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Chemogenetics—A Transformational
and Translational Platform
Justin G. English, PhD; Bryan L. Roth, MD, PhD

O ne billion people—one-sixth of the world’s population—
have a neurologic disease or disorder.1 The treatment op-
tions for these disorders are limited despite the great de-

mand for effective therapeutics. A multitude of drugs have been
developed to remedy these conditions, but few possess the effi-
cacy and specificity necessary to achieve an effective therapeutic
index. Consequently, a variety of technologies, most of which aim
to directly control the electrical and chemical impulses that dictate
nervous system activity in the brain, are being developed to
address this global health issue.

The treatment of neurologic diseases would, ideally, include spa-
tially precise, noninvasive, bidirectional, on-demand control of neu-
rons and glia. To date, the approved therapies for manipulating neu-
ronal activity, such as deep brain stimulation, although useful, are
invasive and unidirectional. In addition, deep brain stimulation al-
ters the activity of the target neurons and distant neurons via axons
in passage. Conceivably, optogenetic technologies that use light to
switch neurons on and off could be used for precise, millisecond con-
trol of neuronal activity, although there will likely be difficulties trans-
lating this technology because of problems with light diffusion and
penetration.2 An alternative approach with significant transla-
tional capacity, which we have named Designer Receptors Exclu-
sively Activated by Designer Drugs (DREADDs),3 has gained wide
utility (Figure 1) during the past decade as a means to modulate cel-
lular signaling to turn neuronal circuits on and off. Because DREADDs
are based on a chemogenetic4 platform that relies on small drug-
like chemical actuators, they are relatively easily translated to large
animals, including, perhaps, humans.

DREADD technology has had a major effect on our understand-
ing of neural circuitry in behavior and disease at the bench,5 and
DREADDs have the potential to ultimately be clinically translated. For
instance, in rodent models, DREADDs have demonstrated the ability
to control neuronal activity to ameliorate disease phenotypes in con-
ditions as diverse as Parkinson disease,6 Down syndrome,7 seizures,8,9

and autism.10 In addition, DREADD-based approaches modulate be-

haviors as diverse as addiction,11,12 sleep,13 aggression,14 breathing,15

and feeding.16-18 DREADDS have also enhanced and silenced learning
and memory and have been used to create artificial memories.19-21 Pre-
liminary reports22-24 have also demonstrated successful incorporation
of DREADDs into the nonhuman primate brain, accompanied by suc-
cessful modulation of brain activity and behavior. Given the rapid ad-
vances of potential relevance to neurologists and other neuroscientists
(perhaps an article per day on DREADD technology is now being pub-
lished) (Figure 1), we provide a primer for bringing DREADD technol-
ogy, a powerful tool for targeted control of cellular signaling and
neuronal activity, into more therapeutic arenas.

What Are DREADDs?
DREADDs represent engineered G-protein–coupled receptors
(GPCRs) that can be activated by inert, druglike small molecules to
provide remote control of cellular signaling, neuronal activity, and
behavior. G-protein–coupled receptors are integral membrane pro-
teins that mediate nearly all physiologic processes in the body by
responding to a variety of endogenous and exogenous ligands, in-
cluding neurotransmitters and chemokines.25 It is for this reason that
at least one-third of approved medications target GPCRs,25 includ-
ing many neuropsychiatric drugs.26 However, because many of the
most effective medications are promiscuous,26,27 they typically have
adverse effects and toxic effects due to off-target actions. Promi-
nent examples relevant to neurologists are the antiparkinsonian
drugs cabergoline and lisuride,28 which can cause life-threatening
valvular heart disease via off-target activation of serotonin recep-
tor 2B.28,29 These frequently unpredictable adverse effects pose a
significant challenge when attempting to develop small molecule–
based approaches for modulating specific neuronal circuits (but see
the article by Keiser et al30). To circumvent these inherent prob-
lems with GPCR-based approaches for modulating neuronal activ-
ity in a therapeutic manner, DREADDs were developed in 2005.4

