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The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification
cascade
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We used various analytical and numerical techniques to elucidate signal propagation in a small enzymatic
cascade which is subjected to external and internal noise. The nonlinear character of catalytic reactions, which
underlie protein signal transduction cascades, renders stochastic signaling dynamics in cytosol biochemical
networks distinct from the usual description of stochasticdynamics in gene regulatory networks. For a sim-
ple 2-step enzymatic cascade which underlies many important protein signaling pathways, we demonstrated
that the commonly used techniques such as the linear noise approximation and the Langevin equation become
inadequate when the number of proteins becomes too low. Consequently, we developed a new analytical ap-
proximation, based on mixing the generating function and distribution function approaches, to the solution of
the master equation that describes nonlinear chemical signaling kinetics for this important class of biochemical
reactions. Our techniques work in a much wider range of protein number fluctuations than the methods used
previously. We found that under certain conditions the burst-phase noise may be injected into the downstream
signaling network dynamics, resulting possibly in unusually large macroscopic fluctuations. In addition to com-
puting first and second moments, which is the goal of commonlyused analytical techniques, our new approach
provides the full time-dependent probability distributions of the colored non-Gaussian processes in a nonlinear
signal transduction cascade.

Keywords: Stochastic Processes, Nonlinear Chemical Kinetics, Signal Transduction, Signal Amplification, Strong Fluctua-
tions, Master Equation

I. INTRODUCTION

Biochemical signaling networks mediate information flow incells, regulating important cellular processes such as cell
metabolism, motility, gene expression and cell cycle1,2. A quantitative understanding of signal transduction is essential for
realizing the larger goal of modeling the cell. Until recently, biochemical reaction networks were analyzed mainly with the help
of chemical kinetics equations, exploring such issues as robustness, sensitivity, and bistability3,4,5,6,7. This deterministic descrip-
tion, though valid in the asymptotic limit of a macroscopic system (as for a reaction in organic chemist’s test-tube), fails when
the number of reacting proteins is too small. This is often the case in the cell, which is a mesoscopic system. Therefore, instead
of a smooth deterministic course, the fundamentally randomnature of chemical reactions results in “noisy” reaction trajectories
in individual cells. The resulting heterogeneous responseof an ensemble of cells to a particular external signal8 necessitates
going beyond chemical kinetics, relying instead on the theory of stochastic processes9,10,11,12to describe signaling dynamics.

Previous theoretical and experimental results have strongly suggested that stochasticity is an important component in the
dynamical processes in a cell10,13,14,15,16,17,18,19. For instance, in signal transduction, fluctuations inducenot only quantitative
changes of threshold values20 but also qualitative changes such as oscillations, transitions between different stable states, and
stochastic resonances that may increase sensitivity or stability of the cellular signal processing21,22,23,24,25,26. The resulting large
variability in cell-to-cell response to the same external stimulus8,27 allows a cell colony to adapt to varying environment.

The connection between deterministic and stochastic chemical kinetics is analogous to that between classical and quantum
mechanics28,29. In particular, the number of degrees of freedom in stochastic description of chemical kinetics is immensely
larger compared with the deterministic description. Consequently, the equations of stochastic chemical kinetics aredifficult to
solve, and mainly numerical results have been discussed in prior work. Small sizes and intrinsic complexities of cells allow
for the emergence of large fluctuations that are coupled withother rich dynamical processes. Thus, the resulting formidable
complexity of these dynamical systems has hindered obtaining a complete solution to the problem of stochastic dynamicsin
biochemical reaction networks. How to construct approximate analytical solutions to understand qualitatively the complex
signaling dynamics is a challenging problem which stands inthe research frontier of non-equilibrium statistical mechanics and
dynamical systems20,30.

A number of tools have been developed to deal with the randomness in chemical reactions15,31,32,33,34. The Gillespie simulation
algorithm35,36,37, the Langevin equation and the Fokker-Planck equation31,37,38,39,40,41are among the most commonly used. These
methods have been applied fruitfully to study signal transduction processes9,10,11,42,43. However, a number of constraints limit the
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applicability of these methods. Gillespie simulation is essentially a Monte Carlo algorithm which simulates chemicalreactions
as a series of transitions between reaction states with transition rates determined from microscopic kinetics. One simulation
corresponds to one possible reaction trajectory. When the system is large, one or two reaction paths provide qualitative or
even quantitative information of the system dynamics. However, to get good statistics, a large number of paths are required
when the system size is moderate or small. This, in many cases, may be computationally expensive. Moreover, although the
computational cost is dominated by the fastest reaction in acascade, the time scale of interest is likely given by the slowest
reaction, perhaps many orders of magnitude slower than the fast reaction. In this situation, commonly encountered in biological
signaling networks, producing a single trajectory is computationally forbidding. Under special conditions these simulations can
be accelerated9,36,41,44,45,46,47,48,49, but for a general reaction network this is still an active area of research. On the other hand,
a qualitative understanding of the reaction network dynamics is essential for learning control of biochemical processes in the
cell7,50. It is difficult to extract such understanding from Gillespie simulations alone, without the guidance from a complementary
analytical model.

A number of approximate analytical techniques are used to solve the chemical master equation. Among the most commonly
used ones, the linear noise approximation38,39, is an effective weak-noise expansion based on the fact thatfluctuations are of order√
Ω for a system of sizeΩ. It works well for large systems where fluctuations are smallsuch that the probability distribution

is centered narrowly around deterministic orbits determined from chemical kinetics31. However, molecular discreteness and
large fluctuations in cellular biochemical reactions, combined with nonlinear effects, may generate strong correlations along a
pathway, leading to the formation of characteristic patterns both in time and space7,18,19,51,52,53,54.

To account for such patterns, we developed an approach whichincorporates large fluctuations, going beyond the commonly-
used small noise and continuous approximations. We focus our efforts on a specific 2-step signaling cascade, consistingof a
unary reaction of receptor activation upstream and a subsequent binary reaction of enzyme activation downstream. Biochemical
signaling networks are comprised of only few signaling elements, and the 2-step signaling cascade considered in this work is
among most fundamental building blocks. The nonlinearity of the catalytic reaction in the second step is the main sourceof diffi-
culties in obtaining a comprehensive analytical solution to stochastic signal dynamics in this amplification cascade.In this work,
we developed high-quality approximate solutions to the stochastic signal propagation dynamics in a 2-step cascade, uncovering
that fluctuations may broaden the average chemical kineticssignals such that transient, highly non-Gaussian distributions may
emerge, due to interplay between discrete noise and nonlinearity. We could not reproduce this effect using the chemicalLangevin
equation, since the latter is based on the continuous approximation, ignoring molecular discreteness.

