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We used various analytical and numerical techniques tddstes signal propagation in a small enzymatic
cascade which is subjected to external and internal noise.ndnlinear character of catalytic reactions, which
underlie protein signal transduction cascades, rendechastic signaling dynamics in cytosol biochemical
networks distinct from the usual description of stochadtinamics in gene regulatory networks. For a sim-
ple 2-step enzymatic cascade which underlies many impoptarein signaling pathways, we demonstrated
that the commonly used techniques such as the linear nosexamation and the Langevin equation become
inadequate when the number of proteins becomes too low. égaestly, we developed a new analytical ap-
proximation, based on mixing the generating function arstritiution function approaches, to the solution of
the master equation that describes nonlinear chemicalgéigpkinetics for this important class of biochemical
reactions. Our techniques work in a much wider range of pratamber fluctuations than the methods used
previously. We found that under certain conditions the tphgse noise may be injected into the downstream
signaling network dynamics, resulting possibly in unulsuarge macroscopic fluctuations. In addition to com-
puting first and second moments, which is the goal of commuoséd analytical techniques, our new approach
provides the full time-dependent probability distribuisoof the colored non-Gaussian processes in a nonlinear
signal transduction cascade.

Keywords: Stochastic Processes, Nonlinear Chemical Kgebignal Transduction, Signal Amplification, Strongdta-
tions, Master Equation

I.  INTRODUCTION

Biochemical signaling networks mediate information flowdells, regulating important cellular processes such aks cel
metabolism, motility, gene expression and cell céleA quantitative understanding of signal transduction iseesial for
realizing the larger goal of modeling the cell. Until redgnibiochemical reaction networks were analyzed mainihlite help
of chemical kinetics equations, exploring such issues lasstoess, sensitivity, and bistabifit}®:%.” This deterministic descrip-
tion, though valid in the asymptotic limit of a macroscopystem (as for a reaction in organic chemist’s test-tubdy fehen
the number of reacting proteins is too small. This is oftendhase in the cell, which is a mesoscopic system. Therefwtedd
of a smooth deterministic course, the fundamentally randatare of chemical reactions results in “noisy” reacti@jectories
in individual cells. The resulting heterogeneous resparisen ensemble of cells to a particular external si§malcessitates
going beyond chemical kinetics, relying instead on the thebstochastic processe¥:111%o describe signaling dynamics.

Previous theoretical and experimental results have styaggested that stochasticity is an important componemie
dynamical processes in a ¢8iF31415.16.17.18.19 Fgr instance, in signal transduction, fluctuations indaseonly quantitative
changes of threshold valif@sut also qualitative changes such as oscillations, tiansitetween different stable states, and
stochastic resonances that may increase sensitivity litistaf the cellular signal processig22:23:24.2528 The resulting large
variability in cell-to-cell response to the same extertiahslus2 allows a cell colony to adapt to varying environment.

The connection between deterministic and stochastic d#hrkinetics is analogous to that between classical andtgoan
mechanic€:2°. In particular, the number of degrees of freedom in stoébhatscription of chemical kinetics is immensely
larger compared with the deterministic description. Congatly, the equations of stochastic chemical kineticd#fieult to
solve, and mainly numerical results have been discusseddnygork. Small sizes and intrinsic complexities of cellka
for the emergence of large fluctuations that are coupled otltler rich dynamical processes. Thus, the resulting foatil
complexity of these dynamical systems has hindered obigiaicomplete solution to the problem of stochastic dynainics
biochemical reaction networks. How to construct approx@renalytical solutions to understand qualitatively thenptex
signaling dynamics is a challenging problem which standhérresearch frontier of non-equilibrium statistical meties and
dynamical systent8=C.

A number of tools have been developed to deal with the ran@ssiin chemical reactiote32:3233.34 The Gillespie simulation
algorithm#:36:37 the Langevin equation and the Fokker-Planck equétigi®3240.45re among the most commonly used. These
methods have been applied fruitfully to study signal tramsion processéd?:114243 However, a number of constraints limit the
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applicability of these methods. Gillespie simulation iserttially a Monte Carlo algorithm which simulates chemrealctions
as a series of transitions between reaction states witkiti@m rates determined from microscopic kinetics. Oneusaition
corresponds to one possible reaction trajectory. Whenybkes is large, one or two reaction paths provide qualiativ
even quantitative information of the system dynamics. Hmweto get good statistics, a large number of paths are medjui
when the system size is moderate or small. This, in many cas@gbe computationally expensive. Moreover, although the
computational cost is dominated by the fastest reactiondasgade, the time scale of interest is likely given by thevekn
reaction, perhaps many orders of magnitude slower tharaitedaction. In this situation, commonly encounteredahdgjical
signaling networks, producing a single trajectory is cotapanally forbidding. Under special conditions thesediations can
be acceleratéd®:4144:45.46:47.48. 49t for a general reaction network this is still an activeaaof research. On the other hand,
a qualitative understanding of the reaction network dymaris essential for learning control of biochemical proessa the
cell’:30, Itis difficult to extract such understanding from Gillesgimulations alone, without the guidance from a compleargnt
analytical model.

