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The active field of Functional Data Analysis (about understand-
ing the variation in a set of curves) has been recently extended to
Object Oriented Data Analysis, which considers populations of more
general objects. A particularly challenging extension of this set of
ideas is to populations of tree-structured objects. We develop an ana-
log of Principal Component Analysis for trees, based on the notion
of tree-lines, and propose numerically fast (linear time) algorithms to
solve the resulting optimization problems. The solutions we obtain
are used in the analysis of a data set of 73 individuals, where each
data object is a tree of blood vessels in one person’s brain.

1. Introduction. Functional data analysis has been a recent active re-
search area. See Ramsay and Silverman (2002, 2005) for a good introduction
and overview, and Ferraty and Vieu (2006) for a more recent viewpoint. A
major difference between this approach, and more classical statistical meth-
ods is that curves are viewed as the atoms of the analysis, i.e. the goal is
the statistical analysis of a population of curves.

Wang and Marron (2007) recently extended functional data analysis to
Object Oriented Data Analysis (OODA), where the atoms of the analysis are
allowed to be more general data objects. Examples studied there include im-
ages, shapes and tree structures as the atoms, i.e. the basic data elements of
the population of interest. Other recent examples are populations of movies,
such as are being subjects of functional magnetic resonance imaging. A ma-
jor contribution of Wang and Marron (2007) was the development of a set
of tree-population analogs of standard functional data analysis techniques,
such as Principal Component Analysis (PCA). The foundations were laid
via the formulation of particular optimization problems, whose solution re-
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sulted in that analysis method (in the same spirit in which ordinary PCA
can be formulated in terms of optimization problems).

Here the focus is on the challenging OODA case of tree structured data
objects. A limitation of the work of Wang and Marron (2007) was that no
general solutions appeared to be available for the optimization problems
that were developed. Hence, only limited toy examples (three and four node
trees, which thus allowed manual solutions) were used to illustrate the main
ideas (although one interesting real data lesson was discovered even with
that strong limitation on tree size).

One of our main contributions is that, through a detailed analysis of the
underlying optimization problem, and a complete solution of it, a linear time
computational method is now available. This allows the first actual OODA
of a production scale data set of a population of tree structured objects.
Ideas are illustrated in Section 2 using a set of blood vessel trees in the
human brain, collected as described in Aylward and Bullitt (2002). In the
present paper, we choose to consider only variation in the topology of the
trees, i.e. we consider only the branching structure and ignore other aspects
of the data, such as location, thickness and curvature of each branch.

Even with this topology only restriction, there is still an important cor-
respondence decision that needs to be made: which branch should be put on
the left, and which one on the right, see Section 2.1. Later analysis will also
include location, orientation and thickness information, by adding attributes
to the tree nodes being studied. A useful set of ideas for pursuing that type
of analysis was developed by Wang and Marron (2007).

In Subsection 2.2 we define our main data analytic concept, the tree-
line, and the notion of principal components based on tree-lines. Here we
also state, and illustrate our main result, Theorem 2.1, which will allow
us to quickly compute the principal components. Subsection 2.3 is devoted
to our data analysis using the blood vessel data: we carefully compare the
correspondence approaches, and present our findings based on the computed
principal components. In Section 3 we prove Theorem 2.1 along with a host
of necessary claims.

2. Data and Analysis. The data analyzed here are from a study of
Magnetic Resonance Angiography brain images of a set of 73 human subjects
of both sexes, ranging in age from 18 to 72, which can be found at Handle
(2008). One slice of one such image is shown in Figure 1. This mode of
imaging indicates strong blood flow as white. These white regions are tracked
in 3 dimensions, then combined, to give trees of brain arteries.