The paper is organized as follows. After commenting on the strengths and weaknesses of the traditional modeling techniques,
we solve the master equation for the 2-step cascade with the help of generating functions. Then the new formalism is used to
elucidate how noisy signal may be controlled in an unbranched signaling pathway. In particular, the upstream fluctuations may
propagate downstream without dissipation, resulting in large downstream fluctuations even in the limit of a macroscopic size
downstream signaling network. Although we focused in this work on an important, yet specific enzymatic cascade, the hybrid
generating function – distribution function technique introduced in this work (Section IV) may be generalized to treatmore
complex biochemical pathways. To demonstrate the usefulness of this hybrid “smooth distribution” method, we considerin
Section IVb a self-dimerization of the receptors in the firststep of the cascade activation, which enhances the nonlinear character
of the 2-step cascade. In a forthcoming publication we will illustrate the use of time-dependent basis functions, developed in
this work, in the variational solution of stochastic chemical kinetics equations in signaling cascades comprised of several steps
and containing feedback loops.

II. MASTER EQUATION TREATMENT OF REACTION TRAJECTORY REALI ZATIONS

Signal transduction often starts at the cell membrane, where external ligands, such as hormones or small peptides, bindand
activate cell surface receptors. In turn, the activated receptors send the signal downstream, usually by phosphorylating specific
proteins inside the cell1. These proteins then activate other cytosol proteins further downstream. The process goes on so that
the signal propagates through the cell in a predetermined way. However, the signaling dynamics is not uniform when protein
numbers are small, which is often the case in the burst phase of the cascade activation. Because of the fundamentally random
nature of chemical reaction dynamics31, each trajectory realization is different from others, even when the same initial conditions
are used. This behavior is called trajectory variability inthe literature27. If the variation is large, then a stochastic description
becomes necessary.

Our long-term goal is to understand qualitatively how largesignaling networks process information. The 2-step amplification
cascade, shown in Fig. 1, can be regarded as the building block of more complex cascades. In this simple reaction scheme,
without feedback loops,R represents an inactive receptor, which becomes activated intoR∗ upon binding of an external ligand
(stimulus). When the receptor is activated, it acts as an enzyme, catalyzing the phosphorylation of the next kinase downstream
(A+R → A∗+R∗) with a rateµ. A∗ spontaneously decays toAwith a rateλ. Although theR∗ reaction is unary and independent
of theA reaction, the latter one is binary, making the system nonlinear, thus, different from those usually considered in the gene
regulatory networks55,56,57,58.
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FIG. 1: An inactive receptorR, when activated by a signal, activates downstream proteinA.

FIG. 2: A schematic depiction of the visual signal transduction cascade.

This simple 2-step cascade is commonly embedded in the onsetof a reaction pathway of many important signaling
cascades59,60. For example, the visual signal transduction pathway, which takes place in retinal rod cells, is shown in Fig. 259,61.
Rhodopsin receptors (Rh), located in small discs in the outer segments of the rod cell, contain a light-sensitive molecule, reti-
nal. Upon incidence of photons, the retinal molecules undergo isomerization, leading to a subsequent activation of rhodopsin
receptors (Rh∗). The latter act as a catalyst to replace the GDP by GTP in a G-protein, called transducin. The next enzyme in
the cascade, the cGMP phosphodiesterase (PDE), is then activated to (PDE∗) by the active G-protein GTP complex. PDE∗ hy-
drolyzes the cGMP, which leads to the closure of cGMP-gated Na+/Ca2+ ion channels and, thus, reduces the influx of Na+/Ca2+

flow. The rod cell becomes hyperpolarized, resulting in lessneurotransmitters being released from the synaptic terminal of the
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rod cell. This change is immediately picked up by a second cell and passed as a signal to the central neural system. In this
example, the initiating steps of the visual signal transduction pathway,

Rh↔ Rh∗ , G-GDP+ Rh∗ ↔ G-GTP+ Rh∗

are similar to our 2-step cascade. The amazing ability of retina rod cells to detect single photons, in the presence of external and
internal noise, has been discussed in prior works62. Although understanding visual signal transduction is notthe focus of this
work, the formalism of large fluctuations, developed in the current work, may serve as a basis for further elucidating this issue.

We regard theR → R∗ reaction (Fig. 1) as a Poisson process with rateg, which corresponds to an abundance ofR receptors
and scarce ligand presence. For instance, the light perception in a dark room63,64may be described as a Poissonian bombardment
of photons on the retina cell surface. If the intensity of photons is low, there always exist a sufficient excess of inactivated photon
receptors (R) such that the arrival events of photons dominate the process.R∗ spontaneously decays back toR at a ratek. The
average number of activated receptors (R∗) depends both on the incidence rateg and decay ratek. If R → R∗ is considered to
be an ordinary first order chemical reaction, instead of a Poisson process, all methods described below would still apply, with
only minor modifications. Our current investigation is restricted to the0-D treatment of space. This is a good approximation if
the reaction network is confined to a small enough spatial region, having a linear dimension ofζ (so-called Kuramoto length31),
such that particles diffuse across the region fast comparedto the typical reaction times. Using the reaction parameters from
published models of the EGF/MAPK signaling cascade60,65,66, we estimatedζ to be in the range from 0.3µm to 5 µm. In an
ongoing work we are incorporating an explicit treatment of space into our analysis.

0 50
0

50

100

150

t

σ2

FIG. 3: Time evolution of the variance ofA∗ computed from Eq. 1 (solid line), Langevin equation (dashed line) and Eq. 33 (circles). For
(g, k, µ, λ) = (0.2, 0.1, 0.02, 0.15) with initial condition(NR, NR∗ , NA, NA∗) = (100, 0, 100, 0).