A number of approximate analytical techniques are usedlt@ $be chemical master equation. Among the most commonly
used ones, the linear noise approximaife! is an effective weak-noise expansion based on the faditicatations are of order
V/Q for a system of siz€). It works well for large systems where fluctuations are srsathh that the probability distribution
is centered narrowly around deterministic orbits deteadifrom chemical kinetiéd. However, molecular discreteness and
large fluctuations in cellular biochemical reactions, cored with nonlinear effects, may generate strong cori@tatalong a
pathway, leading to the formation of characteristic patdyoth in time and spab&?:19.51,52,53,54

To account for such patterns, we developed an approach widohporates large fluctuations, going beyond the commonly
used small noise and continuous approximations. We focugffarts on a specific 2-step signaling cascade, consistirsy
unary reaction of receptor activation upstream and a sutesedpinary reaction of enzyme activation downstream. [Béoaical
signaling networks are comprised of only few signaling edais, and the 2-step signaling cascade considered in thisis/o
among most fundamental building blocks. The nonlinearithe catalytic reaction in the second step is the main soafrdéfi-
culties in obtaining a comprehensive analytical solutistbchastic signal dynamics in this amplification cascadthis work,
we developed high-quality approximate solutions to thetsastic signal propagation dynamics in a 2-step cascadeyaring
that fluctuations may broaden the average chemical kingiticgls such that transient, highly non-Gaussian dididha may
emerge, due to interplay between discrete noise and naniipe/Ve could not reproduce this effect using the chenliealgevin
equation, since the latter is based on the continuous appadi®n, ignoring molecular discreteness.

The paper is organized as follows. After commenting on trengiths and weaknesses of the traditional modeling teaksiq
we solve the master equation for the 2-step cascade withetlpeoi generating functions. Then the new formalism is used t
elucidate how noisy signal may be controlled in an unbradaignaling pathway. In particular, the upstream fluctustimay
propagate downstream without dissipation, resulting igdadlownstream fluctuations even in the limit of a macroscejze
downstream signaling network. Although we focused in thisknon an important, yet specific enzymatic cascade, theidhybr
generating function — distribution function techniquerantuced in this work (SectidndV) may be generalized to treate
complex biochemical pathways. To demonstrate the usefaloéthis hybrid “smooth distribution” method, we consider
SectiorlTWb a self-dimerization of the receptors in the #itsp of the cascade activation, which enhances the nonthasacter
of the 2-step cascade. In a forthcoming publication we wWilktrate the use of time-dependent basis functions, dpeel in
this work, in the variational solution of stochastic cheahikinetics equations in signaling cascades comprisedvafraesteps
and containing feedback loops.

II. MASTER EQUATION TREATMENT OF REACTION TRAJECTORY REALI  ZATIONS

Signal transduction often starts at the cell membrane, evbgternal ligands, such as hormones or small peptides,andd
activate cell surface receptors. In turn, the activateéptars send the signal downstream, usually by phosphorglapecific
proteins inside the céll These proteins then activate other cytosol proteins éarlownstream. The process goes on so that
the signal propagates through the cell in a predetermingd ttawever, the signaling dynamics is not uniform when prote
numbers are small, which is often the case in the burst phabe @ascade activation. Because of the fundamentallyorand
nature of chemical reaction dynami&seach trajectory realization is different from others,rewen the same initial conditions
are used. This behavior is called trajectory variabilitghe literaturé’. If the variation is large, then a stochastic description
becomes necessary.

Our long-term goal is to understand qualitatively how las@maling networks process information. The 2-step ancglifbn
cascade, shown in Fifi] 1, can be regarded as the building bfomore complex cascades. In this simple reaction scheme,
without feedback loops represents an inactive receptor, which becomes activatedi upon binding of an external ligand
(stimulus). When the receptor is activated, it acts as agraazcatalyzing the phosphorylation of the next kinase dtr@am
(A+R — A*+R*)with arateu. A* spontaneously decaystbwith a rateh. Although theR* reaction is unary and independent
of the A reaction, the latter one is binary, making the system nealirthus, different from those usually considered in the gene
regulatory networl&:26.57.58
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FIG. 1: An inactive receptoR, when activated by a signal, activates downstream protein
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FIG. 2: A schematic depiction of the visual signal transuctascade.

This simple 2-step cascade is commonly embedded in the aifsatreaction pathway of many important signaling
cascade¥:®% For example, the visual signal transduction pathway, wtikes place in retinal rod cells, is shown in 22
Rhodopsin receptors (Rh), located in small discs in thera#ggments of the rod cell, contain a light-sensitive mdksceti-
nal. Upon incidence of photons, the retinal molecules walé&omerization, leading to a subsequent activation oflopsin
receptors (Rh). The latter act as a catalyst to replace the GDP by GTP in aof&ip, called transducin. The next enzyme in
the cascade, the cGMP phosphodiesterase (PDE), is theatadtio (PDE) by the active G-protein GTP complex. PDhy-
drolyzes the cGMP, which leads to the closure of cGMP-gad G2 ™ ion channels and, thus, reduces the influx of lee2+
flow. The rod cell becomes hyperpolarized, resulting in lemgrotransmitters being released from the synaptic tednoiinthe
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rod cell. This change is immediately picked up by a secondarel passed as a signal to the central neural system. In this
example, the initiating steps of the visual signal transidagathway,

Rh+ Rh*, G-GDP+ Rh* <+ G-GTP+ Rh"

are similar to our 2-step cascade. The amazing ability afaebd cells to detect single photons, in the presence efeatand
internal noise, has been discussed in prior w&kélthough understanding visual signal transduction isthetfocus of this
work, the formalism of large fluctuations, developed in therent work, may serve as a basis for further elucidatingigsue.

We regard thek — R* reaction (Fig[L) as a Poisson process with gatehich corresponds to an abundancerofeceptors
and scarce ligand presence. For instance, the light péoocdpta dark roorf.84may be described as a Poissonian bombardment
of photons on the retina cell surface. If the intensity offoing is low, there always exist a sufficient excess of inattitt photon
receptors R) such that the arrival events of photons dominate the psod&isspontaneously decays backRoat a ratek. The
average number of activated receptdi$) depends both on the incidence ratand decay raté. If R — R* is considered to
be an ordinary first order chemical reaction, instead of &d2wi process, all methods described below would still apyti
only minor modifications. Our current investigation is resed to the0-D treatment of space. This is a good approximation if
the reaction network is confined to a small enough spatignetpaving a linear dimension gf(so-called Kuramoto length),
such that particles diffuse across the region fast comparéie typical reaction times. Using the reaction paransefiem
published models of the EGF/MAPK signaling cas€342 we estimated to be in the range from 0.8m to 5 um. In an
ongoing work we are incorporating an explicit treatmentpece into our analysis.
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FIG. 3: Time evolution of the variance of* computed from EdJ1splid line), Langevin equationdashed line) and Eq3B ¢ircles). For
(g,k, 1, ) = (0.2,0.1,0.02, 0.15) with initial condition (Ng, Ng+, Na, Nax) = (100, 0, 100, 0).