The set of trees developed from the image of which Figure 1 is one slice is
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Fig 1. Single Slice from a Magnetic Resonance Angiography image for one patient. Bright
regions indicate blood flow.

shown in Figure 2. Trees are colored according to region of the brain. Each
region is studied separately, where each tree is one data point in the data set
of its region. The goal of the present OODA is to understand the population
structure of 73 subjects through 3 data sets extracted from them: Back data
set (gold trees), left data set (cyan) and right data set (blue). One point to
note is that the front trees (red) are not studied here. This is because the
source of flow for the front trees is variable, therefore this subpopulation has
less biological meaning. For simplicity we chose to omit this sub-population.

The stored information for each of these trees is quite rich (enabling the
detailed view shown in Figure 2). Each colored tree consists of a set of
branch segments. Each branch segment consists of a sequence of spheres fit
to the white regions in the MRA image (of which Figure 1 was one slice),
as described in Aylward and Bullitt (2002). Each sphere has a center (with
x, y, z coordinates, indicating location of a point on the center line of the
artery), and a radius (indicating arterial thickness).

2.1. Tree Correspondence. Given a single tree, for example the gold col-
ored (back) tree in Figure 2, we reduce it to only its topological (connec-
tivity) aspects by representing it as a simple binary tree. Figure 3 is an
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Fig 2. Reconstructed set of trees of brain arteries for the same patient as shown in Figure
1. The colors indicate regions of the brain: Gold (back), Right (blue), Front (red), Left
(cyan).

example of such a representation. Each node in Figure 3 is best thought of
as a branch of the tree, and the green line segments simply show which child
branch connects to which parent. The root node at the top represents the
initial fat gold tree trunk shown near the bottom of Figure 2. The thin blue
lines show the support tree, which is just the union of all of the back trees,
over the whole data set of 73 patients.

There is one set of ambiguities in the construction of the binary tree
shown in Figure 3. That is the choice, made for each adult branch, of which
child branch is put on the left, and which is put on the right. The following
two ways of resolving this ambiguity are considered here. Using standard
terminology from image analysis, we use the word correspondence to refer
to this choice.

• Thickness Correspondence: Put the node that corresponds to the
child with larger median radius (of the sequence of spheres fit to the
MRA image) on the left. Since it is expected that the fatter child vessel
will transport the most blood, this should be a reasonable notion of
dominant branch.
• Descendant Correspondence: Put the node that corresponds to

the child with the most descendants on the left.

These correspondences are compared in Subsection 2.3.
Other types of correspondence, that have not yet been studied, are also

possible. An attractive possibility, suggested in personal discussion by Marc
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Fig 3. Green line segments show the topology only representation of the gold (back tree)
from Figure 2. Only branching information is retained for the OODA. Branch location
and thickness information is deliberately ignored. Thin blue curve shows the union over
all trees in the sample.

Niethammer, is to use location information of the children in this choice. E.g.
in the back tree, one could choose the child which is physically more on the
left side (or perhaps the child whose descendants are more on average to the
left) as the left node in this representation. This would give a representation
that is physically closer to the actual data, which may be more natural for
addressing certain types of anatomical issues.

2.2. Tree-Lines. In this section we develop the tools of our main analysis,
based on the notion of tree-lines. We follow the ideas of Wang and Marron
(2007), who laid the foundations for this type of analysis, with a set of
ideas for extending the Euclidean workhorse method of PCA to data sets
of tree structured objects. The key idea (originally suggested in personal
conversation by J. O. Ramsay) was to define an appropriate one dimensional
representation, and then find the one that best fits the data. The tree-line
is a first simple approach to this problem.

First we define a binary tree:

Definition 2.1. A binary tree is a set of nodes that are connected by
edges in a directed fashion, which starts with one node designated as root,
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Fig 4. Toy example of a data set of trees, T , with n = 3. This will be used to illustrate
several issues below.

where each node has at most two children.

Using the notation ti for a single tree, we let

(2.1) T = {t1, ..., tn}

denote a data set of n such trees. A toy example of a set of 3 trees is given
in Figure 4.

To identify the nodes within each tree more easily, we use the level-order
indexing method from Wang and Marron (2007). The root node has index
1. For the remaining nodes, if a node has index ω, then the index of its left
child is 2ω and of its right child is 2ω+1. These indices enable us to identify
a binary tree by only listing the indices of its nodes.