Neurologic disorders are frequently a result of inappropriate electrical and/or chemical
signaling of neurons and glia. Ultimate remediation would necessitate reprogramming these
signals. Historically, correcting neuronal and glial signaling is accomplished via drug
therapy/administration, although they frequently fail to effectively and fully treat the
underlying disorder. Developments in basic research have produced several new classes of
potential therapeutics to directly and precisely control neuron activity at the single-cell level.
We review one such technology, Designer Receptors Exclusively Activated by Designer Drugs,
and suggest its potential as a powerful tool for augmenting neuronal and glial signaling and
activity for basic and translational applications.
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To create DREADDs, we used a process called directed molecu-
lar evolution whereby we were able to create mutant human mus-
carinic acetylcholine receptors (M1, M2, M3, M4, and M5) that did
not respond to the endogenous ligand acetylcholine but were acti-
vated by the clozapine metabolite clozapine-N-oxide (CNO).3 Be-
cause CNO has excellent druglike properties and has been safely ad-
ministered to humans31 and because we used human GPCRs, we
envisioned that DREADD technology might ultimately be useful for
human therapeutics. We also ensured that processes by which we
engineered DREADDS rendered the mutant GPCR silent (eg, mini-
mal constitutive activity) in untreated individuals and potently ac-
tive in individuals treated with the designer drug for therapeuti-
cally useful periods (eg, minutes to hours).

DREADDs are applied as a system (Figure 2), providing great po-
tential for highly flexible experimental and translational applica-
tions. Tapping into this flexibility, however, requires an understand-
ing of the system’s component parts and their applications. The initial
step in using the DREADD system is to select the appropriate DREADD
for the task at hand. Does the desired intervention in the brain re-
gion of interest require activation, suppression, or bidirectional con-
trol? DREADDs derived from the human muscarinic acetylcholine re-
ceptors (hMDREADDs) silence3 or enhance32 neuronal firing in the
presence of the inert and orally available CNO.3 Although CNO has
been administered to humans with no apparent effect,31 it can be back-
metabolized to clozapine in guinea pigs, nonhuman primates (un-
published data), and humans. This metabolic conversion limits the dos-
ing ranges and utility of hMDREADD. Significant efforts were
accordingly made to identify new chemical actuators for the musca-
rinic DREADDs, which culminated in the discovery that the relatively
innocuous, safe, and central nervous system (CNS)–penetrant anti-
histamine perlapine33 is a potent hMDREADD activator.

The hMDREADD suite of receptors has been used extensively
to provide unidirectional control of brain activity. However, to achieve
bidirectional control, another designer receptor or alternative che-
mogenetic approach34 would need to be used. Thus, a new DREADD
was developed based on the human κ opioid receptor (KOR) and
named KOR-DREADD (KORD).18 Thus, KORD, for the first time,
facilitates the bidirectional chemogenetic control of neurons.

The KORD silences neuronal firing in the presence of the inert
salvinorin A metabolite salvinorin B (SalB). Currently, SalB is limited
in its oral availability but after parenteral administration is highly brain
penetrant.35 Together, the hMDREADD and KORD receptors can be
used to toggle the activity of specific neurons on and off simulta-
neously. The rate at which these neurons can be switched on and
off is also adjustable, providing kinetic flexibility. Neuronal silenc-
ing with DREADDs can be prolonged (hours) or attenuated (min-
utes). The onset of CNO-modulated neuronal firing occurs within 5
to 10 minutes after intraperitoneal injection, with a peak electro-
physiologic response 45 to 50 minutes after injection5,32 and per-
sistent activity detected several hours after injection.5,35 In con-
trast, SalB enters the brain in seconds and rapidly decreases
thereafter,35 with KORD-mediated behavioral effects ceasing 1 hour
after injection.18 Efforts are also under way to generate new DREADD
ligands with varying biological half-lifes capable of expanding this
kinetic window.

DREADDs can augment neuronal firing in multiple brain re-
gions as observed in studies of mice, rats, and other mammals.5 This
augmentation is possible because DREADDs have been designed to
couple to the signaling machinery of the cell via the transactivators
Gαq, Gαi, Gαs, or β-arrestin2.3,32,36,37 These DREADD-coupled trans-
activators exhibit strong signaling activity when the DREADD binds
to its designer drug, resulting in activation of various downstream
signaling pathways. Selection of the correct transactivator and sub-
sequent signaling pathway is of critical importance when consider-
ing the DREADD system for therapeutically relevant experiments.
Examples of the biological activities born from activating these sig-
naling paradigms have been extensively reviewed5; however, the ul-
timate phenotypic effect for each pathway should be assessed on
a tissue-by-tissue basis. The safe and routine application of chemo-
genetic approaches, such as DREADDs, in humans will ultimately re-
quire extensive safety and efficacy studies assessing how activa-
tion of each pathway augments neuronal activity, behavior, and
symptoms. As a cursory overview, Figure 2 highlights the conse-
quences of activating these pathways, as determined using
DREADDs, in numerous mammalian brain regions.

