle The kinetochore (Fig. 1) is composed of several distinct layers
progression if defects are detected and helping to power tfieat were first observed by conventional fixation and staining
movements of chromosomes on the spindle. We begin byethods for electron microscopy (Brinkley and Stubblefield,
discussing the molecular organization and assembly pathwdp66; Jokelainen, 1967; Comings and Okada, 1971) (reviewed
of the kinetochore. by Rieder, 1982), and more recently by fast freezing/freeze
Microtubules are metastable polymersieindB-tubulin that ~ substitution (McEwen et al., 1998). Innermost is an inner plate,
switch between phases of growth and shrinkage, a phenomen@eghromatin structure containing nucleosomes with at least one
known as ‘dynamic instability’ (Mitchison and Kirschner, 1984). specialized histone, auxiliary proteins and DNA. The makeup
We discuss below how the highly dynamic nature of microtubulend organization of this DNA remains one of the least
behaviour is integrated with kinetochore function to move andinderstood aspects of the kinetochore in animal cells. The
segregate chromosomes. More details about spindle checkpoinber plate exists as a discrete heterochromatin domain
function, spindle assembly mechanisms and the dynamics atittoughout the cell cycle. Outside this is an outer plate
mechanics of the microtubule plus end are reviewed elsewhecemposed primarily, if not solely, of protein (Cooke et al.,
(Musacchio and Hardwick, 2002; Sharp et al., 2000; Comptori,993). This structure forms on the surface of the chromosome
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at about the time of nuclear envelope breakdown (Brinkley an@ihe network of interactions shown in Fig. 2 represents a work
Stubblefield, 1966; Ris and Witt, 1981; McEwen et al., 1993)in progress; many linkages remain to be discovered and details
The outer plate of vertebrate kinetochores has about 20 end-are likely to change.

attachment sites for the plus ends of microtubules (termed The earliest protein known to bind during kinetochore
kinetochore microtubules, kMTSs); the outer plate of buddingassembly, CENP-A (Cse4 Baccharomyces cerevis)aés a
yeast has only one end-on attachment site. The outermasiecialized isoform of histone H3 (Palmer et al., 1991). CENP-
regions of the kinetochore form a fibrous corona that can b& is required for the recruitment of the inner kinetochore
visualized by conventional electron microscopy, and usuallproteins CENP-C, CENP-H and CENP-I/MIS6 (Howman
only in the absence of microtubules. This is composed of at al., 2000; Oegema et al., 2001; Van Hooser et al., 2001;
dynamic network of resident and transient components that aFeikagawa et al., 2001; Goshima et al., 2003). The relative
involved in the spindle checkpoint and the attachment gpositions of these proteins in the CENP-A-dependent pathway
microtubules and regulation of their behaviour. are not yet clear. CENP-C targeting requires CENP-H in

Animal kinetochores form by the assembly of proteins ontahicken cells, but is independent of CENP-I/MIS6 in human
a (usually) repetitive DNA sequence, yielding a modularcells (Fig. 2).
structure that forms a single inner plate as a consequenceln C. elegansCENP-A and CENP-C direct the assembly of
of chromatin higher-order folding (Zinkowski et al., 1991) KNL-1 and KNL-3, which colocalize with CENP-C in the
(reviewed by Brinkley et al., 1992). Duplicated kinetochoresnner kinetochore starting during prophase (Desai et al., 2003;
of sister chromatids are first seen to separate from one anotl@neeseman et al., 2004). The KNL proteins are required for
during mid-late G phase in mammalian cultured cells assembly of multiple components of the outer kinetochore,
(Brenner et al., 1981) and at the beginning of prophase iand the formation of a functional kinetochore-microtubule
Caenorhabditis elegan@vioore and Roth, 2001). These pre- interface. C. elegansproteins whose targeting depends on
kinetochores acquire a mature laminar structure after nucle&NL-1 include outer plate proteins of the Ndc80 complex
envelope breakdown (Moroi et al., 1981; Roos, 1973) in #Ndc80/Hecl, Nuf2, Spc24 and Spc25), KNL-binding proteins
process that requires components of the inner plate (TomkigBP-1 to KBP-5, MIS12, CENP-F and the checkpoint protein
et al., 1994) (reviewed by Pluta et al., 1995). BUBL1 (Desai et al., 2003; Cheeseman et al., 2004).

The molecular pathway of kinetochore assembly in higher In metazoans, the recruitment of many outer kinetochore
eukaryotes has been studied in work using gene knockouts pmoteins is also under the control of the CENP-A-dependent
mice and in cultured chicken cells, as well as RNA interferencpathway. A homologue of KNL-1, AF15q14, has recently been
(RNAI) in C. elegansDrosophilaand human cells. No simple identified in human cells (Cheeseman et al., 2004), which
linear pathway can describe the data obtained to date (Fig. auggests that the assembly pathway is likely to be conserved.

CENTROMERE KINETOCHORE

=
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Interestingly, AF15q14 is a fusion partner for M Emeraina Pathwayv of Kinetochore Assembl
in human leukaemias (Hayette et al., 2000). C erging y y

vertebrate andDrosophila kinetochore proteir INNER
known to require the CENP-A-dependent path CONSTITUTIVE CENP-A
for targeting include Polo-like kinase (PLK), RC /
ZW10, ZWINT-1, the microtubule motor dyne :
the kinesin motor CENP-E, the spindle checkg _CENP-C €<—69 —— CENP-H
proteins (MPS1, BUBR1, MAD1 and MAD2) a ¢ notfle 1 _ CENP:
the non-motor microtubule-associated prot
(MAPs) CLASPs (Wordeman et al., 1996; Blo) OUTER KNL-3 S5 Mis12 ~
and Karpen, 2001; Van Hooser et al., 2001; L| STABLE \LT ﬁgg%
al., 2003; Desai et al., 2003; Stucke et al., 2( Zwint
The spindle checkpoint proteins BUBR1 KNL- 1
BUBL1 seem to play a central role as recruitel
the other checkpoint components, but their pos
in the assembly pathway remains controve Ndc80
(Sharp-Baker and Chen, 2001; Chen, 2 MCAK KBP-4  Nuf2 (Him- 10)
Johnson et al., 2004). KBP-5  gpcoa
Also controversial is the position of MIS12 in A Spc25
pathway (Goshima et al., 1999). MIS12 bi
CENP-A/Cse4 and is required for chromost ¢ \ __>CENP-E
biorientation (see below) and the generatiol Bubl Madl RanGAP1
centromere tension in budding yeast (Pinsky € DYNAMIC Mad2 Lo Bp2
2003). In humans, MIS12 and CENP-A targe BUbR1 Mps1
appears to be mutually independent, and MIS
required for the subsequent assembly of CE EB1
I/MIS6 and CENP-H (Goshima et al., 2003). APC

contrast,C. elegandMIS12 functions downstrea Dvnein CLASP1
of CENP-A (Cheeseman et al., 2004). In hu DznaCtlﬁ