When the number of protein copies in the signaling network issmall, the evolution of the averages, described by ordinary
chemical kinetics, is inadequate to characterize the system dynamics. An example of the evolution of theA∗ protein number
variance, shown in Figure 3, indicates that the amplitude ofthe fluctuations is about10 in the steady state. This is significant
when compared to the deterministic average of about20. Clearly, a stochastic description is required in this case. The chemical
master equation31 is a starting point for studying large variations of individual stochastic trajectories from the average path. For
the 2-step cascade described above (Fig. 1), we denote byP (m,n) the probability of havingm copies ofR∗ andn copies ofA
at a particular time point. The time evolution of this probability distribution is determined by the following master equation

dP

dt
(m,n) = µ[−mnP (m,n) +m(n+ 1)P (m,n+ 1)] + λ[−(N − n)P (m,n)

+ (N − n+ 1)P (m,n− 1)] + g[−P (m,n) + P (m− 1, n)]

+ k[−mP (m,n) + (m+ 1)P (m+ 1, n)] , (1)

which expresses the transition rates of probabilities fromtime t to timet + dt in terms of the probability distribution at timet.
The sum ofA andA∗ is taken to be constant throughout the reaction (N in Eq. (1)). Another way to think about the chemical
reaction dynamics given by Eq. (1) is to view it as a random walk on a two-dimensional lattice of integer coordinatesm andn
with position-dependent jump probabilities31.

Since the master equation provides a full description of stochastic chemical process, solutions of the set of coupled ordinary
differential equations in Eq. (1) provide all necessary information to analyze the signaling dynamics. However, an exact analyt-
ical solution for the system of ODEs in Eq. (1) is not known. Direct numerical integration is also difficult due to the enormous
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number of ODEs (104-108) for a cascade that may contain up to 102-104 proteins of each species. Simulations based on the
Gillespie algorithm may be used to estimateP (m,n) in Eq. (1), however, they are computationally inefficient and are hard to
interpret, as discussed earlier. Thus, to gain qualitativeinsight into stochastic signal transduction by the 2-step cascade in Fig. 1,
it is important to develop an approximate analytical solution to Eq. (1).

Physical considerations are crucially important in makingsensible approximations to the master equation. Several numerical
and analytical techniques are available to account for the noise effect on signaling dynamics, including the chemical Langevin
equation41 and van Kampen’sΩ-expansion31. But they are most useful only when the particle numbers are large and fluctuations
are relatively small. In Appendix A we derive anΩ-expansion for the 2-step cascade (1). In the remaining partof the paper, we
develop alternative solution schemes to solve equations like Eq. (1), based on the generating function approach, to obtain signal-
ing dynamics in the regime of large fluctuations, where traditional analytical techniques are no longer applicable. Comparison
will be made between our method and the results from Langevinequation orΩ-expansion.

Generating function approaches have been used in prior works to elucidate stochastic processes in gene regulatory
networks55,57. The novelty of our work is to extend these techniques to nonlinear chemical processes in protein signal am-
plification cascades. The nonlinearity of chemical reactions greatly enriches the dynamical behavior of signaling cascades.
However, to develop a robust analytical approach to solvingstochastic amplification dynamics, substantial additional difficulties
need to be overcome compared to describing noisy dynamics inlinear biochemical networks.

III. THE GENERATING FUNCTION APPROACH

To treat signal transduction in a wider range of protein numbers in the cell and to analyze the effects of large fluctuations, we
have developed a new approach, based on generating functions, to solve the master equation. A generating function encodes
probability distributions as its Taylor series coefficients. As a result, the enormous set of ODEs in Eq. (1) are compactified into
a single PDE. Thus, the evolution of the probability distribution can be obtained by solving this one PDE for the generating
function. Since even for medium-sized cascades, there are an astronomical number of ODEs in the master equation formalism,
an approximate generating function greatly facilitates qualitative and quantitative analysis of strongly-fluctuating dynamics in
biochemical reaction networks.

As an example, for the 2-step cascade, we define a generating function through the following power series

Ψ(x, y) =
∑

m,n

P (m,n)xmyn . (2)

which satisfies the time evolution equation

∂Ψ

∂t
= (1− y)(µx

∂2

∂x∂y
− λN + λy

∂

∂y
)Ψ + g(x− 1)Ψ− k(x− 1)

∂Ψ

∂x
. (3)

Our next goal is to develop approximate techniques to solve Eq. (3). We know that the solution of Eq. (3) is an analytic function
of x , y with nonnegative time-dependent coefficients. The highestderivative in Eq. (3) is∂2Ψ/∂x∂y which reflects the binary
chemical reaction betweenR∗ andA. If this term is omitted, Eq. (3) can easily be solved by the method of characteristics.
However, this would completely alter its physical content.On the other hand, we notice that the generating function of theR∗

distributionφ(x) = Ψ(x, 1) does not depend on the dynamics ofA and obeys the following PDE

∂φ

∂t
= g(x− 1)− k(x− 1)

∂φ

∂x
, (4)

which can be solved exactly, resulting in

φ(x) = exp[
g

k
(x − 1)(1− e−kt)] , (5)

where the initial conditionNR∗ = 0 at t = 0 was used. TheR∗ probability distribution,P (m), is given by the coefficients of
the series expansion of Eq. (5)

φ(x) =

∞
∑

m=0

exp(− g
k
(1− e−kt))(1 − e−kt)m(

g

k
)m
xm

m!
(6)

resulting in,

P (m) = exp(−(1− e−kt)g/k)(1− e−kt)m(
g

k
)m/m! . (7)
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Therefore, the time-dependent distribution ofR∗ is Poissonian and relaxes to a stationary distribution withthe ratek. Although
this distribution is generated by both the birth and decay ofR∗, the relaxation is independent of birth rateg. From Eq. (6), the
average and the variance ofNR∗ are also easily calculated,〈NR∗〉 = 〈σ2〉 = (1 − e−kt)g/k.

Next, we build up the cascade by considering also the reactions involvingA. In particular, we construct a series expansion67

in x with time-dependent functionsφm(y),

Ψ(x, y) =

∞
∑

m=0

φm(y)xm . (8)

Thus, with each state containingm R∗’s, we associate a distribution ofA, which may be computed fromφm(y). The new
functionsφm(y) satisfy

∂φm
∂t

= (1 − y)(µm
∂

∂y
− λN + λy

∂

∂y
)φm + km(φm+1 − φm) + g(φm−1 − φm) + kφm+1 . (9)

Here an infinite hierarchy of coupled linear PDEs are obtained for the unknown functionsφm(y). Eq. (9) is exactly equivalent
to the master equation and physical considerations will next be used in finding good-quality approximate solutions. We start by
keeping only the first term in Eq. (9), thus, ignoring theR → R∗ dynamics, and then incorporate back the omitted terms in an
effective way.