When the number of protein copies in the signaling networknisll, the evolution of the averages, described by ordinary
chemical kinetics, is inadequate to characterize the sysiynamics. An example of the evolution of th€ protein number
variance, shown in Figuild 3, indicates that the amplitudeneffluctuations is about) in the steady state. This is significant
when compared to the deterministic average of aBouClearly, a stochastic description is required in this cd$e chemical
master equatichi is a starting point for studying large variations of indival stochastic trajectories from the average path. For
the 2-step cascade described above [#ig. 1), we dena®#yn) the probability of havingn copies ofR* andn copies ofA
at a particular time point. The time evolution of this prothigbdistribution is determined by the following masterwetion

(Z—]Z(m,n) = pu[-mnP(m,n)+m(n+ 1)P(m,n+ 1)] + \[-(N — n)P(m,n)
+ (N =n+1)P(m,n—1)]+ g[=P(m,n) + P(m —1,n)]
+ K[=mP(m,n) + (m+ 1)P(m+1,n)], o)

which expresses the transition rates of probabilities ftiome ¢ to timet + dt in terms of the probability distribution at tinte
The sum ofA and A* is taken to be constant throughout the reactitnirf Eq. {1)). Another way to think about the chemical
reaction dynamics given by Eql(1) is to view it as a randonkweal a two-dimensional lattice of integer coordinatesandn
with position-dependent jump probabilitiés

Since the master equation provides a full description aftsdstic chemical process, solutions of the set of coupldihary
differential equations in Eg(1) provide all necessarginfation to analyze the signaling dynamics. However, actexaalyt-
ical solution for the system of ODEs in El (1) is not knownret numerical integration is also difficult due to the enous
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number of ODEs (1610°) for a cascade that may contain up to*2i@* proteins of each species. Simulations based on the
Gillespie algorithm may be used to estimd&ém, n) in Eq. (), however, they are computationally inefficient @me hard to
interpret, as discussed earlier. Thus, to gain qualitatisight into stochastic signal transduction by the 2-segzade in Fidl1,

it is important to develop an approximate analytical solutio Eq. [1).

Physical considerations are crucially important in malsagsible approximations to the master equation. Sevena¢rical
and analytical techniques are available to account for tigereffect on signaling dynamics, including the chemicahdevin
equatiod! and van Kampen'®-expansiod. But they are most useful only when the particle numbersaageland fluctuations
are relatively small. In Appendix A we derive &rexpansion for the 2-step cascak (1). In the remainingobdne paper, we
develop alternative solution schemes to solve equati@asdi. [1), based on the generating function approach, twrobignal-
ing dynamics in the regime of large fluctuations, where tradal analytical techniques are no longer applicable. Gamson
will be made between our method and the results from Langeyiration of2-expansion.

Generating function approaches have been used in prior smarkelucidate stochastic processes in gene regulatory
network€22’. The novelty of our work is to extend these techniques toineal chemical processes in protein signal am-
plification cascades. The nonlinearity of chemical reaxstigreatly enriches the dynamical behavior of signalingadss.
However, to develop a robust analytical approach to solstnghastic amplification dynamics, substantial additidiflculties
need to be overcome compared to describing noisy dynamiicear biochemical networks.

lll.  THE GENERATING FUNCTION APPROACH

To treat signal transduction in a wider range of protein nerslin the cell and to analyze the effects of large fluctuatiore
have developed a new approach, based on generating fusctiosolve the master equation. A generating function eexod
probability distributions as its Taylor series coefficenAs a result, the enormous set of ODEs in E}. (1) are configakinto
a single PDE. Thus, the evolution of the probability disitibn can be obtained by solving this one PDE for the genegati
function. Since even for medium-sized cascades, therenaasteonomical number of ODEs in the master equation foemgli
an approximate generating function greatly facilitatealigative and quantitative analysis of strongly-fluctngtdynamics in
biochemical reaction networks.

As an example, for the 2-step cascade, we define a generatiogdn through the following power series

U(z,y) =Y P(m,n)z"y" . )

which satisfies the time evolution equation

ov 0? 0 ov

e (1 —y)(u:vaxay — /\N—l—/\ya—y)\ll—i-g(x — 1)U — k(z — 1)£.

®)

Our next goal is to develop approximate techniques to sotydd. We know that the solution of Eql (3) is an analytic fiioc
of , y with nonnegative time-dependent coefficients. The higtiestative in Eq.[[B) i$? V¥ /920y which reflects the binary
chemical reaction betweeR* and A. If this term is omitted, EqI{3) can easily be solved by thehud of characteristics.
However, this would completely alter its physical contedh the other hand, we notice that the generating functioheRt*
distributiong(z) = ¥(z, 1) does not depend on the dynamicsdénd obeys the following PDE

0 0
2 1) M-, @
which can be solved exactly, resulting in
6(x) = exp[3(a = (1 — e )], (5)

where the initial conditionVg- = 0 att = 0 was used. Thé&* probability distribution,P(m), is given by the coefficients of
the series expansion of E] (5)

o) = 3 exp(- 21— e )1 — ey ©)
m=0 .
resulting in,
P(m) = exp(=(1 = e )g/k)(1 = ™) (L) /m. @
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Therefore, the time-dependent distributionftif is Poissonian and relaxes to a stationary distribution thi¢hratek. Although
this distribution is generated by both the birth and decaftfthe relaxation is independent of birth rateFrom Eq. [6), the
average and the variance Bz are also easily calculatedVz-) = (02) = (1 — e *)g/k.

