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Abstract As hydraulic, hydrologic, and biogeochemical models evolve toward greater spatial resolution
and larger extent, robust morphometric data sets are essential to constrain their results. Here we present
the Landsat-derived North American River Width (NARWidth) data set, the first fine-resolution, continental
scale river centerline and width database. NARWidth contains measurements of >2.4 × 105 km of rivers
wider than 30m at mean annual discharge. We find that conventional digital elevation model-derived
width data sets underestimate the abundance of wide rivers. To calculate the total surface area of North
American rivers, we extrapolate the strong observed relationship between river width and total surface area
at different river widths (r2> 0.99 for 100–2000m widths) to narrower rivers and streams. We conservatively
estimate the total surface area of North American rivers as 1:24þ0:39

�0:15 ×10
5 km2 (1σ confidence intervals), values

20þ38
�15% greater than previous estimates used to evaluate greenhouse gas efflux from rivers to the atmosphere.

1. Introduction

Rivers are fundamental to Earth’s hydrological and biogeochemical cycles, they are biodiversity hot spots, and
they provide vital water supply to human civilization. Despite their widespread importance, relatively limited
empirical information on river channel form is available at continental scales to constrain river system
models. These models commonly use spatially distributed measurements of river width, centerline location,
and/or braiding index to estimate discharge [e.g., Gleason and Smith, 2014], flooding extent [e.g., Neal et al.,
2012], landscape evolution [e.g., Lague, 2014], or biogeochemical processes [e.g., Gomez-Velez and Harvey,
2014; Kiel and Cardenas, 2014; Raymond et al., 2013]. As models increase in spatial resolution, extent, and
sophistication, they require high-resolution, large-scale river width data sets.

A key application of these river width data sets is the estimation of the surface area of rivers at different
scales. Globally, rivers are significant emitters of greenhouse gas and are estimated to outgas ~1.8 Pg C yr�1

of carbon dioxide [Raymond et al., 2013] and ~1.5 Tg CH4 yr
�1 of methane [Bastviken et al., 2011]. Among

other parameters, the surface area of rivers is a primary control on gaseous efflux and is used to estimate
global emission rates. Presently, the most sophisticated evaluations of global river surface area rely on
(1) calculating river width from digital elevation models (DEMs) by scaling width to upstream drainage area
via downstream hydraulic geometry (DHG) relationships [Leopold andMaddock, 1953], (2) extrapolating river width
and length from large to small river basins using Horton ratios [Horton, 1945], and (3) extrapolating empirical
relationships between climate and percentage water cover from low- to high-latitude basins where high-resolution
hydrologically conditioned topographic data do not exist [Raymond et al., 2013]. Because this method relies
on DHG scaling, which cannot account for anthropogenic modification of riverways, it may not accurately
capture the true river surface area [Wehrli, 2013]. Further, geographical variability in physical conditions
including climate, tectonic deformation, and sediment supply and characteristics can also lead to a
breakdown of DHG and climate-percentage water cover scaling [Ferguson, 1986; Park, 1977; Wohl, 2004].

Recent advances in image-processing algorithms have yielded large-scale, high-resolution river width surveys
containing hundreds of thousands of measurements [e.g., Allen et al., 2013; Miller et al., 2014; O’Loughlin
et al., 2013; Pavelsky et al., 2014a; Yamazaki et al., 2014]. These compilations fall within a new class of fluvial
geomorphology data sets that directly quantify river width continually downstream. Such data sets have the
potential to spawn new approaches for understanding river processes in much the same way that DEMs
revolutionized analysis of fluvial systems. Here we present the North American River Width (NARWidth) data set,
the first continental survey of river width at mean annual discharge for rivers wider than 30m. We analyze the
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continental scale frequency distribution of river widths and compare the results to a DEM-derived width
distribution. We then use the strong statistical relationship between river width and total river surface area of all
rivers at that width to estimate the total surface area of North American rivers.