A. Time-scale separation modulates noise propagation

The first term on the right hand side of Eq. (9) describes the birth and death of proteinA and the remaining terms describeR∗

dynamics. If theR∗ reaction is ignored, the hierarchy of PDEs become uncoupled. We obtained an exact analytical solution for
the resulting PDEs using the method of characteristics:

φ(0)m (y) = φm,0[1 +

(

λ

λ+ µm
+

µm

λ+ µm
e−(λ+µm)t

)

(y − 1)]N , (10)

where the number ofA’s was taken to beN at t = 0 andφm,0 is a constant, representing the probability of having exactly m
R∗’s. If, for example, the numberm of R∗ is fixed at a particular valuēm, thenφm̄,0 = 1 , φm = 0 for m 6= m̄. The obtained
generating function indicates that theA distribution is binomial. Note that the relaxation rate isλ + µm̄, depending on bothλ
andµ. The solution further simplifies in the limit of long times (t→ ∞).

φ
(0)
m̄ → φm̄,0[1 +

λ

λ+ µm̄
(y − 1)]N , (11)

which is the generating function for the stationary distribution ofA.
In the real 2-step biochemical cascade, the number ofR∗’s is, of course, fluctuating. However, Eq. (10), withm concentrated

atm̄, still constitutes a good approximation when eitherof the following conditions is satisfied: (i)R∗ is characterized by a sharp
distribution centered at̄m, which is often the case when the number ofR∗’s is large; (ii) the reaction rates forR∗ birth and death
are much larger than those forA. For a cascade that satisfies condition (i), the linear noiseapproximation might be applicable.
However, our solution, based on the generating function approach, provides the full probability distribution in an analytical form.
When condition (ii) is satisfied, theA → A∗ reaction only “sees” an average number (m̄) of R∗. In this case, our solution is
simpler and, perhaps more convenient to use, than theΩ−expansion solution. Analysis of the cascade dynamics for case (ii)
using Eq. (10) suggested a possible mechanism for noise filtering. Even in the case of broad or irregular distribution forR∗, if
the fluctuations around the average are fast, the distribution ofA is still well approximated by Eq. (10), being well-peaked atthe
average for largeN .

As an example, we take the reaction rate parameter values(g, k, µ, λ) = (20, 10, 0.004, 0.03) and initial condition
(NR, NR∗ , NA, NA∗) = (100, 0, 100, 0). The evolution of the first two moments ofNA∗ as computed from our approxi-
mate solution Eq. 10,Ω−expansion solution Eqs.32,33, and exact numerical resultsare shown in Fig. 4a,b. Unlike the practical
implementation of theΩ−expansion, Eq. 10 also directly gives the time evolution of the full probability distribution forA∗ pro-
teins. A time slice of the probability distribution ofA∗ is shown in Fig. 5a. Overall, a remarkable agreement is achieved between
the approximate analytical results and exact numerical calculations. Also shown in the figure is the distribution computed from
the Langevin equation (dashed line), which is characterized by an average noticeably larger than the exact average. Even though
the magnitude ofR∗ fluctuations is the same for the cascade parameters used in Figs. 3,4,5, theA∗ fluctuations are dramatically
attenuated for the case demonstrated in Fig. 4b and 5a, compared with Fig. 3. In this case theR → R∗ reactions are much faster
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FIG. 4: Time evolution of the averages ((a) and (c)) and variances ((b) and (d)) forA∗ obtained from three different calculations: the ap-
proximate solution Eq. (10) (circles), the exact solution (solid line computed from Eq. (1)) and theΩ-expansion Eq. (33) (dashed line prob-
ably overlapped by thesolid line). The initial condition is(NR, NR∗ , NA, NA∗) = (100, 0, 100, 0). (a) and (b) have parameter values
(g, k, µ, λ) = (20, 10, 0.004, 0.03); (c) and (d) have parameter values(g, k, µ, λ) = (0.02, 0.01, 0.2, 1.5).

than theA → A∗ reactions, thus, theR → R∗ noise is averaged out and only internalA → A∗ noise remains. If we think
of this two-step cascade as an element of a longer signaling pathway, the relatively large fluctuations of the upstream reaction
(R → R∗) become attenuated downstream (A → A∗). Thus, stacking of a slow downstream reaction after a fast upstream
reaction provides a general mechanism for noise attenuation in biochemical signaling networks.

In the opposite limit of the reaction rate ofR∗ being much slower than that ofA, we can take into account theR∗ dynamics
by allowingφm,0 in Eq. (10) to change slowly with time according to Eq. (7). Thus, we substituted

φm,0 = exp(−(1− e−kt)g/k)(1− e−kt)m(
g

k
)m/m! . (12)

into Eq. (10). This is a valid approximation in the limit of slowR∗ dynamics. Using this substitution, we obtained an approximate
solution forΨ(x, y) as an infinite sum over theR∗ protein numberm. Since the coefficients ofxm decay very fast with increasing
m, we can safely truncate it to a finite sum. For many reaction rates in this regime, the obtained distribution is broad.