Next, we build up the cascade by considering also the restivolving A. In particular, we construct a series expanéfon
in z with time-dependent functions,, (v),

U(z,y) = > ¢m(y)z™. ®)
m=0

Thus, with each state containimg R*’s, we associate a distribution of, which may be computed from,,,(y). The new
functionsé,, (y) satisfy

Dom

0 0

Here an infinite hierarchy of coupled linear PDEs are obthfiee the unknown functions,,, (v). Eq. [) is exactly equivalent

to the master equation and physical considerations wilt hexused in finding good-quality approximate solutions. Vet oy
keeping only the first term in Eq1(9), thus, ignoring tRe— R* dynamics, and then incorporate back the omitted terms in an
effective way.

A. Time-scale separation modulates noise propagation

The first term on the right hand side of El. (9) describes ttth Bind death of proteid and the remaining terms descrifé
dynamics. If theR* reaction is ignored, the hierarchy of PDEs become uncoupliedobtained an exact analytical solution for
the resulting PDEs using the method of characteristics:

A
O0) = bl + (o + e ) (= 1), (10

where the number afl’'s was taken to béV at¢ = 0 and¢,, o is a constant, representing the probability of having dyaet
R*’s. If, for example, the number. of R* is fixed at a particular valug, theng, o = 1, ¢, = 0 for m # m. The obtained
generating function indicates that thedistribution is binomial. Note that the relaxation rate\is- um, depending on both

andy. The solution further simplifies in the limit of long times o).

D — drmoll + (y -1V, (11)

A+ um

which is the generating function for the stationary disttibn of A.

In the real 2-step biochemical cascade, the numbé&*&fis, of course, fluctuating. However, EE110), withconcentrated
atm, still constitutes a good approximation when eitbgthe following conditions is satisfied: (i* is characterized by a sharp
distribution centered at, which is often the case when the number¥fs is large; (ii) the reaction rates fd@t* birth and death
are much larger than those fdr For a cascade that satisfies condition (i), the linear reyigeoximation might be applicable.
However, our solution, based on the generating functiomagat, provides the full probability distribution in an dytecal form.
When condition (ii) is satisfied, thd — Ax reaction only “sees” an average numbei) (of R*. In this case, our solution is
simpler and, perhaps more convenient to use, thafthexpansion solution. Analysis of the cascade dynamics fee i)
using Eq.[[ID) suggested a possible mechanism for noiserfiteEven in the case of broad or irregular distribution R, if
the fluctuations around the average are fast, the distoibati A is still well approximated by EqLT10), being well-peakedha
average for largév.

As an example, we take the reaction rate parameter valyes i, A\) = (20,10,0.004,0.03) and initial condition
(Nr,Np+,Na,Na+) = (100,0,100,0). The evolution of the first two moments @¥,- as computed from our approxi-
mate solution EQ_1d2—expansion solution E4SIBZ]33, and exact numerical restdtshown in Fidd4a,b. Unlike the practical
implementation of th€)—expansion, Eq10 also directly gives the time evolutiorheffull probability distribution ford* pro-
teins. A time slice of the probability distribution af* is shown in Figllba. Overall, a remarkable agreement is aetibetween
the approximate analytical results and exact numericalidations. Also shown in the figure is the distribution corgalfrom
the Langevin equation (dashed line), which is charactditigean average noticeably larger than the exact average.tBwagh
the magnitude of2* fluctuations is the same for the cascade parameters usegsifBLb, thed* fluctuations are dramatically
attenuated for the case demonstrated in[Big. 4lhnd 5a, cedchwith Fig[B. In this case thR — R* reactions are much faster
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FIG. 4: Time evolution of the averages ((a) and (c)) and vaes ((b) and (d)) ford™ obtained from three different calculations: the ap-
proximate solution EqL{A0Xircles), the exact solutionsplid line computed from EqI]1)) and tHe-expansion Eq[{33)dashed line prob-
ably overlapped by theolid line). The initial condition is(Nr, Nr+, Na, Nax) = (100,0,100,0). (a) and (b) have parameter values
(g9,k, 1, A) = (20,10, 0.004, 0.03); (c) and (d) have parameter valugs k, i1, A) = (0.02,0.01, 0.2, 1.5).

than theA — A* reactions, thus, th& — R* noise is averaged out and only interzhl— A* noise remains. If we think
of this two-step cascade as an element of a longer signatditigvay, the relatively large fluctuations of the upstreaactien
(R — R*) become attenuated downstrearh {+ A*). Thus, stacking of a slow downstream reaction after a fpstraam
reaction provides a general mechanism for noise attemuatibiochemical signaling networks.

In the opposite limit of the reaction rate &f being much slower than that of, we can take into account tH& dynamics
by allowing ¢,,, o in Eq. {I0) to change slowly with time according to Hg. (7) uShwe substituted

Fmo = exp(—(1—e Mg /k)(1L — e )" ()" /m!. (12)

into Eqg. [ID). This is a valid approximationin the limit obsl R* dynamics. Using this substitution, we obtained an appraiem
solution for¥(z, y) as an infinite sum over the* protein numberm. Since the coefficients af decay very fast with increasing
m, we can safely truncate it to a finite sum. For many reactitesra this regime, the obtained distribution is broad.