Therapeutic Delivery of the DREADD System
After selection of a suitable DREADD, the DREADD must be deliv-
ered to and expressed inside the specific neuronal tissue of inter-
est to elicit the desired translationally relevant response. Off-
target or weak expression of the DREADD is obviously undesirable.
Controlled DREADD delivery and expression can be regulated
through many conventional and emerging delivery and expression
systems. DREADDs are typically expressed via virally mediated gene
transduction,5 although various transgenic approaches have also
been used.32,38,39

For virally mediated transduction, the most direct method to
control DREADD expression is to identify a gene promoter
sequence that is potently and uniquely active in the cell type of
interest. DREADDs have been fused to the calmodulin-dependent
protein kinase IIα,32,40 human synapsin,12,41 glial fibrillary acidic
protein,42 dynorphin,43 and enkephalin43 promoters. The
calmodulin-dependent protein kinase IIα promoter is specific to
neurons where it is expressed, namely, excitatory glutamatergic

Figure 1. Annual Rate of Designer Receptors Exclusively Activated
by Designer Drug (DREADD) Publications
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Figure 2. The Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) System

Currently Available DREADDS and Their Mechanisms of Actions in Neurons
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AAV indicates adeno-associated virus; CamKIIα, calmodulin-dependent protein
kinase IIα; cAMP, cyclic adenosine monophosphate; CNO, clozapine-N-oxide;
DIO, double-floxed inverted open reading frame; GsD, Gαs-coupled DREADD;
hM3Dq, Gαq-coupled DREADD; hM4Di, Gαi-coupled DREADD; hSyn, human
synapsin; iPS, induced pluripotent stem; KORD, DREADD based on the κ opioid
receptor; PVH, paraventricular nucleus of hypothalamus; Rq(R165L), hM3Dq
Gαq-coupled DREADD with the R165L mutation; and SalB, salvinorin A

metabolite salvinorin B. Brown mouse image by George Shuklin (CC BY-SA 1.0;
Wikimedia Commons [http://creativecommons.org/licenses/by-sa/1.0]).
Feeding mouse image by Rama (CC BY-SA 2.0 fr; Wikimedia Commons
[http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en]). Hood rat
photograph by Jason Snyder (CC BY 2.0; Wikimedia Commons
[http://creativecommons.org/licenses/by/2.0]).
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neurons (eg, cortical pyramidal neurons but not interneurons).
The human synapsin promoter can express DREADDs in all neuro-
nal subtypes. The glial fibrillary acidic protein promoter expresses
primarily in nonneuronal glial cells. The dynorphin and enkephalin
promoters are active in either of the 2 main populations of striatal
medium spiny neurons. Many other promoters have been tested
for expression in adrenergic neurons44 and primate neurons.45,46

In addition to these validated promoters, many additional promot-
ers with potential for use in neuronal gene therapy have been
highlighted through proteomic analysis of the human body,47

deep RNA sequencing of the developing human brain,48 and
single-cell RNA sequencing of individual neurons.49 The promot-
ers that regulate each DREADD can be easily exchanged to
augment the selective expression of the DREADD as necessary.

To achieve high levels of delivery, DREADDs are routinely ex-
pressed using adeno-associated virus (AAV), although lentivirus and
herpesvirus approaches have also been used. Because of the multiple
guided targeting systems available to assist in precise injection, AAV
is a widely used viral delivery vector in the clinic.50 In using AAV, the
viral genome is replaced with DNA that encodes the DREADD of inter-
est and packaged into the AAV capsid. Multiple AAV capsid serotypes
are available for the targeted delivery of DNA cargos to the central ner-
vous system,51-54 including the primate CNS.55,56 These viral delivery
vectors are nonvirulent and do not replicate within the host. In addi-
tion, because of the inherent infectivity of the viral capsid, gene deliv-
ery is tightly localized to the site of injection, allowing for precise tar-
geting of neuronal subregions. To assist researchers in delivering
DREADDs to the CNS, all DREADDs are available from the University
of North Carolina Vector Core facility in multiple CNS-validated AAV se-
rotypes. Because this is an active field, AAV serotypes with unique pat-
terns of tissue tropism and delivery appear frequently. Powerful meth-
ods of in vivo capture screening have produced viruses with specific
cell-targeting tropisms.57,58 One can imagine how use of these directed
evolution techniques with the clinically tested AAVrh10, found to trans-
duce a large portion of the CNS through intravenous delivery,59 could
hold great promise for the routine delivery of DREADDs in larger brains,
such as nonhuman primates and, perhaps, humans.