The basis of our analysis is an appropriate metric, i.e. distance, on tree
space. We use the common notion of Hamming distance for this purpose:

Definition 2.2. Given two trees t1 and t2, their distance is

d (t1, t2) = |t1\t2|+ |t2\t1|,

where \ denotes set difference.

Two more basic concepts are defined below; the notion of support tree
has already been shown in Figure 3 (as the thin blue lines).

Definition 2.3. For a data set T , given as in (2.1), the support tree,
and the intersection tree are defined as

Supp(T ) = ∪n
i=1ti

Int(T ) = ∩n
i=1ti.

Figure 7 shows the support trees of the data sets used in this study. Figure
8 includes the corresponding intersection trees.
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Fig 5. Toy example of a tree-line. Each member come from adding a node to the previous.
Each new node is a child of the previously added node. Starting point (`0) is the intersection
tree of the toy data set of Figure 4.

The main idea of a tree-line (our notion of one dimensional representation)
is that it is constructed by adding a sequence of single nodes, where each
new node is a child of the most recent child:

Definition 2.4. A tree-line, L = {`0, · · · , `m}, is a sequence of trees
where `0 is called the starting tree, and `i comes from `i−1 by the addition
of a single node, labeled vi. In addition each vi+1 is a child of vi.

An example of a tree-line is given in Figure 5. Insight as to how well a
given tree-line fits a data set is based upon the concept of projection:

Definition 2.5. Given a data tree t, its projection onto the tree-line
L is

PL (t) = arg min
`∈L

{d (t, `)}.

Wang and Marron (2007) show that this projection is always unique. This
will also follow from Claim 3.1 in Section 3, whose characterization of the
projection will be the key in computing the principal component tree-lines,
defined shortly.

The above toy examples provide an illustration. Let t3 be the third tree
shown in Figure 4. Name the trees in the tree-line, L, shown in Figure 5, as
`0,`1,`2,`3. The set of distances from t3 to each each tree in L is tabulated
as

j 0 1 2 3
d (t3, `j) 6 5 4 5

The minimum distance is 4, achieved at j = 2, so the projection of t3 onto
the tree-line L is `2.

Next we develop an analog of the first principal component (PC1), by
finding the tree-line that best fits the data.
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Definition 2.6. For a data set T , the first principal component
tree-line, i.e. PC1, is

L∗1 = arg min
L

∑
ti∈T

d(ti, PL(ti))

In conventional Euclidean PCA, additional components are restricted to
lie in the subspace orthogonal to existing components, and subject to that
restriction, to fit the data as well as possible. For an analogous notion in
tree space, we first need to define the concept of the union of tree-lines, and
of a projection onto it.

Definition 2.7. Given tree-lines L1 = {`1,0, `1,1, . . . , `1,p1}, . . . , Lq =
{`q,0, `q,1, . . . , `q,pq}, their union is the set of all possible unions of members
of L1 through Lq:

L1 ∪ · · · ∪ Lq = {`1,i1 ∪ · · · ∪ `q,iq | i1 ∈ {0, . . . , p1}, . . . , iq ∈ {0, . . . , pq}.}

Given a data tree t, the projection of t onto L1 ∪ · · · ∪ Lq is

(2.2) PL1∪···∪Lq (t) = arg min
`∈L1∪···∪Lq

{d (t, `)}.

In our non-Euclidean tree space, there is no notion of orthogonality avail-
able, so we instead just ask that the 2nd tree-line fit as much of data as
possible, when used in combination with the first, and so on.

Definition 2.8. For k ≥ 1 the kth principal component tree-line is
defined recursively as

(2.3) L∗k = arg min
`∈L

∑
ti∈T

d(ti, PL∗1∪···∪L∗
k−1
∪L(ti)),

and it is abbreviated as PCk.