CLASP2

cells, MIS12 is an essential kinetoch

i : . Zw10
component; however, i€. eleganskinetochore Rod
ultimately assemble in the absence of MIS CLIP-170
although the protein is required for the proces  \/

be timely and efficient (Goshima et al., 20 A B
Cheeseman et al., 2004). INuCr:cl):_rI?IP
Incorporation of the inner centromeric K -
L Survivin

kinesin MCAK (also known as XKCM1) .

dependent on CENP-A and CENP-C but Borealin/Dasra
on KNL-1 in C. elegans indicating an earl Spmdle
bifurcation of the pathway (Desai et al., 20( pole
Also within the inner centromere before anapl

. Fig. 2. A speculative working model showing the dependency pathways for
are the chromosoma} passenger prot_ems, v as%ociatio% of components%vith the animal%(inetochpore. Thigi?wterpre¥ation of
include the aurora B kinase and its binding pf':lﬂ data presented previously (Fukagawa and Brown, 1997; Howman et al., 2000;
INCENP, survivin and borealin/dasra B (revie Fukagawa et al., 2001; Oegema et al., 2001; Desai et al., 2003; Liu et al., 2003;
by Carmena and Earnshaw, 2003; Gassmann Goshima et al., 2003; Cheeseman et al., 2004) should not be interpreted as
2004). These inner centromere proteins asse showing direct physical interactions. Components shown in blue have thus far
through a pathway independent of CENI  been identified only i€. elegansThose shown in dotted boxes have been shown
(Oegema et al., 2001). to form complexes.

Kinetochore components can be grouped
three classes on the basis of their localiz:
throughout the cell cycle. Constitutive components, such asuch as the Ndc80 complex (Wigge and Kilmartin, 2001;
CENP-A, CENP-C, CENP-H and CENP-Il, are bound toDelLuca et al.,, 2002), KNL/KBP proteins (Cheeseman et al.,
kinetochore-associated chromatin throughout the cell cycl004), MIS proteins (Cheeseman et al., 2004) and CENP-F
Other components associate with kinetochores only starting {fiRattner et al., 1993; Liao et al., 1995). Together with the
prophase. Kinetochore proteins can also be grouped Hponstitutive components, these proteins appear to form the core
whether their kinetochore concentrations remain constant &inetochore inner- and outer-plate structures. Cheeseman et al.
vary during mitosis and by whether they turnover slowlyhave recently isolated large multiprotein complexes containing
(stable) or rapidly (dynamic) at their kinetochore binding sitesCENP-C, members of the Ndc80 complex, plus KNL, KBP and
Proteins that remain nearly constant in level from prophaskllS proteins from botlC. elegansand human cultured cells
through late anaphase include the constitutive components @Eheeseman et al., 2004). This promises to be an exciting
the inner plate and the stable outer kinetochore componentseakthrough in characterization of the animal kinetochore.
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Dynamic components that change in concentration attal., 2001; Joseph et al., 2002; Salina et al., 2003). This might
kinetochores during mitosis include the microtubule motorde part of a kinetochore mechanism that recognizes the plus
CENP-E and dynein (plus its targeting components ZW10 aneinds of microtubules, ensures they are properly attached and
ROD), and the spindle checkpoint proteins (e.g. MAD1regulates their dynamics while they remain attached (see
MAD2, BUBR1 and Cdc20). These proteins assemble at highelow).
concentrations at kinetochores in the absence of microtubules
and are reduced in concentration by interactions with spindle )
microtubules and in particular by kMT formation (Hoffman et!nitial encounters between kinetochores and
al., 2001). By metaphase, CENP-E, BUB3 and BUBL levelghicrotubules
are decreased 3-4-fold relative to those at unattacheffter nuclear envelope breakdown in animal cells, highly
kinetochores, whereas dynein/dynactin, MAD1, MAD2 anddynamic centrosome-nucleated microtubules continuously
BUBR1 levels fall >10-100-fold (King et al., 2000; Hoffman probe the cytoplasm with their plus ends to search and capture
et al., 2001; Howell et al., 2004; Shah et al., 2004). chromosomes (Kirschner and Mitchison, 1986; Hill, 1985;

The dynamics of protein turnover at kinetochores has bedfoly and Leibler, 1994). Microtubules that encounter a
measured by fluorescent recovery after photobleachinkinetochore become stabilized, whereas those that do not soon
(FRAP) of green fluorescent protein (GFP) fusion proteinglepolymerize (Hayden et al., 1990). A single microtubule
expressed in cells. CENP-A, CENP-I, CENP-H, Nuf2, MAD1,emanating from the centrosome is sufficient to initiate
BUB1 and about 50% of MAD2 are relatively stable chromosome alignment, which begins with rapid polewards
components that turn over very slowly over 10 minutes. Bynovement of the captured chromosome involving lateral
contrast, 50% of MAD2 and most of BUB3, BUBR1, Mpslinteractions of the kinetochore with the surface of the
and Cdc20 are very dynamic components with residence halfricrotubules (Rieder et al., 1990). This movement is likely to
lifes of 30 seconds or less (Howell et al., 2000; Kallio et al.be mediated by the minus-end-directed motor activity of
2002a; Howell et al., 2004; Shah et al., 2004). This fastytoplasmic dynein (Vaisberg et al., 1993; Sharp et al., 2000;
turnover might have a role in the ability of unattachedEcheverri et al., 1996), which is highly concentrated at
kinetochores to inhibit activation of the anaphase-promotingnattached kinetochores (Pfarr et al., 1990; Steuer et al., 1990;
complex/cyclosome (APC/C) in the cytoplasm (Musacchio antVordeman et al., 1991; Hoffman et al., 2001) (reviewed by
Hardwick, 2002; Cleveland et al., 2003). Importantly, suctBanks and Heald, 2001). Polewards movement slows as
studies must always be interpreted cautiously and with thehromosomes acquire KMTs and movement becomes governed
caveat that the tagged proteins have typically not been shovay changes in the lengths of kMTs (see below).
to have full biological function. The high concentrations of dynein at unattached