A set of reaction rates, which corresponds to a slow upstreamreaction and a fast downstream reaction(g, k, µ, λ) =
(0.02, 0.01, 0.2, 1.5), was used to compare our analytical calculations with exactnumerical results (Fig. 4c,d and Fig. 5b).
The evolution of both the first moment (Fig. 4c) and the variance (Fig. 4d) obtained from our analytical treatment agrees well
with the exact numerical one, being more accurate than theΩ-expansion. Furthermore, we used Eq. 8, Eq. 10, and Eq. 12 to
compute the full probability distribution att = 200 (Fig. 5b), which is impossible to obtain analytically usingtheΩ-expansion
approach. All the nuances of the complicated distribution are accurately captured by our approximate analytic solution. The
distribution computed from the Langevin equation, on the other hand, which is shown as a dashed line in Fig. 5b, is characterized
by a single broad peak. The white noise terms in the Langevin equation obviously smear out the peaks and, thus, are not good
models for the underlying stochastic dynamics. At long timelimits the distribution becomes uni-modal, but still wide (data not
shown).
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FIG. 5: Probability distributions ofA∗ computed from the approximate solution Eq. 10 (circles), Langevin equation (dashed line) and the
exact solution Eq. 1 (solid line) with initial condition (NR, NR∗ , NA, NA∗) = (100, 0, 100, 0). (a) The distributionP (NA∗) at t = 60
with parameter values(g, k, µ, λ) = (20, 10, 0.004, 0.03). (b) The distributionP (NA∗) at t = 200 with parameter values(g, k, µ, λ) =
(0.02, 0.01, 0.2, 1.5).
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FIG. 6: (a) Averages computed from Gillespie simulation (solid line) and from the approximate solution Eq. (8) (circles). One typical Gillespie
trajectory is also shown (thin solid line); (b) the variance from Gillespie simulation (solid line) and from the approximation (circles). Initial
condition(NR, NR∗ , NA, NA∗) = (100, 0, 5000, 0) and parameter values(g, k, µ, λ) = (0.1, 0.05, 0.2, 1.5).

The fluctuations inA∗ are much larger for a cascade where the upstream reaction is slow and the downstream reaction is
fast (Fig. 4d and Fig. 5b) compared with previously considered cascades (Figs. 3, 4b and 5a). Thus, the noise produced in
theR → R∗ reaction is retained and amplified by the next enzymatic reaction. As opposed to the previously discussed case
of noise-attenuation, this cascade setup could be used to amplify the noise downstream. The amplification and attenuation
of noise have been extensively discussed and experimentally tested in the linearized stochastic description of gene regulatory
networks55,56,58,68. Our current work emphasizes the role of discreteness in a nonlinear biochemical reaction network, using
directly the generating function formalism to obtain analytical time-dependent probability distributions.

Strong fluctuations occur even when the number of downstreamproteins is very large. Fig. 6 demonstrates a striking example.
Although the average number ofA∗ quickly reaches its steady-state value, which is near1000, the fluctuation continues, such
that a typical trajectory fluctuates with a magnitude of the same order as the average (Fig. 6a). The corresponding large variance,
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shown in Fig. 6b, confirms this analysis. Thus, the fluctuations are much larger than expected from the usual
√
N argument,

where N is the number of proteins. Our approximate solution agrees very well with the exact solution (Fig. 6), confirming the
validity of our noise-amplification scheme to solve the master equation (Eqs. (8), (10) and (12)). The largeA∗ fluctuations
are induced by the upstreamR∗ fluctuations, as seen from a typical numerical trajectory shown in Fig.6a. At steady state, the
average death/birth timescale forR∗ is 1/g = 10, thus, theA∗ trajectory exhibits a bursting behavior with a time correlation of
about10.

In the photoreception cascade, the rhodopsin (Rh) activation is controlled by the incident photons which may arrive, one
by one, within1s or even longer time interval in the single photon experiment62. The deactivation rate from Rh∗ to Rh is
about0.5s−1. The activation rate of the transducin61 is around120s−1 and the deactivation rate is100s−1. According to the
classification developed in this paper, the initiating stage of the photoreception cascade belongs to the case of slowR∗ reaction
and fastA reaction, thus, we expect an amplification of the external light stimulation61,62,64.

Our approximation method in this section is based on the separation of time scales for the first and the second reactions, an
approach which is also the starting point for many solution techniques in the literature. The elimination of fast variables is among
the most popular ones and is often used to approximately solve Fokker-Planck or Langevin equations31,32. Various methods such
as the projection operator method32 and cumulant expansion method31 have been developed to treat the continuous cases. To the
lowest order approximation, the fast time scale is completely removed, while the equations for the slow variables account for
the fast variables either through their corresponding averages31 or through their stationary distributions32. Here we applied the
essence of this idea to the discrete jump process described by a master equation and obtained analytical approximationsfor the
evolving probability distribution function. Similar consideration has been used to derive effective equations in gene transcription
regulation in the large particle limit69, but our method applies to small particle numbers as well. Inthe first case considered above
(fastA−A∗ reaction), we used only the average of the fast variable. In the second case (fastR−R∗ reaction), we first considered
the probability distribution evolution of the fast variable and, subsequently, incorporated back the evolution of theslow variable.
Thus, in both cases, we explicitly included both the slow andfast time scales into the final analytical expression.

IV. SOLVING THE MASTER EQUATION WITH THE HYBRID SMOOTH PROBA BILITY DISTRIBUTION METHOD

When the probability distributions are relatively smooth,a new approximation scheme may be employed to integrate the
generating function equation 3. To show basic idea of the method, we first implement it for the 2-step cascade discussed
previously (Fig. 1). Then, to demonstrate the potential forgeneralization, we apply this method to another enzymatic cascade,
where the first step is a self-dimerization of receptorR instead of a simple activation.

A. 2-step signal transduction cascade

To treat analytically the stochastic signaling dynamics ina wider regime of parameters (for example, when upstream and
downstream reactions have comparable rates), the neglected coupling terms in Eq.9 may be taken into account in a more sys-
tematic way. In this section, we will reconsider the cross terms between differentm’s and treat them in a different way. Here,
we take advantage of the knownR∗ distribution from Eq. 6 and write down the following expansion forΨ(x, y),

Ψ(x, y) =

∞
∑

m=0

exp(− g
k
(1− e−kt))(

g

k
)m
xm

m!
φm(y) , (13)

whereφm(y) is a time-dependent function and, according to Eq. (6), we know thatφm(1) = (1 − e−kt)m. Substituting this
form of expansion ofΨ into Eq. (3) and comparing the coefficient ofxm on both sides of the equation, we have

∂φm
∂t

= (1− y)(µm
∂

∂y
− λN + λy

∂

∂y
)φm + km(φm−1 − φm) + g(φm+1 − φm) + ge−ktφm . (14)

This equation describes the time evolution ofφm(y), which is coupled to the neighboring functionsφm−1 andφm+1. In previous
discussions, we neglected these couplings first and only later incorporated them back in an effective way, justified under certain
conditions. Here, we present an approach which directly takes into account these couplings in an approximate manner. When
the probability distribution ofR∗is smooth, the following approximation,

∂φm
∂m

≈ φm+1 − φm ≈ φm − φm−1 , (15)

may be used to uncouple the PDEs in Eq. (14):

9
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∂φm
∂t

= (1 − y)(µm
∂

∂y
− λN + λy

∂

∂y
)φm + (g − km)

∂φm
∂m

+ ge−ktφm , (16)

We solved the resulting PDEs by the method of characteristics. Eq. (15) is satisfactory when the profile ofφm betweenm and
m + 1 can be reasonably approximated by a straight line segment. This works well if either of the two conditions holds: (1)
as mentioned above, the distribution profile is smooth so that the higher-order derivatives can be ignored, or (2) the number of
R∗ is large such that an increment by one particle may be treatedas small. In addition, it is possible to improve this solution by
making a higher-order approximation to the difference in Eq. (15). For example, an exact expression can be obtained through
the Kramers-Moyal expansion32

φm+1 − φm =
∑

l

1

l!