For the concept of PC tree-lines to be useful, it is of crucial importance
to be able to compute them efficiently. We need another notion.

Definition 2.9. Given a tree-line

L = {`0, `1, · · · , `m}

we define the path of L as
VL = `m \ `0.
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Fig 6. Weighted support tree illustrating Theorem 2.1

Intuitively, a tree-line that well fits the data “should grow in the direction
that captures the most information”. Furthermore, the kth PC tree-line
should only aim to capture information that has not been explained by the
first k − 1 PC tree-lines. This intuition is made precise in the following
theorem, which is the main theoretical result of the paper:

Theorem 2.1. Let k ≥ 1, and L∗1, . . . , L
∗
k−1 be the first k − 1 PC tree-

lines. For v ∈ Supp(T ) define

(2.4) wk(v) =

{
0, if v ∈ VL∗1

∪ · · · ∪ VL∗
k−1

,∑
v∈ti 1, otherwise

Then the kth PC tree-line L∗k is the tree-line whose path maximizes the sum
of wk weights in the support tree, i.e.

∑
v∈V ∗Lk

wk(v).

The proof of Theorem 2.1 is given in Section 3. Figure 6 is an illustration:
the weight of a node is the number of times the node appears in the trees of
Figure 4. The black edge is the intersection tree of the same data set. The
maximum weight path attached to Int(T ) is the red path, which gives rise
to the tree-line of Figure 5, which is thus the first principal component of
the data set of Figure 4.

After setting the weights of the nodes on the red path to zero, the max-
imum weight path attached to Int(T) becomes the green path, which by
Theorem 2.1 gives rise to PC2. The usefulness of these tools is demonstrated
with actual data analysis of the full tree data set.
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2.3. Real Data Results. This section describes an exploratory data anal-
ysis of the set of n = 73 brain trees discussed above using these tree-line
ideas. The principal component tree-lines are computed as defined in The-
orem 2.1. Both correspondence types, defined in Section 2.1 are considered
and compared.

The different brain location types (shown as different colors in Figure
2) are analyzed as separate populations (i.e. the n = 73 blue trees are
first considered to be the population, then the n = 73 gold trees, etc.),
called brain location sub-populations. This reveals some interesting contrasts
between the brain location types in terms of symmetry.

Fig 7. Support trees, for both types of correspondence (shown in the rows), and for three
brain location tree types (shown in columns, corresponding to the colors in Figure 2). Shows
that the descendant correspondence gives a population with more compact variation than
the thickness correspondence.

We first compare the two types of correspondence defined in Section 2.1
using the concept of the support tree. This is done by displaying the support
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trees each type of correspondence, and for each of the three tree location
types (shown with different colors in Figure 2), in Figure 7. Note that all
of the support trees for the descendant correspondence (bottom) are much
smaller than for the thickness correspondence (top), indicating that the de-
scendant correspondence results in a much more compact population. This
seems likely to make it easier for our PCA method to find an effective rep-
resentation of the descendant based population.

Figure 7 already reveals an aspect of the population that was previously
unknown: there is not a very strong correlation between median tree thick-
ness of a branch, and the number of children.

Figure 8 shows the first 3 PC tree-lines, for the three sub-populations
(shown as rows), with the intersection tree as the starting tree, for the
descendant correspondence.

In the human brain, the back circulation (gold) arises from a single vessel
(the basilar artery) and immediately splits into two main trunks, supplying
the back sides of the left and right hemispheres. These two parts of the back
circulation are expected to be approximately mirror-image symmetrical with
both sides containing one main vessel and other branches stemming from
that. Consequently, for each tree on the back data set if we imagine a vertical
axis that goes through the root node, we expect the subtrees on both sides
of the axis to be symmetrical with each other.

The results of our model for the back subpopulation are consistent with
this expectation. The main vessel of one of the hemispheres can be seen in
the starting point (intersection tree) as the leftmost set of nodes, while the
other main vessel becomes the first principal component.