A set of reaction rates, which corresponds to a slow upstreantion and a fast downstream reactignk, u, \) =
(0.02,0.01,0.2,1.5), was used to compare our analytical calculations with eraaterical results (Fidd4c,d and Fig. 5b).
The evolution of both the first moment (FId. 4c) and the varéa(Fig[4d) obtained from our analytical treatment agreels w
with the exact numerical one, being more accurate thafiitegpansion. Furthermore, we used Eg. 8,[Ed. 10, andCHEq. 12 to
compute the full probability distribution at= 200 (Fig.[Hb), which is impossible to obtain analytically usithg Q2-expansion
approach. All the nuances of the complicated distributimnaccurately captured by our approximate analytic satutibhe
distribution computed from the Langevin equation, on threohand, which is shown as a dashed line inHig. 5b, is charaet
by a single broad peak. The white noise terms in the Langeyiaton obviously smear out the peaks and, thus, are not good
models for the underlying stochastic dynamics. At long tliméts the distribution becomes uni-modal, but still widiata not
shown).
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FIG. 5: Probability distributions ofA* computed from the approximate solution Egl t0rdes), Langevin equationdashed line) and the
exact solution Eq]1splid line) with initial condition (Ng, Ng+, N4, Na=) = (100, 0, 100,0). (a) The distributionP(Na-) att = 60
with parameter valuegg, k, u, A) = (20, 10, 0.004, 0.03). (b) The distributionP(Na+) att = 200 with parameter valueég, k, u, \) =
(0.02,0.01,0.2, 1.5).
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FIG. 6: (a) Averages computed from Gillespie simulatisslifl line) and from the approximate solution EQ] (8ir¢les). One typical Gillespie
trajectory is also showrttiin solid line); (b) the variance from Gillespie simulatioso(id line) and from the approximatiortifcles). Initial
condition(Ng, Ng+, Na, Na+) = (100, 0, 5000, 0) and parameter valuég, k, 1, A) = (0.1,0.05,0.2, 1.5).

The fluctuations inA* are much larger for a cascade where the upstream reactidowisand the downstream reaction is
fast (Fig.[4d and Fid5b) compared with previously considerascades (FigEl B 4b did 5a). Thus, the noise produced in
the R — R* reaction is retained and amplified by the next enzymaticti@ac As opposed to the previously discussed case
of noise-attenuation, this cascade setup could be used piifarthe noise downstream. The amplification and attermumati
of noise have been extensively discussed and experimetgated in the linearized stochastic description of gegeledory
network$2:6:58.68 Qur current work emphasizes the role of discreteness inndinear biochemical reaction network, using
directly the generating function formalism to obtain atialyl time-dependent probability distributions.

Strong fluctuations occur even when the number of downstpeatains is very large. Fidd 6 demonstrates a striking examp
Although the average number df quickly reaches its steady-state value, which is i@a, the fluctuation continues, such
that a typical trajectory fluctuates with a magnitude of theas order as the average (fib. 6a). The corresponding largaee,
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shown in Fig[Bb, confirms this analysis. Thus, the fluctuetiare much larger than expected from the ustal argument,
where N is the number of proteins. Our approximate solutgmeas very well with the exact solution (FIg. 6), confirmihg t
validity of our noise-amplification scheme to solve the ramstquation (Eqs[]8)[{10) and{12)). The large fluctuations
are induced by the upstreaRt fluctuations, as seen from a typical numerical trajectogmshin Figlba. At steady state, the
average death/birth timescale f8f is 1/¢g = 10, thus, theA* trajectory exhibits a bursting behavior with a time cortiela of
about10.

In the photoreception cascade, the rhodopsin (Rh) activasi controlled by the incident photons which may arriveg on
by one, withinls or even longer time interval in the single photon experienihe deactivation rate from Rho Rh is
about0.5s~!. The activation rate of the transdugtis around120s~! and the deactivation rate i$0s~'. According to the
classification developed in this paper, the initiating stafithe photoreception cascade belongs to the case offgtawaction
and fastA reaction, thus, we expect an amplification of the extergéltlstimulatio§?:62.64

Our approximation method in this section is based on theraéipa of time scales for the first and the second reactiams, a
approach which is also the starting point for many solutemhhiques in the literature. The elimination of fast vaBalis among
the most popular ones and is often used to approximatelg $aiker-Planck or Langevin equatiéh®. Various methods such
as the projection operator meti#8@nd cumulant expansion meti¥éthave been developed to treat the continuous cases. To the
lowest order approximation, the fast time scale is completamoved, while the equations for the slow variables aotéor
the fast variables either through their correspondingayes® or through their stationary distributic¥s Here we applied the
essence of this idea to the discrete jump process descnbadraster equation and obtained analytical approximafmrthe
evolving probability distribution function. Similar coideration has been used to derive effective equations ia ganscription
regulation in the large particle lin§&, but our method applies to small particle numbers as wethérfirst case considered above
(fastA— A* reaction), we used only the average of the fast variablddsécond case (faBt— R* reaction), we first considered
the probability distribution evolution of the fast variatdnd, subsequently, incorporated back the evolution cfltve variable.
Thus, in both cases, we explicitly included both the slow fastitime scales into the final analytical expression.

IV.  SOLVING THE MASTER EQUATION WITH THE HYBRID SMOOTH PROBA  BILITY DISTRIBUTION METHOD

When the probability distributions are relatively smoaodhnew approximation scheme may be employed to integrate the
generating function equatidd 3. To show basic idea of thenatktwe first implement it for the 2-step cascade discussed
previously (Fig[). Then, to demonstrate the potentialfemeralization, we apply this method to another enzymatcade,
where the first step is a self-dimerization of receg@anstead of a simple activation.