The above changes in protein concentration and dynamiginetochores correlate with the need for the kinetochore to
at kinetochores are partially mediated by microtubules andecruit kMTs. Dynein is released from kinetochores as they
probably also depend on interactions with the core CENRBcquire their full complement of kMTs (Hoffman et al., 2001;
antigens. Injection of anti-centromere antibodies (ACAsXKing et al., 2000) and, in mammalian tissue culture cells, is
during G2 phase results in the assembly of kinetochores thegquired for inactivation of the spindle checkpoint, but not for
look near normal in the presence of colcemid (which blockehromosome alignment at the spindle equator, normal numbers
spindle assembly) but lack a defined laminar structure i6f KMTs, or anaphase A chromosome segregation (Howell et
microtubules are present (Bernat et al., 1991). These disruptat, 2001b). There is no evidence for dynein occurring in higher
kinetochores can still bind to microtubules but appear unablglants or within the nucleus of yeast, but minus-end-directed
to support chromosome movement. Cytoplasmic dyneikinesins might compensate for the lack of dynein function.
associates with kinetochores following the injection of ACA CENP-E is a very large kinesin-like protein that is associated
only if microtubule assembly is prevented: in the presence ofith the fibrous corona of mammalian kinetochores from
microtubules, kinetochores of ACA-injected cells lack dyneinprometaphase through anaphase and is also implicated in the
(Wordeman et al., 1996). Subsequent work has shown thamjtial encounters with microtubules (Cooke et al., 1997;
when ATP is partially depleted in cells, the proteins of thevao et al., 1997). Chromosomes lacking CENP-E at their
dynamic component, but not members of the core kinetochotenetochores often show defects in alignment and a few remain
structure, are stripped from kinetochores by dynein-mediatechronically mono-oriented (attached to a single pole) even
transport along microtubules to the spindle poles (Howell ethough most eventually align successfully at a metaphase plate
al., 2001). This suggests that there is constant streaming (8chaar et al., 1997; Wood et al., 1997; McEwen et al., 2001;
dynamic components between kinetochores and centrosomistkey et al., 2002; Weaver et al., 2003). CENP-E is involved
along spindle microtubules. When detectable at kinetochores anchoring kinetochores to shortening microtubules in vitro
MAD1/MAD2 and ROD are seen to cycle continuously (Lombillo et al., 1995), and CENP-E-depleted chromosomes
between kinetochores and spindle poles in a dynein-dependdr@tve reduced numbers of microtubules bound to their
manner (Howell et al., 2001; Wojcik et al., 2001; Basto et al kinetochores (McEwen et al., 2001; Putkey et al., 2002).
2004). Although it is now widely accepted that the KMT fibre (the

Whereas the dynamic outer kinetochore proteins arbundle of kMTs terminating in a single kinetochore) initially
depleted from the kinetochore when microtubules attacforms by capture of microtubules nucleated at centrosomes and
(Hoffman et al., 2001), other components, including EB1, APGpindle poles mammalian tissue culture cells (Kirschner and
and the Ran pathway proteins RanGapl and RanBP2 (skktchison, 1986), microtubule nucleation at kinetochores
below), associate with kinetochores only when microtubulesiight also make important contributions. Khodjakov et al.
are attached (Tirnauer et al., 2002; Kaplan et al., 2001; Foddecently reported that infrequently kinetochore fibres are
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initiated from the centromere/kinetochore region, elongatémportant for chromosome alignment and mitotic progression
away from the chromosome, and subsequently have theind to interact with components of the cohesin and condensin
minus ends captured and pulled into the spindleomplexes (Zheng et al., 1999).
pole/centrosome region by interactions with polar spindle Several recent studies have shown that the Ndc80 complex
microtubules (Khodjakov et al., 2003). Although we haveis crucial for the stable kinetochore-microtubule attachments
known for many years that kinetochores (or their proximathat are needed to sustain the centromere tensions involved in
centromere regions) have the potential to nucleatachieving proper chromosome alignment in higher eukaryotic
microtubules in vitro and in vivo after recovery from cells (Howe et al., 2001; DelLuca et al., 2002; Martin-Lluesma
microtubule poisons (Telzer et al., 1975; Witt et al., 1980; Det al., 2002; McCleland et al., 2003; Hori et al., 2003; Desai et
Brabander et al., 1981; Mitchison and Kirschner, 1985a), thal., 2003; Bharadwaj et al., 2004; McCleland et al., 2004;
significance of these results had been questioned. How tliZheeseman et al., 2004). Cells that have impaired Ndc80
kinetochore/centromere region initiates kinetochore fibreomplex function (induced by RNAI, gene disruption, or
formation and how frequently this occurs are important issuesntibody microinjection) have elongated spindles, exhibit loss
to be addressed since this mechanism may contributd tension across sister kinetochores, fail to align their
significantly not only to initial KMT formation but also to how chromosomes (Martin-Lluesma et al., 2002; DelLuca et al.,
kinetochores correct attachment errors and regulate moveme2@02; McCleland et al., 2003; Hori et al., 2003; Desai et al.,
along kMTs (see below). 2003; Bharadwaj et al., 2004; McCleland et al., 2004) and have
few or no kMTs at temperatures low enough to depolymerize
non-kMTs selectively (DelLuca et al., 2002; McCleland et al.,
The role of the Ndc80 complex in interactions 2004).
between kinetochores and microtubules Microinjection of antibodies to Nuf2, Spc24 or Spc25
The kinetochore confers unique properties upon its attachetisrupts or prevents metaphase chromosome alignment, but
microtubules. kMTs are much more resistant tokinetochores exhibit transient movements along the spindle
depolymerization induced by cold treatment, high hydrostatiexis (McCleland et al., 2003; McCleland et al., 2004), as do
pressure or exposure to calcium (Brinkley and Cartwrightchromosomes in cultured cells in which levels of Nuf2 or
1975; Salmon et al., 1976; Mitchison et al., 1986) compareddc80/Hecl are reduced >90% by short interfering (Si)RNA
with  microtubules that have unattached plus ends(J.D., Y. Dong, P. Hergert, J. Strauss, J. Hickey, E.D.S. and B.
Furthermore, kinetochore microtubules turn over much mor&cEwen, unpublished). Either transient end-on attachments or
slowly than astral and spindle microtubules that have free pldateral microtubule interactions with the kinetochore may
ends in vivo (Mitchison et al., 1986), and microsurgicalproduce these transient movements or move chromosomes
detachment of a chromosome from kinetochore microtubule®wards one or the other pole in anaphase (McCleland et al.,
leads to their rapid depolymerization (Nicklas and Kubai2003). In support of this interpretation, electron microscopy
1985). In vitro, kinetochores of isolated chromosomes castudies have found rare microtubule plus-end binding by
stabilize the ends of purified microtubules (Mitchison andkinetochores in HelLa cells in which hNuf2 is knocked down
Kirschner, 1985b), although, under certain circumstances, thdyy RNAI (J.D. et al., unpublished).
can promote microtubule dynamics (Hyman and Mitchison, Several studies have also revealed a role for the Ndc80
1990). How kinetochores stabilize attached microtubules isomplex in regulating the stable association of MAD1/MAD2
only now starting to be understood. and dynein with kinetochores (DelLuca et al., 2002; Martin-
Once it became clear that dynein and CENP-E are ndfluesma et al., 2002; McCleland et al., 2003; Hori et al., 2003;
essential for kMT formation, the search for other proteindharadwaj et al., 2004; McCleland et al., 2004). The prolonged
crucial for stable kKMT attachment began. Pioneering genetigprometaphase arrest observed in cells depleted of Ndc80/Hecl
studies in budding and fission yeast revealed the importance isf MAD2 dependent, despite the fact that the Ndc80/Hec1-
the Ndc80 protein complex for KMT attachment (Wigge anddepleted kinetochores exhibit levels of MAD1, MAD2 and
Kilmartin, 2001; He et al., 2001; Westermann et al., 2003; Delynein that are less than 10-15% of those seen at unattached
Waulf et al., 2003). The budding yeast Ndc80 complex has foukinetochores in control prometaphase cells (Martin-Lluesma et
components: Ndc80p, Nuf2p, Spc24p and Spc25p. Yeast., 2002; DelLuca et al., 2003; McCleland et al., 2003; Hori et
mutants lacking components of the Ndc80 complex exhibit losal., 2003; Bharadwaj et al., 2004; McCleland et al., 2004). By
of kinetochore-microtubule attachment without a complete lossontrast, kinetochore-associated CENP-A, CENP-C, CENP-E,
of kinetochore structure (Wigge and Kilmartin, 2001; He etCENP-H and BUBR1 remain at high levels. This result
al., 2001). By contrast, mutants that completely abolistindicates either that the sum of the MAD1 and MAD2 present
kinetochore assembly, such as Ndc10 mutants in budding yeadtlow levels at all kinetochores in these Nuf2 or Ndc80/Hec1-
(Goh and Kilmartin, 1993), are deficient not only in depleted cells is equivalent for blocking the spindle checkpoint
microtubule attachment but also in their checkpoint responsé& the high level at a single kinetochore in a normal cell
presumably because kinetochores serve as a platform f@elLuca et al., 2003) or that the checkpoint can still be active
organizing the response. The Ndc80 complex is highlyn the absence of MAD1 and MAD2 at kinetochores (Martin-
conserved and has been identifiedSinpombeC. elegans Lluesma et al., 2002). In this regard, microinjection of
Xenopus chickens and humans (Wigge and Kilmartin, 2001;antibodies to components of the Ndc80 complex inactivates the
He et al.,, 2001; Nabetani et al., 2001; Howe et al., 2001spindle assembly checkpoint, which contrasts with most RNAi
Deluca et al., 2002; Martin-Lluesma et al., 2002; McClelandand gene-knockout studies. Also, a recent report indicates that,
et al.,, 2003). The human homologue of Ndc80, Hecl (foif Nuf2 is more efficiently depleted by improved RNAI
‘highly enhanced in cancer cells 1'), has been shown to bgrocedures, then MAD1 and MAD2 are completely lost from