As for the left and right circulations (cyan and blue trees) of the brain,
they are expected to be close to mirror images of each other. Unlike the case
of the back subpopulation, in each of these circulations there is a single trunk
from which smaller branches stem. For this reason the bilateral symmetry
observed within the back trees is not expected to be found here.

The fact that PC1’s for left and right subpopulations are at later splits
suggest that the earlier splits tend to have relatively few descendants. The
remaining PC2 and PC3 tree-lines do not contain much additional infor-
mation by themselves. However, when we consider PC’s 1,2 and 3 together
and compare left and right subpopulations,i.e. compare the second and third
rows of Figure 8, the structural likeliness is quite visible. It should also be
noted that for both of the subpopulations all PC’s are on the left side of the
root-axis, indicating a strong bilateral asymmetry, as expected.

The tree-lines, and insights obtained from them, were essentially similar
for the thickness correspondence, so those graphics are not shown here.
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Fig 8. Best fitting tree-lines, for different sub-populations (rows), and PC number
(columns). Intersection trees are shown in black.

Next we study the tree-line analog of the familiar scores plot from con-
ventional PCA (a commonly used high dimensional visualization device,
sometimes called a draftsman’s plot or a scatterplot matrix ). In that case,
the scores are the projection coefficients, which indicate the size of the com-
ponent of each data point in the given eigen-direction. Pairwise scatterplots
of these often give a set of useful two dimensional views of the data. In the
present case, given a data point and a tree-line, the corresponding score is
just the length (i.e. the number of nodes) of the projection. Unlike conven-
tional PC scores, these are all integer valued.

Figure 9 shows the scores scatterplot for the set of left trees, based on the
descendant correspondence. The data points have been colored in Figure 9,
to indicate age, which is an important covariate, as discussed in Bullitt et
al (2008). The color scheme starts with purple for the youngest person (age
20) and extends through a rainbow type spectrum (blue-cyan-green-yellow-
orange) to red for the oldest (age 72). An additional covariate, of possible
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Fig 9. Scores Scatterplot for the Descendant Correspondence, Left Side sub-population.
Colors show age, symbols gender. No clear visual patterns are apparent.

interest, is sex, with females shown as circles, males as plus signs, and two
transgender cases indicated using asterisks.

It was hoped that this visualization would reveal some interesting struc-
ture with respect to age (color), but it is not easy to see any such connection
in Figure 9. One reason for this is that the tree-lines only allow the very lim-
ited range of scores as integers in the range 1-10. A simple way to generate a
wider range of scores is to project not just onto simple tree-lines, but instead
onto their union, as defined in (2.2). Figure 10 shows a scatterplot matrix,
of several union PC scores, in particular PC1 vs. PC1 ∪ 2 (shorthand for
PC1∪PC2) vs. PC1∪ 2∪ 3 vs. PC1∪ 2∪ 3∪ 4. This combined plot, called
the cumulative scores scatterplot, shows a better separation of the data than
is available in Figure 9. The PC unions show a banded structure, which
again is an artifact that follows from each PC score individually having a
very limited range of possible values. This seems to be a serious limitation
of the tree-line approach to analyzing population structure.
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As with Figure 9, there is unfortunately no readily apparent visual con-
nection between age and the visible population structure. However, visual
impression of this type can be tricky, and in particular it can be hard to see
some subtle effects.

Fig 10. Cumulative Scores Scatterplot for the Descendant Correspondence, Left Side sub-
population.