A. 2-step signal transduction cascade

To treat analytically the stochastic signaling dynamicsiiwider regime of parameters (for example, when upstream and
downstream reactions have comparable rates), the negjleatspling terms in EBI9 may be taken into account in a more sys
tematic way. In this section, we will reconsider the crosmtebetween different:’s and treat them in a different way. Here,
we take advantage of the knowit distribution from Eqlb and write down the following expasrsifor ¥ (z, y),

W) = Y e 20— N 60), (13)

m=0

whereg,, (y) is a time-dependent function and, according to Eh. (6), wankthate,, (1) = (1 — e~**)™. Substituting this
form of expansion off into Eq. [3) and comparing the coefficient:gf on both sides of the equation, we have

Oom

0 0
ot = (1 - y)(ﬂma_y — AN + /\ya_y)¢m + km((bm—l - ¢m) + g(¢m+1 - (bm) + geikt(bm . (14)

This equation describes the time evolutiorygf(y), which is coupled to the neighboring functiofg 1 ande,,,+1. In previous
discussions, we neglected these couplings first and omdyilatorporated them back in an effective way, justified urndetain
conditions. Here, we present an approach which directlggahkto account these couplings in an approximate manneenWh
the probability distribution of?*is smooth, the following approximation,

(?;bi ~ ¢m+1 - ¢m ~ d’m - d’mfl ) (15)
m

may be used to uncouple the PDEs in gl (14):
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Opm
ot

0 0 Odm _
= (1= ) = AN N5 ) g — k) S+ ge (16)

We solved the resulting PDEs by the method of charactesiskq. [Ib) is satisfactory when the profiledaf, betweenn and
m + 1 can be reasonably approximated by a straight line segmdns. Wiorks well if either of the two conditions holds: (1)
as mentioned above, the distribution profile is smooth sbttteahigher-order derivatives can be ignored, or (2) the lmemof
R* is large such that an increment by one particle may be tresadhall. In addition, it is possible to improve this solatiry
making a higher-order approximation to the difference in @&). For example, an exact expression can be obtainedghro
the Kramers-Moyal expansi&h

19
. Il Om!

¢m+1 - d’m = ¢m ’

wherel runs froml to co. In the standard derivation of the Fokker-Planck equdéh terms up to the second ordér=£ 2)

are retained. In some sense, our “smooth distribution” peeth a hybrid distribution function — generating functiameme,
where in the yet to be determined functiafig(y), subscriptn is related to the?* particle number (distribution for), while

y is a formal variable related to the generating function fa #1* particle number. However, solving equations containing
higher-order derivative terms quickly becomes cumbersdiege, we only keep the first order term, which allows Eq] ¢b6)
be solved with the following set of characteristic equagion

vy = (y—1)(pm+ \y)
m mk — g
bm = AN(y — 1) + ge o, . (17)

The first two equations in Eq{IL7) define the characteristiwes and the third equation shows hew changes along this
curve. The dynamics on each curve is self-contained angarttent of each other, which is the consequence of neglectin
higher order terms in Eq{IL5). EG_{17) were exactly solvesllting in

(1) = 982 )1+ 25 (g = 1)V explf (1= ). (1)

where

al 1
(1552) = Zanm(z_ +1)"
n=0 0

/
20 = P +/\p
y—1

t
p(t) = / el ds
0

It) = (\+ %)t + %(m0 - %)(ekt —1).

anm 1S the initial probability of havingn R*'s andn A’s andmy is an intermediate variable which after all the integragiand
differentiations are done will be replaced hyby the following substitution,

mo — % =(m— %)e_kt . (19)
In general, the integration to obtajrit) can not be carried out in a closed form, thus, approximateuararical treatment is
needed. However, the analytic structure of the overalltoius transparent. The last exponential factor in Eql de®cribes
the R* reaction and the first two factors describe the+ A* reaction. The full generating functioh(x, y) is given by Eq.[(IB)
with ¢, (y) given by Eq.[[IB). Onc@ (z, y) is known, all the statistical quantities are easily completa
As an example, we consider the following initial distritmurti

1
o0 =e (Z—0+1>N, (20)

10
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which corresponds to starting the cascade dynamics Witd's and a small number aR*, distributed exponentially. The
corresponding solution is given by

Ap+1

Om(y) = (1+ ==y = 1)" exp(-me™), (21)
where
P = exp((A+ 5D+ E(m = )1 —e ™)
o) = [ Cexp((h+ D) B — )Mo — ) s, (22)
Whenz = 1, if the following approximation is used
m = exp(—me ™) (1 —e7H)™ (23)

then theR* distribution is recovered. Furthermore, EQ.](21) with EZH)(substituted in conserves the total probabilify,
U(1,1) = 1. Thus, we use EqL{23) in the calculations described below.

To gauge the effectiveness of the approximate analytidatisa, we takeN = 100 and theR* distribution truncated at
m = 30. Firstly, we evaluate EqL21) witty , &, ., A) = (10,1,0.01,0.1). A* distribution computed from Eq{IL3) &= 60
matches quite well with the exact solution as shown in[Hig.Tdee approximate distribution is a little narrower than éxact
one due to the omission of the higher-order derivative temisq. (I%). Secondly, we carried out similar calculatiorithw
(g,k,pu,A) =(0.2,0.1,0.02,0.2), as shown in Figd7b. Although the distributiontat 60 from our approximation agrees
quite well with the exact solution for larg¥ 4, near the left boundary there is a clear discrepancy, dugetodn-smoothness
of the distribution at the minimum particle number, since ttumber ofA* cannot be negative.

0.08 0.06
~ 006 T 0.04
< <
Z 0.04 z
ol o L
0.02 0.02
C0 0O 100
(a) The distributions at = 6 (b) The distributions at = 60

FIG. 7: The probability distributions o * att = 60 computed from the approximate solution Hgl(2i)des) and the exact solution Eq(1)
(solid line) with initial condition (Ng, Nr+, Na, Nax) = (100, 0, 100, 0) and parameter values: (&) ,%,u,A) = (10,1,0.01,0.1); (b)
(g,k,m,A) =(0.2,0.1,0.02,0.2).