2. Methods

We measured river width at mean discharge from a total of 1756 Landsat scenes covering North America
(see supporting information for in-depth methodology). For each Landsat path-row combination, we
calculated the time of year when the observable rivers were most likely to be at mean discharge by
analyzing mean monthly discharge records from the Global Runoff Data Center (GRDC) (Figure S1 in the
supporting information) [Global Runoff Data Center, 2011]. After acquiring cloud- and river ice-free imagery
from the Global Land Cover Facility (glcf.umd.edu) and the U.S. Geological Survey (USGS) (EarthExplorer.
usgs.gov), we applied the modified normalized difference water index formula [Xu, 2006] to Landsat
reflectance values and created a binary land-water mask using dynamic thresholding [Li and Sheng, 2012].
We visually inspected and corrected the land-water masks and calculated a channel centerline for all river
reaches longer than 10 km using RivWidth software [Pavelsky and Smith, 2008]. RivWidth computes the
river width and braiding index at each centerline pixel and outputs the data as a georeferenced vector
(Figure S2 in the supporting information). We then flagged measurements of lakes and reservoirs included
in the NARWidth data set using geographic information system methods and existing water body data sets
(Text S1.3 in the supporting information).

Landsat-derived river width measurements were validated using 1049 geographically distributed streamflow
and river width records from the U.S. Geological Survey (USGS) and the Water Survey of Canada (WSC).
We included only gauges with records that (1) span at least 10 complete years of discharge measurement,
(2) drain basins larger than 1000 km2, (3) are located within 1 km of a RivWidth centerline, (4) are not
immediately adjacent to reservoirs or river confluences, and (5) have river width data available. We used daily
discharge measurements to calculate the in situ mean annual discharge for each location [Kimbrough
et al., 2003] and then compared the corresponding in situ width to the mean of the five spatially closest
RivWidth measurements (Figure S3 in the supporting information).

To assess conventional width data sets built using DHG, we compared NARWidth to a DEM-derived
river width data set. The DEM-derived data set was produced by Pavelsky et al. [2014b] to evaluate the
spatial distribution of rivers observable by the planned Surface Water and Ocean Topography (SWOT)
satellite mission. The data set was created using methods similar to those developed by Andreadis
et al. [2013], except that the HYDRO1k DEM [U.S. Geological Survey, 2014; Verdin and Verdin, 1999] was
used to calculate river width rather than the Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales (HydroSHEDS) DEM [Lehner et al., 2008]. This DEM-derived width data
set was built by using drainage area from HYDRO1k and mean annual discharge from the GRDC in
combination with a global-averaged width-discharge equation [Moody and Troutman, 2002] to estimate
mean annual river width along HYDRO1k DEM streamlines (see Pavelsky et al. [2014b] for a detailed
methodology description).

For both the Landsat- and DEM-derived data sets, we analyzed the distribution of river length and surface
area binned by river width from 100 to 2000m, excluding measurements of reservoirs, lakes, and
Greenland rivers. River length was calculated using the Euclidean distance between each centerline pixel
and the next adjacent centerline pixel. River surface area was calculated by summing the product of river
width and length at each centerline pixel (Text S3 in the supporting information). We established a
minimum width threshold of 100m because we are not confident that NARWidth includes all rivers with
widths below this threshold [Miller et al., 2014]. We excluded rivers wider than 2000m because they
only account for 0.6% of all measurements but significantly skew the results of the analysis.

3. Results
3.1. Data Set and Validation

The North American River Width (NARWidth) data set contains 6.7 × 106 georeferenced measurements
of river width ≥30m and an additional 1.3 × 106 flagged width measurements of reservoirs and lakes that
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are connected to the fluvial network (Figure 1). In total, NARWidth measures 2.39 × 105 km of rivers with
widths ≥30m corresponding to a water surface area of 4.43 × 104 km2 and 1.1 × 105 km of rivers wider
than 100m (3.64 × 104 km2 of water surface area). NARWidth includes rivers ranging from approximately
fourth to tenth Strahler stream orders [Downing et al., 2012; Strahler, 1957]. The data set includes
measurements of rivers above 60°N, where high-quality river centerline and width data are largely
unavailable but excludes very large lakes (e.g., the Great Lakes), ephemeral streams, deltaic systems,

Figure 1. Map of North American river widths. The inset boxes show levels of detail available at finer spatial resolutions.
Note that the color bar is stretched geometrically to accent width variability.
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and human-made canals. Additionally,
NARWidth includes a braiding index field,
defined as the number of channels at
each river cross section. The braiding
index only includes river channels wider
than 30m, a limitation imposed by the
spatial resolution of Landsat imagery.
NARWidth is the first continental scale
morphometric survey of rivers at mean
discharge and is available for download
(see Acknowledgements).