Figure 11 shows a view that more deeply scrutinizes the dependence of
the PC1 score on age, using a scatterplot, overlaid with the least squares
regression fit line. Note that most of the lines slope downwards, suggesting
that older people tend to have a smaller PC1 projection than younger peo-
ple. Statistical significance of this downward slope is tested by calculating
the standard linear regression p-value for the null hypothesis of 0 slope. For
the left tree, using the descendant correspondence, the p-value is 0.0025.
This result is strongly significant, indicating that this component is con-
nected with age. This is consistent with the results of Bullitt et al (2008),
who noted a decreasing trend with age in the total number of nodes. Our
result is the first location specific version of this.
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Similar score versus age plots have been made, and hypothesis tests have
been run, for other PC components, and the resulting p-values, for the left
tree using the descendent correspondence are summarized in this table:

PC1 0.003
PC2 0.169
PC3 0.980
PC4 0.2984

PC1 ∪ 2 0.003
PC1 ∪ 2 ∪ 3 0.004

PC1 ∪ 2 ∪ 3 ∪ 4 0.007

Fig 11. Scatterplot of PC1 score versus age. Least squares fit regression line suggests a
downward trend in age. Trend is confirmed by the p-value of 0.003 (for significance of slope
of the line).

Note that for the individual PCs, only PC1 gives a statistically signifi-
cant result. For the cumulative PCs, all are significant, but the significance
diminishes as more components are added. This suggests that it is really
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PC1 which is the driver of all of these results.
To interpret these results, recall from Figure 8, that for the left trees, PC1

chooses the left child for the first 3 splits, and the right child at the 4th split.
This suggests that there is not a significant difference between the ages in
the tree levels closer to the root, however, the difference does show up when
one looks at the deeper tree structure, in particular after the 4th split. This
is consistent with the above remark, that for the left brain sub-population,
the first few splits did not seem to contain relevant population information.
Instead the effects of age only appear on splits after level 4.

We did a similar analysis of the back and right brain location sub-populations,
but none of these found significant results, so they are not shown here. How-
ever, these can be found at the web site (8).

We also considered parallel results for the thickness correspondence, which
again did not yield significant results (but these are on the web site (8)).
The fact that descendant correspondence gave some significant results, while
thickness never did, is one more indication that descendant correspondence
is preferred.

One more approach to the issue of correspondence choice is shown in
Figure 12. This shows the amount of variation explained, as a function of the
order of the Cumulative Union PC, for both the thickness and the descendant
correspondences, for the left brain location sub-population. The amount
of variation explained is defined to be the sum, over all trees in the sub-
population of the lengths of the projections. There are 5023 nodes in total for
both correspondences. (The correspondence difference affects the locations
of nodes, total count remains the same.)

It is not surprising that these curves are concave, since the first PC is
designed to explain the most variation, which each succeeding component
explaining a little bit less. But the important lesson from Figure 12 is that
the descendant correspondence allows PCA to explain much more population
structure, at each step, than the thickness correspondence.

In summary, there are several important consequences of this work:

• In real data sets with branching structure, tree PCA can reveal inter-
esting insights, such as symmetry.
• The descendant correspondence is clearly superior to the thickness

correspondence, and is recommended as the default choice in future
studies.
• As expected, the back sub-population is seen to have a more symmetric

structure.
• For the left sub-population there is a statistically significant structural

age effect.
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Fig 12. Total number of nodes explained, as a function of Cumulative PC Number. Shows
that the descendant correspondence allows PCA to explain a much higher proportion of
the variation in the population than the thickness correspondence.

• There seems to be room for improvement of the tree-line idea for doing
PCA on populations of trees. A possible improvement is to allow a
richer branching structure, such as adding the next node as a child of
one of the last 2 or 3 nodes. We are exploring this methodology in our
current research.

3. Optimization proofs. This section is devoted to the proof of The-
orem 2.1 with some accompanying claims.

Claim 3.1. Let L = {`0, . . . , `m} be a tree-line, and t a data tree. Then

PL(t) = `0 ∪ (t ∩ VL).(3.1)

Proof: Since `i = `i−1 ∪ vi, we have

(3.2) d(t, `i) =

{
d(t, `i−1)− 1 if vi ∈ t;
d(t, `i−1) + 1 otherwise.
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In other words, the distance of the tree to the line decreases as we keep
adding nodes of VL that are in t, and when we step out of t, the distance
begins to increase, so Claim (3.1) follows.