∂l

∂ml
φm ,

wherel runs from1 to ∞. In the standard derivation of the Fokker-Planck equation31,32, terms up to the second order (l = 2)
are retained. In some sense, our “smooth distribution” method is a hybrid distribution function – generating function scheme,
where in the yet to be determined functionsφm(y), subscriptm is related to theR⋆ particle number (distribution form), while
y is a formal variable related to the generating function for theA⋆ particle number. However, solving equations containing
higher-order derivative terms quickly becomes cumbersome. Here, we only keep the first order term, which allows Eq. (16)to
be solved with the following set of characteristic equations

ẏ = (y − 1)(µm+ λy)

ṁ = mk − g
˙φm = λN(y − 1)φm + ge−ktφm . (17)

The first two equations in Eq. (17) define the characteristic curves and the third equation shows howφm changes along this
curve. The dynamics on each curve is self-contained and independent of each other, which is the consequence of neglecting
higher order terms in Eq. (15). Eq. (17) were exactly solved,resulting in

φm(y) = φ(0)m (z0)(1 +
λp

p′
(y − 1))N exp[

g

k
(1− e−kt)] , (18)

where

φ(0)m =
N
∑

n=0

anm(
1

z0
+ 1)n

z0 =
p′

y − 1
+ λp

p(t) =

∫ t

0

eI(s)ds

I(t) = (λ+
µg

k
)t+

µ

k
(m0 −

g

k
)(ekt − 1) .

anm is the initial probability of havingmR∗’s andn A’s andm0 is an intermediate variable which after all the integrations and
differentiations are done will be replaced bym by the following substitution,

m0 −
g

k
= (m− g

k
)e−kt . (19)

In general, the integration to obtainp(t) can not be carried out in a closed form, thus, approximate or numerical treatment is
needed. However, the analytic structure of the overall solution is transparent. The last exponential factor in Eq. (18)describes
theR∗ reaction and the first two factors describe theA→ A∗ reaction. The full generating functionΨ(x, y) is given by Eq. (13)
with φm(y) given by Eq. (18). OnceΨ(x, y) is known, all the statistical quantities are easily computable.

As an example, we consider the following initial distribution

φ(0)m = e−m(
1

z0
+ 1)N , (20)

10
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which corresponds to starting the cascade dynamics withN A’s and a small number ofR∗, distributed exponentially. The
corresponding solution is given by

φm(y) = (1 +
λp+ 1

p′
(y − 1))N exp(−me−kt) , (21)

where

p′(t) = exp((λ +
µg

k
)t+

µ

k
(m− g

k
)(1− e−kt))

p(t) =

∫ t

0

exp((λ+
µg

k
)s+

µ

k
(m− g

k
)(ek(s−t) − e−kt)) ds . (22)

Whenx = 1, if the following approximation is used

φm = exp(−me−kt) ≈ (1− e−kt)m , (23)

then theR∗ distribution is recovered. Furthermore, Eq. (21) with Eq. (23) substituted in conserves the total probability,i.e.,
Ψ(1, 1) = 1. Thus, we use Eq. (23) in the calculations described below.

To gauge the effectiveness of the approximate analytical solution, we takeN = 100 and theR∗ distribution truncated at
m = 30. Firstly, we evaluate Eq. (21) with(g , k , µ , λ) = (10 , 1 , 0.01 , 0.1). A∗ distribution computed from Eq. (13) att = 60
matches quite well with the exact solution as shown in Fig. 7a. The approximate distribution is a little narrower than theexact
one due to the omission of the higher-order derivative termsin Eq. (15). Secondly, we carried out similar calculations with
(g , k , µ , λ) = (0.2 , 0.1 , 0.02 , 0.2), as shown in Fig. 7b. Although the distribution att = 60 from our approximation agrees
quite well with the exact solution for largeNA∗ , near the left boundary there is a clear discrepancy, due to the non-smoothness
of the distribution at the minimum particle number, since the number ofA∗ cannot be negative.

0 50 100
0

0.02

0.04

0.06

0.08

N
A

*

P
(N

A
*)

(a) The distributions att = 6

0 50 100
0

0.02

0.04

0.06

N
A

*

P
(N

A
*)

(b) The distributions att = 60

FIG. 7: The probability distributions ofA∗ at t = 60 computed from the approximate solution Eq. (21) (circles) and the exact solution Eq. (1)
(solid line) with initial condition(NR, NR∗ , NA, NA∗) = (100, 0, 100, 0) and parameter values: (a)(g , k , µ , λ) = (10 , 1 , 0.01 , 0.1); (b)
(g , k , µ , λ) = (0.2 , 0.1 , 0.02 , 0.2).

B. Receptor self-dimerization introduces additional nonlinearity

Even if the exact solution is not available for the first reaction, we can still apply the above approximation as long as the
distribution is smooth. Consider the dimerization reaction shown in Fig. 8. Compared to the previously discussed 2-step cascade
(Fig. 1), the first reaction is replaced by a self-dimerization process with rateg. This dimerization activation is quite common in
signal transduction and gene regulatory networks70,71,72. Although it is possible to derive an analytical solution for the isolated

11
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R + R R + R
decay

A + A + *catalysis

signal

A* A
decay

R*
2

R*
2

R*
2 R*

2

FIG. 8: An inactive receptorR, when activated by dimerization, activates downstream proteinA.

first step in the cascade, i.e. the self-dimerization process73,74, the expression is in a series form and will not be used in our
approximation scheme.