NARWidth width measurements show very
little mean bias (�0.35m) relative to in situ
width measurements at mean discharge,
suggesting that the Landsat scenes were
sampled at times that, on average, matched
mean discharge timing. The root-mean-square
error (RMSE) between NARWidth and in
situ widths is 38.0m, a length similar to
the minimum theoretical uncertainty of

Landsat-derived river widths calculated from a binary water mask [Pavelsky and Smith, 2008]. The RMSE value
also incorporates several other sources of error, including differences in discharge between the remotely sensed
and in situ measurements and error in the in situ width measurements.

To avoid bias from outliers, we used the Theil-Sen median estimator [Sen, 1968] to derive a robust linear
regression between NARWidth and in situ width measurements (Figure 2). Regression of in situ widths ≥100m
yields a slope that deviates by 3% from unity, but inclusion of all river width data (≥30m) produces a slope that
deviates by 16%. This deviation is expected because NARWidth is more likely to include overestimates of river
width compared to underestimates where river width approaches the resolution of the Landsat imagery. For
example, NARWidth never includes underestimates of 30m wide rivers because they are narrower than one
Landsat pixel, but it will include overestimates of these rivers. Goodness of fit (rs= 0.83) was characterized
using Spearman’s nonparametric correlation coefficient [Spearman, 1904]. Overall, comparison with in situ
measurements suggests that NARWidth provides, on average, an accurate representation of river widths
at mean annual discharge to the extent that this is possible from Landsat imagery.

3.2. River Width Distributions

The NARWidth data set allows for the first analysis of the frequency distribution of river width measurements
on a continental scale. The distribution of average river length binned by river width closely follows a power
law of river width such that

Length ¼ C�Width�α; (1)

where C=3.24 × 1010mα + 1 and α= 2.18 (Figure 3a). C and α were calculated using maximum likelihood
estimation to avoid assumptions associated with regression analysis of binned data [Clauset et al., 2009;
Gillespie, 2014]. While other functions may also characterize the distribution of river widths, we use a power
function because power laws are regularly used in hydraulic scaling and the curve closely fits the length
of rivers from 100 to 2000m wide (r2> 0.996, p< 0.001). Outside of this range, the function overestimates
the length of rivers, particularly for the widest observed rivers where the distribution of river width appears
to deviate from a power law spectrum. The upper tail, defined here as widths greater than 2000m, is
composed primarily of measurements from large, multichannel rivers. Sixty-three percent of rivers wider
than 2000m are from multichannel rivers compared to only 23% of rivers between 1000 and 2000m wide.
Geographically, multichannel rivers greater than 100m wide make up 26.2% of all rivers north of 60°N while
only composing 14.9% of rivers south of 60°N.

Although the river width distributions derived from the HYDRO1k DEM and NARWidth both closely fit power
law functions, there are two key differences between them. First, the DEM-derived width distribution is

Figure 2. NARWidth validation. NARWidths were compared to USGS
and WSC in situ river width measurements at 1049 locations.
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characterized by a higher exponent (α=2.64 in equation (1)) than the NARWidth distribution (α= 2.18),
signifying that the DEM-derived data set contains a lower proportion of wide rivers (Figure 3b). Second, the
DEM-derived data set does not include rivers wider than 894m, resulting in a frequency distribution with a
relatively truncated upper tail (Figure 3b inset).

3.3. Total Surface Area of North American Streams and Rivers

We used the distribution of total river surface area binned by width to estimate the overall surface area
of all streams and rivers in North America (Figure 4). A power function closely describes the distribution
of surface area of rivers 100 to 2000m wide (r2> 0.996, p< 0.001) and is used to extrapolate surface
area to rivers narrower than 100m. The predictable surface area versus width relationship observed here
is also likely to persist for these small streams, because Horton ratios relating stream order to stream
width and total length apply down to first-order perennial streams [Downing et al., 2012; Morisawa,
1962]. As surface area is the product of stream length and width, it should also scale as a power law
down to first-order streams.