B. Receptor self-dimerization introduces additional noninearity

Even if the exact solution is not available for the first r@att we can still apply the above approximation as long as the
distribution is smooth. Consider the dimerization reatsbown in Fig[B. Compared to the previously discussed@estscade
(Fig. ), the first reaction is replaced by a self-dimerizatrocess with ratg. This dimerization activation is quite common in
signal transduction and gene regulatory netw&%&72 Although it is possible to derive an analytical solution flee isolated

11
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signal d
R+ R—— » R* R =% L Rr4+Rr

* catalysis

deca
A+R, — =25 A%y R: A !

FIG. 8: An inactive receptoR, when activated by dimerization, activates downstreaneprol.

first step in the cascade, i.e. the self-dimerization preféé$ the expression is in a series form and will not be used in our
approximation scheme.
Again, letP(m,n) denote the probability of having R3's andn A’s. The master equation is then,

%(m,n) = 2((M = 2m+2)(M = 2m + 1)P(m — 1,n) = (M — 2m)(M — 2m = 1)P(m,n))
+k((m+1)P(m+ 1,n) —mP(m,n)) + p((n+ 1)mP(m,n+ 1) — mnP(m,n))

AN —n+1)P(m,n—1)— (N —n)P(m,n)) , (24)

where the first term describes the dimerization reactior ddrresponding generating functidniz, y) satisfies,

v g , 9? )
ov 0% 0
+k(1 — I)% +p(l - y)x(“)x(“)y + Ay — 1)V - ya—y)\ll (25)

Note that a new second-order derivati®éy /92, appears, compared with the previously considered gengrfainction PDE
(Eq. [3)). If we expand the generating function in the fornEof. [8), a series of PDEs faf,,’s are derived. Similar to the
simple 2-step cascade, after taking the continuous linit@amation, we get

0P, o) )
5~ (1—1 )(Hma—y - )\N+)\ya—y)¢m

+a% (km = S(M(M = 1) + 4m(m = 1) = 22M = 3)m) ) dm (26)

where the total probability is conserved since

dOO
= dm ém(t, 1) =0.
7] amont1=0

Eq. (28) are also readily solved analytically by the chamastic method.

The approximate distributions compared with those compfrtam Gillespie simulation are displayed in Fig. 9 at anarl
timet = 3 and a later time = 60. They agree quite well. The approximate and exact disidhstat other times are in good
agreement as well (data not shown).

Overall, the presented method may be used to obtain the lorgdvolution of the stochastic signaling dynamics. We
designed the hybrid scheme to treat the second order deeivatms in the generating function equation with the cbirastics
method. When the probability distribution profiles of alesges are relatively smooth the method gives quantitatiaeturate
results. Although, this condition is most commonly satisfiehen protein numbers are large, it is also applies to systeiti
smaller protein numbers with certain constraints on thetirad reactions rates. Generalizing this method to tregelacascades
is also straightforward. If all the reaction nodes in thenmgk are linear, then there is no need to expand the gengfatirction
equation up to second order derivative terms, and a dirgiicapion of the characteristics method would solve theegating
function PDE. If a small number of binary reaction nodes aesent, the hybrid scheme can be applied most effectiMidyyiag
to obtain approximate solutions in a manner similar to thengples that we have already considered. For cascades with ma
binary reactions, a straightforward application of the metmay becomes unpractical since a summation over mangeindi
is required, which would be computationally expensive. eer, this difficulty may be overcome by either linearizimg t
nonessential binary terms or by approximating the summatidgth integrals.

12
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0.1
&
=<0.05
o .
0
100 0 ISO 100
A
(a) The distribution at t=3 (b) The distribution at t=60

FIG. 9: Probability distributions oft* computed from the approximate solution Eq. 26d es) and Gillespie simulation (solid line) averaged
over70898 realizations. Initially(N.a, Na«) = (100,0) and Ng; approximately assumes a Gaussian distributian— (m — 2)2)/+/7. We
useNg + 2Ng; = 20 and choose parameter valugg k, i, A) = (0.02,0.5,0.02,0.15). (a) The distributionP(Na~) att = 3. (b) The
distribution P(N 4~ ) att = 60.

V. CONCLUSIONS

Cells live in a fluctuating environment in which signals araise keep bombarding the cell receptefs’> Noisy signals
propagate inside the cell via microscopic chemical reaatients. The external noise interferes with the internattemical
network noise originating from the underlying fundamemtaidomness of these chemical reactions. Cells have evidved
adapt to or even exploit the seemingly deleterious effefiiofuations on signaling dynamics within a mesoscopic slgect.
Thus, it is important to develop a qualitative picture, lthsa mathematical modeling of stochastic chemical kingti€¢fow
signaling networks process noisy signals. In this papertudied the stochastic signal transduction by a simple g-stgnaling
cascade using the master equation to describe stochaatitore events. In agreement with previous studies, we fabatl
when particle numbers are large, chemical kinetic equatovide an accurate description. However, when the numiber
proteins becomes small, a large variability among indialdtajectories results, necessitating the stochastimate kinetics
approach. If fluctuations are small, the commonly used fine&e approximation works well, the probability distrilmn being
centered around the deterministic trajectory. But whentdlations are large, for example, at the initiating (bur$tage of a
signal transduction cascade, the linear noise approxamatieaks down and more powerful analytical treatment ofitaster
equation becomes necessary. In the small protein numbiengeghemical Langevin equation does not work properly dt we
since the continuous assumption breaks down and moledstaeteness sets in the dynamics.

Without assuming that noise is small, we directly treateditfaster equation with a generating function approach.ofijh
the resulting PDE could not be solved exactly, we found a remobperturbative schemes, that allow us to obtain appratem
analytic solutions for the generating function which isdise obtain the time evolution of the full probability diditition for
all proteins. Using the analytic solution, we recoveredgbereral mechanism for attenuating or amplifying noise iilgaading
pathway with nonlinear reaction events: if the upstrearatieas are fast and the downstream reactions slow, theragpsinoise
becomes attenuated. Conversely, if the upstream reaarerslow and the downstream reactions fast, then the upstreese
becomes amplified. Thus, controlling various node timeschly regulating reaction rate constants would lead to agih@n
of the signaling cascade sensitivity and reliability by ptgssing uncorrelated noise while still amplifying weadgsils. This
mechanism may be used by cells to draw useful informatiom facnoisy environment. Furthermore, under certain cornstio
the burst phase noise may induce macroscopic system-vstigliince in the downstream signaling network.