Again, letP (m,n) denote the probability of havingm R∗
2 ’s andn A’s. The master equation is then,

dP

dt
(m,n) =

g

2
((M − 2m+ 2)(M − 2m+ 1)P (m− 1, n)− (M − 2m)(M − 2m− 1)P (m,n))

+k ((m+ 1)P (m+ 1, n)−mP (m,n)) + µ ((n+ 1)mP (m,n+ 1)−mnP (m,n))

+λ ((N − n+ 1)P (m,n− 1)− (N − n)P (m,n)) , (24)

where the first term describes the dimerization reaction. The corresponding generating functionΨ(x, y) satisfies,

∂Ψ

∂t
=

g

2
(x − 1)

(

M(M − 1) + 4x2
∂2

∂x2
− 2(2M − 3)x

∂

∂x

)

Ψ

+k(1− x)
∂Ψ

∂x
+ µ(1− y)x

∂2Ψ

∂x∂y
+ λ(y − 1)(N − y

∂

∂y
)Ψ . (25)

Note that a new second-order derivative,∂2Ψ/∂x2, appears, compared with the previously considered generating function PDE
(Eq. (3)). If we expand the generating function in the form ofEq. (8), a series of PDEs forφm’s are derived. Similar to the
simple 2-step cascade, after taking the continuous limit approximation, we get

∂φm
∂t

≈ (1− y)(µm
∂

∂y
− λN + λy

∂

∂y
)φm

+
∂

∂m

(

km− g

2
(M(M − 1) + 4m(m− 1)− 2(2M − 3)m)

)

φm , (26)

where the total probability is conserved since

d

dt

∫ ∞

−∞

dmφm(t, 1) = 0 .

Eq. (26) are also readily solved analytically by the characteristic method.
The approximate distributions compared with those computed from Gillespie simulation are displayed in Fig. 9 at an early

time t = 3 and a later timet = 60. They agree quite well. The approximate and exact distributions at other times are in good
agreement as well (data not shown).

Overall, the presented method may be used to obtain the long time evolution of the stochastic signaling dynamics. We
designed the hybrid scheme to treat the second order derivative terms in the generating function equation with the characteristics
method. When the probability distribution profiles of all species are relatively smooth the method gives quantitatively accurate
results. Although, this condition is most commonly satisfied when protein numbers are large, it is also applies to systems with
smaller protein numbers with certain constraints on the relative reactions rates. Generalizing this method to treat larger cascades
is also straightforward. If all the reaction nodes in the network are linear, then there is no need to expand the generating function
equation up to second order derivative terms, and a direct application of the characteristics method would solve the generating
function PDE. If a small number of binary reaction nodes are present, the hybrid scheme can be applied most effectively, allowing
to obtain approximate solutions in a manner similar to the examples that we have already considered. For cascades with many
binary reactions, a straightforward application of the method may becomes unpractical since a summation over many indices
is required, which would be computationally expensive. However, this difficulty may be overcome by either linearizing the
nonessential binary terms or by approximating the summations with integrals.

12
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FIG. 9: Probability distributions ofA∗ computed from the approximate solution Eq. 26 (circles) and Gillespie simulation (solid line) averaged
over70898 realizations. Initially(NA, NA∗) = (100, 0) andNR∗

2
approximately assumes a Gaussian distributionexp(−(m− 2)2)/

√

π. We
useNR + 2NR∗

2
= 20 and choose parameter values(g, k, µ, λ) = (0.02, 0.5, 0.02, 0.15). (a) The distributionP (NA∗) at t = 3. (b) The

distributionP (NA∗) at t = 60.

V. CONCLUSIONS

Cells live in a fluctuating environment in which signals and noise keep bombarding the cell receptors1,30,75. Noisy signals
propagate inside the cell via microscopic chemical reaction events. The external noise interferes with the internal biochemical
network noise originating from the underlying fundamentalrandomness of these chemical reactions. Cells have evolvedto
adapt to or even exploit the seemingly deleterious effect offluctuations on signaling dynamics within a mesoscopic sizeobject.
Thus, it is important to develop a qualitative picture, based on mathematical modeling of stochastic chemical kinetics, of how
signaling networks process noisy signals. In this paper we studied the stochastic signal transduction by a simple 2-step signaling
cascade using the master equation to describe stochastic reaction events. In agreement with previous studies, we foundthat
when particle numbers are large, chemical kinetic equations provide an accurate description. However, when the numberof
proteins becomes small, a large variability among individual trajectories results, necessitating the stochastic chemical kinetics
approach. If fluctuations are small, the commonly used linear noise approximation works well, the probability distribution being
centered around the deterministic trajectory. But when fluctuations are large, for example, at the initiating (burst) phase of a
signal transduction cascade, the linear noise approximation breaks down and more powerful analytical treatment of themaster
equation becomes necessary. In the small protein number regime, chemical Langevin equation does not work properly as well
since the continuous assumption breaks down and molecular discreteness sets in the dynamics.

Without assuming that noise is small, we directly treated the master equation with a generating function approach. Although
the resulting PDE could not be solved exactly, we found a number of perturbative schemes, that allow us to obtain approximate
analytic solutions for the generating function which is used to obtain the time evolution of the full probability distribution for
all proteins. Using the analytic solution, we recovered thegeneral mechanism for attenuating or amplifying noise in a signaling
pathway with nonlinear reaction events: if the upstream reactions are fast and the downstream reactions slow, then upstream noise
becomes attenuated. Conversely, if the upstream reactionsare slow and the downstream reactions fast, then the upstream noise
becomes amplified. Thus, controlling various node timescales by regulating reaction rate constants would lead to enhancing
of the signaling cascade sensitivity and reliability by suppressing uncorrelated noise while still amplifying weak signals. This
mechanism may be used by cells to draw useful information from a noisy environment. Furthermore, under certain conditions,
the burst phase noise may induce macroscopic system-wide disturbance in the downstream signaling network.