Claim 3.2. Let L1, . . . , Lq be tree-lines with a common starting point,
and t a data tree. Then

PL1∪···∪Lq(t) = PL1(t) ∪ · · · ∪ PLq(t).

Proof: For simplicity, we only prove the statement for q = 2. Assume that

L1 = {`1,0, `1,1, . . . , `1,p1}
L2 = {`2,0, `2,1, . . . , `2,p2}

with `0 = `1,0 = `2,0, and

(3.3) VL1 = {v1,1, . . . , v1,p1}, VL2 = {v2,1, . . . , v2,p2}.

Also assume

PL1(t) = `1,r1 ,(3.4)
PL2(t) = `2,r2 .(3.5)

For brevity, let us define

f(i, j) = d(t, `1,i ∪ `2,j) for 1 ≤ i ≤ p1, 1 ≤ j ≤ p2.(3.6)

Using Claim 3.1, (3.4) means

v1,i ∈ t, if i ≤ r1, and v1,i 6∈ t, if i > r1,(3.7)

hence

(3.8)
f(i, j) ≤ f(i− 1, j) if i ≤ r1;
f(i, j) ≥ f(i− 1, j) if i > r1.

By symmetry, we have

(3.9)
f(i, j) ≤ f(i, j − 1) if j ≤ r2;
f(i, j) ≥ f(i, j − 1) if j > r2.

Overall, (3.8) and (3.9) imply that the function f attains its minimum at
i = r1, j = r2, which is what we had to prove.
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Claim 3.3. Let S be a subset of Supp(T ) which contains `0. For v ∈
Supp(T ) define

(3.10) wS(v) =

{
0, if v ∈ S,∑

v∈ti 1, otherwise

Then among the treelines with starting tree `0 the one which maximizes∑
ti∈T

|(VL ∪ S) ∩ ti|

is the one whose path VL maximizes the sum of the wS weights:
∑

v∈VL
wS(v).

Proof: For v ∈ Supp(T ), and a subtree t of Supp(T ), let us define

(3.11) δ(v, t) =

{
1, if v ∈ t,
0, otherwise

Then

arg max
`∈L

∑
ti∈T |(VL ∪ S) ∩ ti| = arg max

`∈L

∑
ti∈T

∑
v∈VL∪S δ(v, ti)

= arg max
`∈L

∑
v∈VL∪S

∑
ti∈T δ(v, ti)

= arg max
`∈L

∑
v∈VL∪S w∅(v)

= arg max
`∈L

∑
v∈VL

wS(v).

Finally, we prove our main result:
Proof of Theorem 2.1: For better intuition, we first give a proof when
k = 1. Using Claim 3.1 in Definition 2.6, we get

L∗1 = arg min
L

∑
ti∈T

d(ti, `0 ∪ (ti ∩ VL)).

Since VL is disjoint from `0,

L∗1 = arg max
L

∑
ti∈T

|VL ∩ ti|,

the statement follows from Claim 3.3 with S = ∅.
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We now prove the statement for general k. For an arbitrary data tree t,
and tree-line L, we have

(3.12)
PL∗1∪···∪L∗

k−1
∪L(t) = PL∗1

(t) ∪ · · · ∪ PL∗
k−1

(t) ∪ PL(t)
= `0 ∪ (VL∗1

∩ t) ∪ · · · ∪ (VL∗
k−1
∩ t) ∪ (VL ∩ t)

= `0 ∪ [(VL∗1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ t],

with the first equation from Claim 3.2, the second from Claim 3.1, and the
third straightforward.

Combining (3.12) with (2.3) we get

(3.13) L∗k = arg min
L

∑
ti∈T

d(ti, `0 ∪ [((VL∗1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ ti]).

Again, the paths of L∗1, . . . , L
∗
k−1 and L are disjoint from `0, so (3.13) be-

comes

(3.14) L∗k = arg max
L

∑
ti∈T

|(VL∗1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ ti|,

so the statement follows from Claim 3.3 with S = VL∗1
∪ · · · ∪ VL∗

k−1
.
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