5466 Journal of Cell Science 117 (23)

kinetochores and the spindle checkpoint is inactivated (Meraldunction, causing the checkpoint components BUB1, BUB3,
et al., 2004). MAD2 and CENP-E to leave kinetochores (Arnaoutov and
Disassembly of spindle microtubules by nocodazole results iBasso, 2003). Similarly, Salina et al. have found that mitosis
a substantial recovery of MAD1, MAD2 and dynein atis disrupted when levels of RanBP2/Nup358 are lowered by
Ndc80/Hecl-depleted kinetochores (DeLuca et al., 200RNAi (Salina et al., 2003). The most common phenotype
Bharadwaj et al., 2004). We hypothesize that interactions witbbserved is one in which some chromosomes align at the
the Ndc80 complex might prevent protein stripping from nonimetaphase plate but others remain near the spindle poles.
attached kinetochores by dynein-mediated transport along kMTsportantly, this group also found that the morphology of the
(Howell et al., 2001; DeLuca et al., 2003; Basto et al., 2004). kinetochore is abnormal in RanBP2/Nup358-depleted cells and
The vertebrate Ndc80 complex clearly plays roles irthat MAD1, MAD2, ZW10, CENP-E and CENP-F fail to
chromosome alignment, kinetochore-microtubule attachment ammbncentrate at kinetochores (Salina et al., 2003). Binding of
microtubule-dependent control of MAD1/MAD2 and dynein Ndc80/Hecl, hNuf2, CENP-lI, BUB1 and BUBR1 is not
complexes at kinetochores. Interestingly, there is no evidence treffected by RanBP2/Nup358 depletion (Joseph et al., 2004).
the Ndc80 complex itself directly interacts with microtubules. InThus, RanBP2/Nup358 appears to have an essential role in the
yeast, kinetochore-microtubule attachment requires the Dambehaviour of some but not all kinetochore components.
DASH-DDD complex. Some members of this complex bind The targeting of the RanGAP1-RanBP2/Nup358 complex to
directly to microtubules, whereas others hind to the Ndc8@inetochores requires KMT formation (Joseph et al., 2002;
complex (Westermann et al., 2003; Courtwright and He, 200ZBalina et al., 2003) and the Ndc80 complex (Joseph et al., 2004).
De Wulf et al., 2003). Thus, the Dam1-DASH-DDD complexFurthermore, microtubules bound to kinetochores in
could be an essential adaptor between kinetochores aRhnBP2/Nup358-depleted cells appear to be less stable than
microtubules. However, no animal equivalent of this complex hasormal, at least as defined by resistance to lowered temperatures
been identified, and this remains a focus of active investigatior{fJoseph et al., 2004). Interestingly, the targeting of a subfraction
of a second nuclear-pore-associated complex (containing
o hNup107 plus eight other nucleoporins) to kinetochores does
The role of Ran in kinetochore assembly and not require microtubules (Belgareh et al., 2001; Loiodice et al.,
function 2004), prompting the suggestion that this complex is involved
The small GTPase Ran was first studied as a factor requir@d docking of RanGAP1 and RanBP2/Nup358 (Joseph et al.,
for nuclear trafficking of proteins (Moore and Blobel, 1994),2004). Why nuclear pore proteins would be associated with the
its function being to differentiate the nuclear interior from thekinetochore is not clear, but it is interesting that, in the primitive
cytoplasm (Gorlich and Kutay, 1999). In the nucleus, Ran-GTHEinoflagellateGyrodinium cohniiin which the nuclear envelope
binds to complexes of an importin with import cargo, causingemains intact at mitosis, chromosomes are connected to spindle
the latter to be released. Nuclear levels of Ran-GTP are highicrotubules outside the nucleus through modified nuclear
because nuclei contain high levels of a guanine nucleotideores (Kubai and Ris, 1969; Kubai, 1975).
exchange factor (GEF), RCC1, that converts Ran-GDP to Ran- How can the binding of RanGAP1 and RanBP2/Nup358 be
GTP. required for binding of MADL1 to kinetochores, particularly if
Ran can also have an important role in mitotic spindleVAD1 binds before RanGAP1 and RanBP2/Nup358, and
assembly (Nachury et al.,, 2001, Wiese et al., 2001)MAD1 and RanGAP1l cannot be detected on the same
particularly in cells such aXenopusoocytes, which lack kinetochores (Joseph et al., 2004)? One possibility is that
centrosomes. During interphase, importins bind to an&®anBP2/Nup358 acts on MAD1 earlier at nuclear pores to
sequester several proteins, including TPX2 and NuMA, whiclender it capable of binding to kinetochores. RanBP2/Nup358
are essential for spindle microtubule assembly and spindle pakelocated in filaments on the outer face of the nuclear pore (Wu
formation. In mitosis, Ran-GTP binds to the importins, therebyt al., 1995), and MAD1 appears to be localized to the inner
releasing TPX2 and NuMA to function in spindle assemblyface of the pore during interphase (Campbell et al., 2001).
In this case, Ran-GTP is generated in the vicinity ofAnother possibility is that RanGAP1 and RanBP2/Nup358
chromosomes by RCC1 bound to the chromatin. somehow stabilize the kinetochore against the forces exerted
Recent work has revealed that Ran has other essential roleg microtubules. When RanBP2/Nup358 is depleted, the force
in reassembly of the nuclear envelope, regulation of centriolexerted by microtubule-associated motors could then disrupt
pairing, and kinetochore assembly and function (Dasso, 200kinetochore structure and cause components of the outer
Sazer and Dasso, 2000; Clarke and Zhang, 2001; Di Fiore lkeihetochore to dissociate. Remember that injection of ACA
al., 2004). Thus, Ran acts as a master regulator of cell-cyclduring G2 phase results in the assembly of kinetochores that
correlated macromolecular assembly processes, presumably dgypear normal in the presence of colcemid but are disrupted if
releasing key components that have been sequestered ijcrotubules are present (Bernat et al., 1991). It will be very
binding to importins or related molecules. interesting to determine whether the various kinetochore
Interest in the role of the Ran system at kinetochores waomponents whose binding depends upon RanBP2/Nup358
ignited when Dasso and coworkers found that, during mitosigthis includes dynein) are localized normally following
a nuclear pore-associated complex of RanGAP1 (a GTPasRanBP2/Nup358 depletion in cells that enter mitosis in the
activating protein that stimulates the conversion of Ran-GTRbsence of microtubules.
to Ran-GDP) and the Ran-binding protein RanBP2/Nup358 What do RanGAP1 and RanBP2/Nup358 do at kinetochores?
can be detected at kinetochores (Joseph et al.,, 2002). THike complex should convert Ran-GTP to Ran-GDP, which
appears to be functionally significant because a variety afannot displace cargo from importin. Thus, kinetochore-
treatments that raise the levels of Ran-GTP inhibit kinetochorassociated RanGAP1 and RanBP2/Nup358 might promote the
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A. Attachment Errors, Checkpoint Activity and Potential Anaphase Errors