The approximation based on characteristics, presented in Section IV, can be straightforwardly generalized to a longercascade,
with the restriction that the protein number distributionsare smooth. Yet another powerful technique to solve the master equation
for more complex cascades is based on the variational principle76. The analytic solutions developed in this paper serve as a
starting point for developing high quality time-dependentbasis sets for the variational approach. A good basis set should capture
the essential part of the system dynamics so as to make the subsequent calculations simple and effective, which will be discussed
in more detail elsewhere. For larger signaling pathways, especially when embedded in space, the commonly used numerical
stochastic simulations will face severe computational bottleneck. In this work we have taken a different approach, based on
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analytically solving the master equation describing stochastic chemical kinetics, to achieve, in an efficient manner,qualitative
and quantitative insights into stochastic signaling by biochemical reaction networks. In an ongoing work we are generalizing
the techniques presented in this work to investigate the interplay of the noise amplification and attenuation with the complex
dynamics generated from feedback loops in larger biochemical reaction networks.

APPENDIX A: THE Ω-EXPANSION OF THE 2-STEP CASCADE MASTER EQUATION

If the fluctuations are relatively small, van Kampen’sΩ-expansion may be used to account for their effect on signaling
dynamics31. In this case it is more convenient to rewrite the master equation, given by Eq. 1, in an alternative form31, where the
dependence of reaction rates on the cell size,Ω, is explicitly emphasized:

Ṗ = λ(E−1
n − 1)(N − n)P +

µ

Ω
(E+1

n − 1)mnP + k(E+1
n − 1)mP + gΩ(E−1

n − 1)P , (27)

whereE+1
n f(n) = f(n + 1) andE−1

n f(n) = f(n − 1) are step-up and step-down operators31. AlthoughΩ is equal to 1
in our units, it is still written out to be used later as an expansion parameter. If the protein numbers are large enough such
that the deterministic evolution serves as a good starting point, then small fluctuations are well described by the linear noise
approximation. In particular, the variables are changed toemphasize the fluctuations around the deterministic orbits:

m = Ωφ(t) + Ω1/2ξ ,

n = Ωψ(t) + Ω1/2η ,

P (m,n, t) = Π(ξ, η, t) ,

N = N̄Ω . (28)

whereφ(t) traces the deterministic path forNR∗ andψ(t) for NA. The new random variables areξ and η, that describe
fluctuations around the average path. While averages determined from the dominant paths are proportional toΩ, fluctuations
around these averages are only proportional toΩ1/2. Sinceφ(t) andψ(t) can be easily found by solving the chemical kinetic
equation, we need to obtain an evolution equation for the probability distributions ofξ andη, Π(ξ, η, t). Thus, we substitute
Eq. 28 into Eq. 27, using also the following expression for any analytic functionf(n):

(E±1
n − 1)f(n) = (± ∂

∂n
+

1

2

∂2

∂n2
+ . . . )f(n) .

Eq. 27 results in

∂Π

∂t
− Ω1/2 dφ

dt

∂Π

∂ξ
− Ω1/2 dψ

dt

∂Π

∂η
= λ(−Ω−1/2 ∂

∂η
+

1

2
Ω−1 ∂

2

∂η2
)(Ω(N̄ −Ψ)− Ω1/2η)Π

+
µ

Ω
(Ω−1/2 ∂

∂η
+

1

2
Ω−1 ∂

2

∂η2
)(Ωφ+Ω1/2ξ)(Ωψ +Ω1/2η)Π + k(Ω−1/2 ∂

∂ξ
+

1

2
Ω−1 ∂

2

∂ξ2
)

(Ωφ+Ω1/2ξ)Π + g(−Ω−1/2 ∂

∂ξ
+

1

2
Ω−1 ∂

2

∂ξ2
)ΩΠ + · · · . (29)

We next collect terms that are of the same order inΩ. The largestΩ1/2 terms give:

−dφ
dt

∂Π

∂ξ
− dψ

dt

∂Π

∂η
= −λ(N̄ − ψ)

∂Π

∂η
+ µφψ

∂Π

∂η
+ kφ

∂Π

∂ξ
− g

∂Π

∂ξ
,

which is satisfied as we choose the dynamics ofφ andψ to follow chemical kinetics

dφ

dt
= g − kφ ,

dψ

dt
= λ(N̄ − ψ)− µφψ . (30)

At theΩ0 order, we obtain

∂Π

∂t
= λ

∂

∂η
(ηΠ) + µ

∂

∂η
(ξψ + ηφ)Π + k

∂

∂ξ
(ξΠ) +

1

2
(λ(N̄ − ψ) + µφψ)

∂2Π

∂η2
+

1

2
(kφ+ g)

∂2Π

∂ξ2
, (31)
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which is the familiar Fokker-Planck equation, derived in a systematic way. Eq. 31 is the linear noise approximation to the full
stochastic dynamics, which is valid when the path determined by Eq. 30 is stable31. Eq. 31 is a linear PDE that has to be solved
numerically. However, it is possible to derive a closed set of ODEs to describe time evolutions of the moments up to any order.
For example, the averages (first moments) satisfy

d〈η〉
dt

= −(λ+ µφ)〈η〉 − µψ〈ξ〉
d〈ξ〉
dt

= −k〈ξ〉 , (32)

which are just the linearized chemical kinetics equations.Note that if initial values of〈η〉 and〈ξ〉 are taken to be zero, then they
remain zero for all later times, consistent with the physical significance of Eq. 30 which describes the evolution of averages of
protein numbers. This also suggests that application of Eq.31 is based on the assumption of the validity of averaged chemical
kinetics equations. Next, we consider three second moments, satisfying

d〈η2〉
dt

= −2(λ+ µφ)〈η2〉 − 2µψ〈ηξ〉+ λ(N̄ − ψ) + µφψ

d〈ηξ〉
dt

= −λ〈ηξ〉 − µψ〈ξ2〉 − µφ〈ηξ〉 − k〈ηξ〉

d〈ξ2〉
dt

= −2k〈ξ2〉+ kφ+ g , (33)

to be solved simultaneously with Eq. 30. In the current case,Eq. 30,32,33 may be solved analytically but the solution of PDE 31
is numerically cumbersome. A practical difficulty in using theΩ-expansion approach comes from the fact that Eq. 31 is a(1+2)
PDE, which does not seem to be a significant simplification from the master equation, Eq. 1. In particular, similar amount of
numerical effort is needed to obtain solutions for Eqs. 1 and31. This is part of the reason we did not try to obtain the distribution
from theΩ-expansion. Therefore, we used in the main text only the moments calculated from theΩ-expansion.
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