The approximation based on characteristics, presenteekitioc®[IM, can be straightforwardly generalized to a lorzgscade,
with the restriction that the protein number distributi@ans smooth. Yet another powerful technique to solve theenasuation
for more complex cascades is based on the variational ptefé&i The analytic solutions developed in this paper serve as a
starting point for developing high quality time-dependessis sets for the variational approach. A good basis setdhapture
the essential part of the system dynamics so as to make thecpueént calculations simple and effective, which will kscdssed
in more detail elsewhere. For larger signaling pathwayseeially when embedded in space, the commonly used nurherica
stochastic simulations will face severe computationati®oéck. In this work we have taken a different approachetam

13
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analytically solving the master equation describing séstic chemical kinetics, to achieve, in an efficient manqgealitative
and quantitative insights into stochastic signaling bych&@mical reaction networks. In an ongoing work we are géizarg
the techniques presented in this work to investigate therpidy of the noise amplification and attenuation with thenptex
dynamics generated from feedback loops in larger biocha@nmeaction networks.

APPENDIX A: THE Q-EXPANSION OF THE 2-STEP CASCADE MASTER EQUATION

If the fluctuations are relatively small, van Kampefilsexpansion may be used to account for their effect on siggali
dynamicél. In this case it is more convenient to rewrite the master gopuiggiven by EqL, in an alternative fofdwhere the
dependence of reaction rates on the cell dizas explicitly emphasized:

P=XE" - 1)(N —n)P+ 2(EX — 1)mnP + k(EF' — )mP + gQ(E;' — 1)P, (27)

Q
whereEX f(n) = f(n+ 1) andE; ' f(n) = f(n — 1) are step-up and step-down operathrsAlthough (2 is equal to 1

in our units, it is still written out to be used later as an exgdan parameter. If the protein numbers are large enough suc
that the deterministic evolution serves as a good startogtpthen small fluctuations are well described by the lingzise
approximation. In particular, the variables are changeshtphasize the fluctuations around the deterministic orbits

= Qo(t) + Q'%¢,

m
n = Qt) + QY%
P(m,n,t) = II(§n,1),
N = NQ. (28)

where ¢(t) traces the deterministic path fé¥z« and«(t) for N4. The new random variables ateandn, that describe
fluctuations around the average path. While averages digiednfrom the dominant paths are proportionafXpfluctuations
around these averages are only proportion&@. Since¢(t) and+(t) can be easily found by solving the chemical kinetic
equation, we need to obtain an evolution equation for théaddity distributions of¢ andn, I1(£, 7, t). Thus, we substitute
Eq.[28 into Eq[Z7, using also the following expression for analytic functionf (n):

o 107

(Efl—l)f(n)*(ian+2an2 +...)f(n).

Eq.ZT results in

ol 1/2@8_1_I _ 1/2%6_1_[ _ _0-1/2 9 1 62 \ _0l/2
g -Q T Q dtan_/\(ﬂ 8+Q 82)(Q(N U) — QeI
ad —1/2£ 1 , 0 1/2 1/2 1/22 , 0
+5(@ 377+2Q 3 ——)(Q¢ + QY2E) (W + QI + k(2 a2 lo- 352)
(Q¢+Ql/2§)H+g(—Q_1/2£ + g i ——)QI + - - (29)
¢ 2 0¢?
We next collect terms that are of the same ordéR.iThe largesf!/? terms give:
dg oIl di OI1 o1 o1l
U OE Aty —A(N - w)—+ ¢¢—+/€¢a§ 95
which is satisfied as we choose the dynamicg ahd+ to follow chemical kinetics
dp
E - g_k(bv
d _
W= AN )~ o (30
At the QO order, we obtain
ol 0 0 - oI 1 011
= - — (€T _ Z
= /\377(7711)+u8n(£w+n¢)ﬂ+k3£(§ )+ 5O =) + o) gz + 5 (0 +0) 35 (31)
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which is the familiar Fokker-Planck equation, derived inyatematic way. EQ_31 is the linear noise approximation &oftHl
stochastic dynamics, which is valid when the path deterchinyeEq 3D is stabf. Eq.[3] is a linear PDE that has to be solved
numerically. However, it is possible to derive a closed $&DEs to describe time evolutions of the moments up to angord
For example, the averages (first moments) satisfy

% = —(\+ ) (m) — p(€)
d§) _

which are just the linearized chemical kinetics equatiditte that if initial values ofn) and(¢) are taken to be zero, then they
remain zero for all later times, consistent with the phylssagnificance of Eq._30 which describes the evolution of ages of
protein numbers. This also suggests that application oBHds based on the assumption of the validity of averaged itzém
kinetics equations. Next, we consider three second moneatisfying

2
d<dnt ) - =2\ + po) (%) — 2pp(n€) + A(N — ) + pep)
% = —A(ng) — (&%) — pe(ng) — k(ng)
df? = —2k(€®) +ko+yg, -

to be solved simultaneously with HgJ30. In the current cRsd303H3B may be solved analytically but the solutionDEE]

is numerically cumbersome. A practical difficulty in usimgf2-expansion approach comes from the fact thafEly. 31iste&2)
PDE, which does not seem to be a significant simplificatiomftbe master equation, EGl 1. In particular, similar amotint o
numerical effort is needed to obtain solutions for Edjs. 1&hdThis is part of the reason we did not try to obtain the itistion
from theQ2-expansion. Therefore, we used in the main text only the nmbsrealculated from th@-expansion.
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