Orientation Sensed by Mis-segregation
checkpoint error if uncorrected

Amphitelic NO None
Spindle
pole

Monotelic ﬁ YES aE O

Syntelic

(ERROR) % YES % O

Merotelic

(ERROR) % NO A

Kinetochore checkpoint activity . High O Medium O Off
Fig. 3.Kinetochore attachment
B. Tension, Aurora B Activity, Detachment Frequency and Occupancy error correction in mitosis.
(A) Description of the most
Tension Low common kinetochore attachment
Chromosomal passenger Aurora B activity High Monotelic errors, their ability to activate the
holocomplex Detachment Frequent pheckpomt, and the consequences
Occupancy Low if they are not detected before
) : anaphase onset. (B) Left: diagram
Tension ~ High of the composition of the
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Amphitelic chromosomal passenger complex
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o ! as presently understood (subunits
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shown in contact have been shown
Histone H3 Serinel® Tension Low Lo |nLeract in \éltrO, ar;]d noheffort
Kinetochote targets Aurora B activity =~ Absent ——— — as been made s ow the
Central spindle targets Detachment Rare  —— ——— Anaphase st0|ch|.ome.try. of the various
Spindle pole targets Occupanc Hghest — subunits within the complex).
Cleavage furrow targets pancy 9 Right: model showing the
predicted activity of aurora B at
= O centromeres under different

conditions of microtubule
occupancy.

Attachment site Attachment site Aurora B
checkpoint active  checkpoint inactive  active

Aurora B
low activity

sequestration of particular importin target molecules in thenicrotubules by chance, and attachment errors are common
vicinity of kinetochores. This could explain recent results(e.g. Cimini et al., 2003). After nuclear envelope breakdown,
suggesting that kinetochores control at least some aspectsinitially chromosomes usually become mono-oriented by one
spindle formation (Khodjakov et al., 2003). Alternatively, the(monotelic attachment) or both (syntelic attachment) sister
entire Ran cycle might run in the vicinity of kinetochores. Akinetochores (Fig. 3A). Attachment to both spindle poles (bi-
long-neglected study showed convincingly that RCC1, the Raorientation) allows chromosomes to align near the spindle
GEF, is located at centromeres (Bischoff et al., 1990), where équator and to form a dynamic array referred to as the
was termed CENP-D (Kingwell and Rattner, 1987). Atmetaphase plate. For accurate chromosome segregation, the
kinetochores, this cycle could be part of an uncharacterizesister kinetochores must achieve amphitelic attachment, where
switching mechanism that is required for kinetochore stabilitypne sister is attached to microtubules solely from one pole
microtubule nucleation, or modulation of the dynamicwhereas the other is attached to microtubules solely from the
instability of kinetochore-associated microtubules. opposite pole (Fig. 3A). If one or both of the sister kinetochores

has microtubule attachments to both poles, this attachment is

termed merotelic (Fig. 3A).

The spindle assembly checkpoint detects kinetochores on

mono-oriented chromosomes that are either unattached or have

encountesyntelic attachment, delaying activation of the APC/C and

Chromosomal passengers and the correction of
kinetochore attachment errors in mitosis