The ability to deliver DREADDs to a localized brain region,
coupled with cell type–specific promoters, has allowed research-
ers unfettered control of neuronal activity. Lacking in this delivery
and expression system was the ability to target a subset of neu-
rons from the same subtype class (eg, serotonin neurons project-
ing specifically from the dorsal raphe to the prefrontal cortex).
This limitation was overcome in recent work60 using canine
adenovirus, a retrograde virus capable of traversing neuronal
axons to deliver gene cargo to the soma.61 This feature was seized
on to deliver Cre recombinase (capable of flipping DNA sequences
flanked by precisely oriented62,63 loxP nucleotide sequence pairs)
to projecting neurons at their synapses in the prefrontal cortex.60

Injection of loxP-flanked DREADDs at the dorsal raphe ensured
that only neurons that acquired Cre recombinase from their pro-
jections into the prefrontal cortex would successfully flip and
express the delivered DREADD. This spatially restrictive and gated
method of expression allows DREADD system users to precisely
target a handful of highly specific, functionally relevant neurons
for modulation. Canine adenovirus elicits a minimal immunogenic
response and could potentially be a translationally relevant deliv-
ery system.64 Use of canine adenovirus will facilitate the imple-

mentation of complex on and off switch systems for regulation of
neuronal dysfunctions spanning multiple brain regions.

In addition to the aforementioned technologies, which have suc-
cessfully delivered DREADDS to the CNS, numerous gene delivery
techniques exist with unique therapeutic advantages for DREADD
delivery. For example, a major limitation of viral vector–based gene
therapy is the limit on gene cargo size. For AAV, this limit falls to ap-
proximately 6000 nucleotides.65 This size limitation puts restric-
tions on the complexity of the delivered DREADD system. For ex-
ample, large genetic regulatory elements could be used to finely tune
cell type–specific DREADD expression but are too large to package
in AAV. It is also currently impossible to deliver multiple DREADDs
simultaneously encoded within the same AAV viral particle. These
limitations could be overcome by nanoparticle-based gene deliv-
ery systems, which can package and deliver numerous DNA- and pro-
tein-based cargos simultaneously to the CNS.66 In addition to de-
livering DREADDs into native CNS cells, DREADDs could also be
integrated into induced pluripotent stem cells. Genes of a size simi-
lar to that of DREADDs have been integrated into pluripotent stem
cells with high efficiency.67 These DREADD-containing, induced, plu-
ripotent stem cells could then be selectively differentiated through
activation of a targeted GPCR-activated pathway68 or provide post-
operative control of neuronal activity after grafting of the stem cells
to lesion sites. Indeed, such a study6 has already been performed
in a Parkinson disease rat model, with activation of DREADDs in in-
duced dopaminergic neurons greatly enhancing the beneficial
effects of the transplanted tissue.

Hurdles to Potential Clinical Application of
DREADDs and Other Chemogenetic Technologies
The component parts and principles necessary to deliver DREADDs to
the clinic are currently in place. A multitude of viral and promoter pairs
have been tested in human69-71 and nonhuman primate45,46,72 brains
in preparation for this form of therapeutic intervention. Furthermore,
DREADDs have been successfully introduced and activated in nonhu-
man primate brains.22-24 Studies in nonhuman primates will continue
to advance, addressing the details of potential applications and inter-
ventions; however, the major hurdle that needs to be addressed is
establishing the first DREADD pilot study in human patients.

Two neurologic disorders are exceptional candidates for
DREADD-based intervention: Parkinson disease44 and seizures.16,17

For both diseases, deep brain stimulation is performed when first-
line interventions fail. It would therefore be possible to deliver
DREADDs to patients at the time of deep brain stimulation. The thera-
peutic ideal for these diseases is to suppress spurious electrical sig-
nals propagating from the overactive brain regions of the pa-
tient—a task at which the KORD excels. The inherent difficulties to
overcome for this approach include those associated with gene
therapy and drug delivery, so considerable hurdles exist to ulti-
mately translate this technology to humans. Nonetheless, DREADDs
are uniquely positioned at the precipice of bench to bedside trans-
lation. They are human receptors that can be delivered to and thus
far appear to be well tolerated in nonhuman primates. They are ac-
tivated by cheap, safe, and biologically available chemical actua-
tors. With a small nudge, they could emerge as a way to potentially
treat a variety of neuropsychiatric disorders.
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