A considerable unknown is the appropriate lower width boundary of the surface area extrapolation. Studies
that use DEMs to extract fluvial networks typically assume a critical threshold drainage area (or support area)
ranging from 0.1 to 1 km2, which correspond to river widths of ~0.8m to 2m [Beighley and Gummadi, 2011;
Butman and Raymond, 2011]. Instead of a threshold in drainage area, we use a threshold in river width
directly. The value of this lower width threshold substantially influences the surface area calculation because
of the nonlinear relationship between river width and total channel length. The relationship between the
lower width threshold (m) and the total surface area of North American rivers (km2) is described by

Total Surface Area ¼ 183; 683�Lower Width Threshold–0:179 – 44; 468: (2)

This relationship only applies for lower width thresholds below 100m, because above this width, equation (2)
begins to deviate from the observed data. Downing et al. [2012] compiled a list of stream order versus mean
width data from 46 perennial first-order stream segments worldwide and found that the median stream
width is 1.6 ± 1.1m (1σ confidence intervals). Using these widths as the lower width threshold in equation (2),

the total surface area of permanently flowing North American rivers and streams is 1:24þ0:39
�0:15 × 105 km2 or

0:55þ0:17
�0:07% of the terrestrial land surface. This surface area value is likely an underestimation of total river

surface area because (1) it is based on the median first-order stream width rather than the average width at
stream heads (streams as narrow as 0.18m have been observed [Zimmerman et al., 1967]) and (2) it excludes
the surface area contribution of ephemeral streams, estimated to account for 2–3% of global river surface
area [Downing et al., 2012; Raymond et al., 2013].

Figure 3. River width distributions from 100 to 2000m. The insets show the full range of observed data in log space. Width
distributions are described by a power function (equation (1)) with r2 values estimated using a linear regression of log-binned
data [White et al., 2008]. (a) NARWidth-derived distribution, where C= 3.24 × 1010m�1.18. (b) HYDRO1k DEM-derived
distribution, where C= 3.67 × 1010m�1.64.
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4. Discussion
4.1. Distribution of River Widths

Differences between NARWidth and
the DEM-derived width data set likely
arise from bias in measuring river
width at gauge stations and
oversimplifications involved in DHG
scaling. The width-discharge
relationship used to produce the DEM
data set was developed using
measurements largely collected at
gauging stations [Moody and Troutman,
2002]. Stream gauges are typically
located at stable, single-channel sites,
often near bridges or other fixed
structures, leading to a possible
negative bias of measured river widths
relative to the true width distribution
[Park, 1977]. Because multichannel
rivers tend to be wider and because
their widths are more sensitive to
changes in discharge than are single-
channel rivers [Smith et al., 1996], average
river widths away from gauge stations
may be underestimated if only widths at
gauge stations are used. Given the

nonlinear frequency distribution of river widths (equation (1) and Figure 3), this systematic underestimation of
river width may result in an artificially high α value for the DEM-derived width distribution relative to the
NARWidth distribution.

Additionally, DHG predicts that the maximum river width within a basin is located wherever discharge is
greatest, usually at the basin outlet. Direct observations from Landsat imagery do not fully support this
model. The widest width measurements in NARWidth are primarily from large, braided river systems
flowing through floodplains (e.g., the Yukon and Mackenzie rivers (Figure 1)). These locations are examples
of river form impacted by unusual physical conditions such as, in the case of braided rivers, abundant
sediment supply [Rosgen, 1994]. Such physiographic conditions can result in substantial deviation from
strict width-discharge relationships that are not captured by DHG. Thus, applying generic DHG scaling over
large scales and differing river morphologies should be done with caution and, if possible, avoided.

4.2. River Surface Area Estimation

We estimated the total surface area of North American rivers by developing a relationship between river
width and total surface area binned by width for rivers 100–2000m wide, which we then use to extrapolate
surface area for rivers narrower than 100m (Figure 4). We based this extrapolation on classic Hortonian
analysis which predicts that the distribution of river surface area will display statistical self-similarity at
different spatial scales, indicating that similar processes act on river form over a wide range of channel sizes
[Rodríguez-Iturbe and Rinaldo, 2001]. With decreasing basin size, however, hillslope and other local processes
begin dominating, and the fractal relationships between total stream length and width must inevitably
break down [Benda et al., 2005]. We propose that the lower width threshold should be the geometric mean
width at stream heads, but we are unaware of any robust quantitative information to constrain this value.
Headwater stream networks are highly dynamic, largely dependent on changing hydrologic conditions
[Godsey and Kirchner, 2014]. Further work is needed to quantify the distribution of river length, width, and
discharge in headwater catchments to better constrain the frequency distributions of small streams that
cannot be measured from remotely sensed data sets.