During mitosis and meiosis, kinetochores
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therefore the onset of anaphase (reviewed by Musacchio andMany studies have shown that aurora B kinase is required to
Hardwick, 2002). The checkpoint is sensitive to the level oflestabilize improper kinetochore microtubule attachments
kinetochore occupancy by microtubules (Fig. 3B). Whether i{fFig. 3B) so that chromosomes can achieve an amphitelic
can also detect tension exerted by the spindle on kinetochoresentation and metaphase alignment (reviewed by Adams et
is still actively debated, in part because the tension generatal, 2001a; Carmena and Earnshaw, 2003). A clue to the
by bi-orientation stabilizes microtubule attachment (Nicklasunderlying mechanism has emerged from studies in budding
and Koch, 1969; Nicklas et al., 2001). However, what is cleayeast, in which Ipllp mutants (Chan and Botstein, 1993)
is that merotelic attachments of bi-oriented chromosomes, inndergo massive chromosome mis-segregation because they
which kinetochores are attached incorrectly but are underannot release kinetochore-microtubule attachments normally
tension, are not detected by the checkpoint (Cimini et al., 200{Tanaka et al., 2002). To explain this, it has been proposed that
Cimini et al., 2002). Nevertheless, most, but not all, meroteli¢pllp is normally located in the inner centromere beneath the
attachments are either corrected before anaphase or &ieetochore and that, when sister kinetochores are stretched
prevented by spindle mechanics from producing inaccuratgpart by spindle tension, the kinase can no longer
anaphase chromosome segregation (Cimini et al., 2003).  phosphorylate key targets in the kinetochore as the two become
One key factor in attachment error correction beforehysically separated.
anaphase appears to be the chromosomal passenger completpllp phosphorylates several yeast kinetochore proteins,
(Fig. 1 and Fig. 3B), which consists of the kinase aurora Bincluding the constitutive kinetochore component Ndcl1Op
its targeting and activation subunit INCENP, and two othe(Biggins et al., 1999), as well as members of the Ndc80 and
subunits whose role is unclear — survivin and borealin/dasf2am1-DASH-DDD complexes (Cheeseman et al., 2002a;
B (Adams et al., 2001a; Gassmann et al., 2004; Sampath kang et al., 2001). Phosphorylation of components of the
al., 2004). Cells that have chromosome attachment errofédc80 complex has been shown to destabilize kMT
accumulate when the function of this complex is disrupted bgttachment, whereas dephosphorylation produces stabilization
dominant-negative mutants, RNAI, antibody microinjection,(Shang et al., 2003).
or selective drug targeting (Mackay et al., 1998; Adams et al., Aurora B kinase also appears to influence KMT attachments
2001b; Kaitna et al., 2002; Honda et al., 2003; Gassmann by a different mechanism. The Kinl kinesin MCAK
al., 2004, Kallio et al., 2002b; Murata-Hori and Wang, 2002{Wordeman and Mitchison, 1995) (reviewed by Walczak,
Carvalho et al., 2003; Ditchfield et al., 2003; Hauf et al., 20032003) is required both for spindle assembly (Walczak et al.,
Lampson et al., 2004). 1996; Kline-Smith and Walczak, 2002) and for correction of
The chromosomal passengers are required for operation aftachment errors during chromosome alignment (Walczak et
the spindle assembly checkpoint under certain conditionsl., 2002; Kline-Smith et al., 2004). Phosphorylation of
The checkpoint mechanism functions normally in the absendd CAK by aurora B inhibits its ability to promote microtubule
of survivin or aurora B function if microtubules are disassembly (Andrews et al., 2004; Lan et al., 2004; Ohi et
completely disassembled by drugs such as nocodazole. By.,, 2004). High-resolution light microscopy suggests that
contrast, survivin is required for cells to delay mitoticaurora B and MCAK largely colocalize in centromeres that
progression when spindle dynamics are dampened by taxaie not under tension but that MCAK becomes more closely
(Carvalho et al., 2003; Lens et al., 2003), or when formatioassociated with kinetochores (thereby moving away from the
of monopolar spindles is induced by treatment with the drugurora B in the inner centromere) as chromosomes achieve
monastrol (Lens et al., 2003), both of which reducebi-orientation and their centromeres are stretched towards
centromere tension. Studies using small molecule inhibitorspposite poles (Andrews et al., 2004). Because PP1, the
of aurora kinases have yielded similar results (Hauf et alphosphatase that counterbalances aurora B, resides within the
2003; Ditchfield et al., 2003), and the budding yeast aurorkinetochore outer domain (Murnion et al., 2001; Trinkle-
kinase, Ipllp, is required for checkpoint signallingMulcahy et al., 2003), this would be expected to promote the
specifically when centromere tension is abolished bwactivation of MCAK. The consequences of this observed
blocking DNA replication prior to mitotic entry (Biggins and movement appear to be counter-intuitive. One might imagine
Murray, 2001). The chromosomal passenger complex ithat MCAK should be most active during prometaphase, when
required for the stable targeting of checkpoint proteinghe largest number of errors is being made in chromosome
BUBR1 and MAD2 to kinetochores (Carvalho et al., 2003;attachment. Therefore, the colocalization of aurora B and
Lens et al., 2003; Ditchfield et al., 2003; Murata-Hori andMICAK at this time, which would be expected to result in
Wang, 2002). Aurora B is also required for the stablénactivation of MCAK, is unexpected. However, it could be
targeting of CENP-E, dynein and MCAK to centromeres, buthat the principal function of MCAK is to correct merotelic
only in the presence of microtubules (Murata-Hori andattachments, and since these persist following the
Wang, 2002; Andrews et al., 2004). This suggests that thestablishment of spindle tension, the spatial segregation of
chromosomal passenger complex promotes and stabiliz84CAK and the chromosomal passengers might have the
protein recruitment to kinetochores, antagonizing the dyneirexpected result.
driven stripping discussed above. Another factor that might regulate kMT attachments is ICIS
In contrast to the above results, the checkpoint respongthe ‘inner centromere Kinl stimulator’), an activator of
induced by loss of microtubules is losSnpombaurora/Arkl ~ MCAK that forms a complex with INCENP and aurora B in
mutants (Petersen and Hagan, 2003) and in human ceXenopuseggs (Ohi et al., 2003). How MCAK activity is
expressing dominant-negative aurora B (Murata-Hori andegulated during the various phases of mitosis by the
Wang, 2002) or injected with specific antibody (Kallio et al.,combination of ICIS and aurora B remains an important area
2002b). The reason for these differences is not known. of investigation.



The kinetochore-microtubule interface 5469

Fig. 4.(A) The kinetochore acts like a slip- A Kinetochore tension Polymrization
clutch mechanism, switching to .
polymerization at high tensions to prevent regulates microtubule /
detachment (Maddox et al., 2003). See text dynamics (V?]'f/)ﬁqi% !
1l i

for details. (B) Model for the roles played by .
the cast of characters involved in ‘ % - -
microtubule attachment and dynamics at the ¢ i | Kinetochore tension

vertebrate kinetochore.
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Depolymerization

Kinetochore movement

Despite the fact that it maintai B Kinetochore Bi-Stability
attachment to microtubules through
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kinetochore can still depolymerize wt
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One classic model proposes NDC80
microtubules insert into sleeves IS complex?
the kinetochore, attachment be
maintained by  multiple  wee
interactions between the polymeri:
tubulin subunits and the walls of 1
sleeve (Hill, 1985; Inoue and Salm
1995). Such a model leaves the en
the microtubule free to grow and shr
while remaining attached, provided t ~—4
shrinkage is slow relative to the abil % o ? ”—' g T ’ 0o A v
of the microtubule to adjust its positi GTP-  GDP-
within the sleeve. Other molecu Tubulin - Tubulin
models for dynamic attachment
microtubule plus ends are possible
less developed (Inoue and Salrr
1995; Mogilner and Oster, 2003; Rogers et al., 2004). cultured cells, low tension promotes the switch to kMT
Most chromosome movements relative to spindle poles amepolymerization and high tension promotes switching to kMT
associated with the lengthening and shortening of kMTs. Ongolymerization (Rieder and Salmon, 1994; Skibbens et
of the most intriguing properties of kinetochores is their abilityal., 1995; Skibbens and Salmon, 1997). At high tension,
to switch their associated bundle of up to 20 (or more) kMT&inetochores appear to act like a ‘slip-clutch’ mechanism,
from a state of plus-end depolymerization to polymerizationswitching to polymerization to prevent detachment of
This enables kinetochores in prometaphase mammaliatepolymerizing ends (Fig. 4A) (Rieder and Salmon, 1994;
cultured cells (Skibbens et al., 1993) and budding yeast (Hdaddox et al., 2003). Switching between states of
et al., 2001; Pearson et al., 2001) to exhibit ‘directionapolymerization or depolymerization probably depends on
instability’ (Skibbens et al.,, 1993), switching betweenstructural changes associated with the dynamic instability of
persistent phases of polewards and anti-polewards movemenmticrotubule plus ends (Fig. 4B). Polymerizing ends are
that are coupled to alternating states of KMT depolymerizatiotypically blunt or slightly flared into open sheets because their
and polymerization, respectively. This kinetochore bi-stabilityprotofilaments are straight or slightly curved inside-out as they
appears to be part of the mechanism for aligning chromosomagorporate tubulin-GTP (Fig. 4B, polymerization state). By
at the spindle equator during prometaphase without the loss obntrast, protofilaments are highly curved inside-out at
mechanical linkage between sister kinetochores and the spindlepolymerizing ends that have lost their stabilizing cap of
poles. tubulin-GTP (Fig. 4B, depolymerization state). The hydrolysis
It is thought that kinetochore bi-stability is based on theof GTP bound to tubulin following assembly into the
dynamic instability of microtubule plus ends and it is partlymicrotubule lattice is thought to provide the energy that drives
controlled by tension at the kinetochore. In mammaliarthis inside-out curvature of the tubulin dimer that is seen when

Higher Tension Polymerisation state - Resisti ve

Centromere
tension

Outer plate Inner
plate

Kinl Dynein Dynactin CENP-E ~ CLASPs EB1 APC MCAK
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tubulin-GDP protofilaments loose their lateral attachments giroblem that has been recently discussed elsewhere (Kapoor
the microtubule tip (Arnal et al., 2000; Howard and Hymanand Compton, 2002).

2003). A fundamental unanswered question is how switching

between these polymerization and depolymerization states of . .

dynamic instability is controlled by tension or other chemicalProteins influencing kinetochore movement

mechanisms within the kinetochore or gradients within thé&inetochore proteins and microtubule-plus-end-binding
spindle (Inoue and Salmon, 1995; Kapoor and Compton, 200pyoteins both regulate kinetochore movement by modulating
Sprague et al.,, 2003). Switching probably depends othe dynamics of KMT plus ends (Mcintosh et al., 2002).
regulation of depolymerases and +TIP proteins within thédowever, the kinetochore-microtubule interface is highly
kinetochore (Fig. 4B), as discussed in the next section. Anothdiynamic, and several of these proteins appear to be bona fide
model (Joglekar and Hunt, 2002) proposes that high tensi@omponents of both structures. Two classes of proteins seem
induces the switch from depolymerization to polymerizatiorparticularly important: kinesin motors that function as
by causing the loss of all depolymerizing ends from thelepolymerases, such as the Kinl kinesins; and microtubule-
kinetochore while a sub-population of attached kMTs is stilplus-end-tracking  proteins  (+TIPs), which  promote
undergoing polymerization and maintaining anchorage withipolymerization, perhaps by antagonizing the depolymerases
the Hill sleeve (Hill, 1985; Joglekar and Hunt, 2002). This(Fig. 4B) (Schuyler and Pellman, 2001).

model makes several testable predictions, including the notion Kinl kinesins, so named because they have an internal motor
that polymerizing and depolymerizing ends coexist withindomain, use ATP hydrolysis to drive inside-out bending of
single KMT fibres. microtubule protofilaments and promote depolymerization of

In vertebrate cultured cells, two mechanisms combine tthe polymer (Desai et al., 1999; Moores et al., 2002; Hunter et
move chromosomes polewards during metaphase oscillatioas, 2003; Walczak, 2003). In vertebrates, MCAK is the major
and anaphase A segregation (Fig. 4): ‘Pac-Man’ motilityKinl depolymerase controlling the dynamics of microtubule
which is coupled to depolymerization of the plus ends of kMTplus-end assembly (Howard and Hyman, 2003; Walczak, 2003).
within the attachment site at the kinetochore; and poleward is not clear just what role MCAK specifically has in
microtubule flux, produced by microtubule translocation forcekinetochore motility because the loss of MCAK from
within the spindle and coupled to depolymerization ofcentromeres and kinetochores does not affect anaphase
microtubule minus ends near the spindle poles. Sorting owhromosome velocity in mammalian cultured cells (Kline-
contributions from Pac-Man and flux-based mechanisms t8mith et al.,, 2004). This suggests that other activities are
poleward movement has been made possible by thavolved. In budding yeast, the plus-end-directed kinesin Kip3p,
development of fluorescence photoactivation (Mitchisonand the minus-end-directed kinesin Kar3p, are also candidates
1989) and, more recently, by fluorescence speckle microscofgr kinetochore depolymerases (Howard and Hyman, 2003), but
methods. If one microinjects or transfects cells with fluorescerihe roles of their homologues in mammalian cultured cells are
tubulin subunits at low (<1%) fractions of the endogenousot yet known. There is currently great interest in identifying
unlabelled tubulin pool, microtubules acquire randommicrotubule depolymerases that might function at kinetochores
distributions of fluorescent subunits. Stochastic clusteringr at poles. IrDrosophilaembryos and human cultured cells,
during polymerization produces fluorescent speckles of 1-Kinl kinesins may be important for the depolymerization of
fluorophores along the microtubule lattice; these can be imag&dTs at both their plus and minus ends.
relative to fluorescently labelled kinetochores and poles with Database screening has identified three predicted Kinl
high resolution and sensitivity using cooled charge-couple#linesins inDrosophila (Rogers et al., 2004). One of these,
device (CCD) cameras and spinning-disk confocal microscopkIp10A, is located at centromeres and spindle poles early in
(Waterman-Storer et al., 1998; Maddox et al., 2000; Maddoritosis and at the poles during anaphase. A second, KIp59C,
et al., 2002). is concentrated at centromeres throughout mitosis. Both have

The relative contributions of Pac-Man and flux mechanismsnicrotubule-depolymerizing activity and are essential for
to anaphase chromosome movement vary between differemitotic progression. Using fluorescent speckle microscopy to
cell types, Pac-Man contributing 100% in budding yeast anttack the movements of spindle microtubules and GFP-CID
about 70% in vertebrate tissue culture cells (Mitchison an@rosophila CENP-A) to track kinetochore movements,
Salmon, 1992; Zhai et al., 1995). By contrast, flux makes aRogers et al. found that about 60% of the anaphase
important contribution in meiotic oocyte spindles and earlychromosome movement Brosophilaembryos is due to Pac-
embryonic spindles (Maddox et al., 2002; Brust-Mascher anilan depolymerization, and 40% is due to flux (Rogers et al.,
Scholey, 2002; Maddox et al., 2003), and apparently accoun2®04). Microinjection of antibodies to KIp10A greatly inhibits
for 100% of the movement in grasshopper and crane flflux and reduces anaphase A chromosome velocity by 40%.
meiosis | spermatocytes (Wilson et al., 1994; LaFountain et alT,herefore, KIp1l0A has been proposed to be an essential
2001; Chen and Zhang, 2004). component of the spindle flux mechanism.