Figure 4. River surface area binned by river width. A power function was
fit to data from widths 100 to 2000m (solid line) and used to extrapolate
total surface area of rivers less than 100m wide (yellow polygon). The
error bars denote the upper and lower width thresholds used in the
surface area extrapolation (1.6 ± 1.1m). The extrapolated surface area
was then added to observed surface area (gray bars) to estimate the total
river surface area of North America.
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Previous estimates of river surface area across a large range of scales and physiographic conditions vary

between 0.3% and 1.5% of watershed area, and our estimate of 0:55þ0:17
�0:07% falls within this interval [Davidson

et al., 2010; Downing et al., 2012; Welcomme, 1976]. In the contiguous United States, past estimates range
from 0.52 to 0.56%, closely matching our estimate for the entire North American continent [Butman and
Raymond, 2011; Downing et al., 2012; Leopold, 1962]. Analyses of total global stream and river surface area
estimate that rivers cover 0.30–0.56% of land surface [Downing et al., 2012; Raymond et al., 2013]. These studies
rely on a relatively limited number of width measurements (N< 1.0× 103) to conduct stream order-scaling
analysis. We avoid depending on potentially biased width-order analysis by building an extensive continental
inventory of river width and length and analyzing the frequency distribution of surface area itself.

As part of a pioneering global carbon efflux study, Raymond et al. [2013] estimated that the total surface area
of North American rivers is 0.46% of continental surface area. Raymond et al. estimated that on average, 14%
of global surface area is frozen, and this fraction is removed from their analysis. They acknowledge that the
impact of river ice on carbon efflux rates is poorly understood, and we do not attempt to account for
the proportion of river surface area that is frozen. Noting this limitation of comparability between the

surface area estimates, our likely conservative estimate of 0:55þ0:17
�0:07%, which excludes streams narrower

than 1.6±1.1m, is 20þ38
�15% larger than Raymond et al.’s value. Further, Raymond et al. extrapolated width-order

relationships down to streams with a drainage area of ~0.1 km2, amounting to a lower width threshold of less
than 1m [Beighley and Gummadi, 2011]. The discrepancy between river surface area estimatesmay arise from the
DHG-based extrapolation methods employed by Raymond et al. Their evaluation relies on a global DHG formula
that scales river width with regional discharge. Thus, many of the same problems in estimating river width
discussed in section 4.1may also apply to their estimate (e.g., underestimating the abundance of wide rivers). Our
estimation of North American river surface area indicates that gaseous emissions from rivers should likely be
revised upward compared to most recent estimates.

5. Summary and Conclusions

In this study we introduced the first fine-resolution, continental scale survey of river width. The NARWidth data
set can be used for a wide variety of applications including hydrologic, hydrodynamic, biogeochemical, and
landscape evolution modeling. The methods developed to produce NARWidth may also be applied to produce
multitemporal width data sets that can be used to directly quantify absolute river discharge [Gleason and Smith,
2014]. This data set will have practical use for the Surface Water and Ocean Topography (SWOT) satellite
mission, scheduled for launch in 2020, which will simultaneously measure variations in water surface elevation,
width, and slope. NARWidth is the first installment of the Global River Width Data Set–Landsat, which will be the
first fine-scale river width data set with fully global coverage.

Analysis of NARWidth indicates that the distribution of river width differs from that calculated by applying
DHG scaling to DEM-derived basin areas. We find that the total surface area of North American rivers is

1:24þ0:39
�0:15×105 km2 or 0:55þ0:17

�0:07% of total continental area, values 20þ38
�15% greater than the recent estimate by

Raymond et al. [2013]. If underestimates from DHG-based surface area for North America also hold true for
other continents, then global estimates of gaseous efflux from rivers to the atmosphere may also need to be
revised upward. As width measurements for global rivers become available in the coming years, it will be
possible to estimate global river surface area values using methods like the one presented here.
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