Although significant progress has been made, it is not yet Microinjection of antibodies to the second Kinl, Klp59C,
known how the state of KMT polymerization/depolymerizationhas no effect on microtubule flux but significantly slows the
is coupled to kinetochore tension, or what reads the tension, mte of anaphase chromosome movement (Rogers et al., 2004).
how this signal is transduced to the microtubules. These issuéherefore, KIp59C might be a component of the Pac-Man
are important for advancing our understanding of howapparatus at the kinetochore. A key function of the minus-end-
kinetochores function along with spindle mechanisms such afirected motor activity of dynein (Fig. 4B) might be to pull the
poleward microtubule flux and polar ejection forces on themicrotubule into the attachment site so that the plus end
chromosome arms to align chromosomes in prometaphaseyemains in contact with the Kinl depolymerase as centromere
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tension increases and anaphase onset is triggered (Rogerpretposed to have a role in chromosome segregation (Fodde et
al., 2004). It remains to be determined how these centromeréd., 2001; Kaplan et al., 2001; Tirnauer et al., 2002; Rogers et
Kinl kinesins gain access to microtubule plus ends, most dl., 2002; Green and Kaplan, 2003). Binding of EB1 to
which end at the outer kinetochore. microtubule plus ends at the kinetochore interface is restricted

In human cells, the Kinl kinesin Kif2a has recently beerto polymerizing microtubules, which suggests that it favours
implicated in the regulation of spindle microtubule dynamicsstabilization of attached microtubules during polymerization
at poles. Depletion of Kif2a causes collapse of the bipolafTirnauer et al., 2002), perhaps by preventing their plus ends
spindle. Depletion of Kif2a is proposed to lower tension in thédrom interacting with the Kinl depolymerases.
spindle, causing the kinetochore to switch to microtubule A second class of +TIPs includes proteins that can localize
disassembly, thereby resulting in spindle collapse (Ganem and kinetochores even in the absence of microtubules. Two have
Compton, 2004). Collapse can be prevented by inhibitingttracted the most interest: CLIP-170; and its binding partners
kinetochore pulling forces, using drug treatments or depletiothe CLASPs [CLIP-associated proteins (Akhmanova et al.,
of MCAK by siRNA to prevent kMT depolymerization, or by 2001), first identified in budding yeast as Stulp (Pasqualone
preventing KMT formation, using siRNA directed against Nuf2and Huffaker, 1994) and iDrosophilaas Orbit/MAST (Inoue
(Ganem and Compton, 2004). et al., 2000; Lemos et al., 2000)].

Further insight into the role of Kif2a and its association with The behaviour of CLIP-170 at kinetochores is paradoxical.
dynein in the spindle has been provided by studies of meiosis prometaphase cells, CLIP-170 localizes strongly both to
Il spindles assembled in vitro in cytoplasmic extracts ofmicrotubule plus ends and to kinetochores (Dujardin et al.,
Xenopuseggs. Addition of an inhibitory dominant-negative 1998; Coquelle et al., 2002). However, this microtubule-
polypeptide reveals that dynein does not seem to be requiredsociated protein localizes only to kinetochores that lack
for the sliding or poleward flux of microtubules in this cell-freebound microtubules and leaves the kinetochore upon
system (Gaetz and Kapoor, 2004). However, it appears to haw@crotubule attachment. This is particularly evident in
an essential role in regulating overall spindle length. Dynein ishromosomes that exhibit a monotelic attachment, where
required to target Kif2a to spindle poles efficientlyXi@nopus CLIP-170 is present only at the distal, unattached kinetochore
extract spindles, and Kif2a regulates the length of spindlé@Maiato et al., 2003). Its accumulation at the kinetochore
microtubules in bipolar spindles. These results suggest thetquires dynein and is mediated by the lissencephaly gene
the dynein-mediated polewards streaming of kinetochoreroduct LIS1 (Faulkner et al., 2000; Coquelle et al., 2002; Tai
components discussed above could additionally have a role @ al., 2002). The role of CLIP-170 at kinetochores is not
positioning Kif2a at poles and thereby in regulating tensiorknown, although expression of a dominant-negative mutant
within the spindle. form of the protein causes a prometaphase delay (Dujardin et

Two classes of +TIPs have potential roles at the kinetochoral., 1998), which suggests that the protein has an active role in
The first, which includes the adenomatous polyposis colthromosome alignment.

(APC) protein and its binding partner EB1, are bona fide CLASPs are required for chromosome congression and
microtubule-associated proteins that require microtubules tmaintenance of a bipolar mitotic spindle Drosophilg
localize to kinetochores. APC and EB1 have recently beehumans and budding yeast (Maiato et al., 2002; Maiato et al.,
2003; Yin et al., 2002). They are
B apparently not required for efficient
kinetochore-microtubule attachment but,
instead, appear to modulate the dynamic
behaviour of microtubules at kinetochores
and elsewhere in the spindle (Maiato
et al., 2003). CLASP1 is found in the
outer kinetochore corona from early
prometaphase throughout anaphase.

Microtubule plus ends at the
kinetochore outer plate can have a blunt,
open or flared morphology (Fig. 5B). This
is thought to correlate with their dynamic
instability status (Mastronarde et al.,
1997; McEwen et al., 1998; O'Toole et
al.,, 1999). The position occupied by
CLASP1 in the outer kinetochore corona

_ L _ o _ i _ places it adjacent to the plus ends of
Fig. 5. Historic and high-resolution views of the kinetochore-microtubule interface. KMTs and therefore near to where the

(A) Original description oflthe ‘Igitkbrpen’ (‘the leading body’) as the interface betwegn lattice might open as the microtubules
chromosomes and the spindle in Salamander spermatocytes [adapted from the original exhibit dynamic behaviour. This raises
(Metzner, 1894)]. (B) A single 16 nm thick slice from a 10-section tomographic volume th bility that CLASI51 lat

reconstruction of the microtubule-kinetochore interface from PtK1 cells prepared by high- € possibiiity that 4 regulates
pressure freezing/freeze substitution. Note that forked microtubule plus ends are microtubule  dynamics by  altering
embedded in the kinetochore outer plate (arrows). (This picture was kindly provided by the lattice of kinetochore-attached
Bruce McEwen, Wadsworth Center, Albany, NY.) As a key to scale, the diameter ofa ~ Mmicrotubules and facilitating  the
microtubule is 25 nm. incorporation of microtubule subunits.
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’ ) 14, 359-368.
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