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The ionic conductivity of glassy, fast-ion-conducting materials can show non-Arrhenius behavior
and approach saturation at sufficiently high temperatlife&incs and S. W. Martin, Phys. Rev.

Lett. 76, 20 (1996]. The Ngai coupling model was soon applied to explain some of these
observationg[K. L. Ngai and A. K. Rizos, Phys. Rev. Let6, 1296 (1996], but detailed
examination and generalization of the coupling model suggested the consideration of a related, yet
different, approach, the cutoff model. Although both the coupling and cutoff models involve a
shortest nonzero response timg, and lead to single-relaxation-time Debye response at limiting
short times and high frequencies, they involve different physical interpretations of their low- and
high-frequency response functions. These differences are discussed; the predictions of both models
in the frequency and time domains are compared; and the utility of both models is evaluated for
explaining the non-Arrhenius conductivity behavior associated with the dispersed frequency
response ofzAgl+(1—2)[0.525AgS+0.475BS;:SiS;] glass forz=0 and 0.4. The cutoff
approach, using simulation rather than direct data fitting, yielded semiquantitative agreement with
the data, but similar analysis using the coupling model led to poor results. The coupling model leads
to an appreciable slope discontinuity at thetransition point between its two separate response
parts, while the cutoff model shows no such discontinuity because it involves only a single response
equation with a smooth transition at to limiting single-relaxation-time response. The greater
simplicity, utility, and generality of the cutoff model suggest that it should be the favored choice for
analyzing high-conductivity data exhibiting non-Arrhenius behavior. 1998 American Institute of
Physics[S0021-89708)06714-0

I. INTRODUCTION AND BACKGROUND tions from Arrhenius behavior, one based on the coupling

model (CM) of Ngai and his co-worker$:3 Their results

) ) ) ) were particularly remarkable because they creatively ex-
In 1996, Kincs and MartifKM) published an important - pained the non-Arrhenius behavior of the dc conductivity by

paper demonstrating very high room-temperature dc conduGpeans of a model that involved deviation from a low-

t|V|§y In a series Of_ chemically stab_le, conducpyﬂy- frequency dispersed response only at frequencies of the order

optimized, ion-conducting glassésSuch high conductivity of 102 Hz and above. What an extrapolation!

is very desirable for device applications, but, unfortunately, These works led me to take a closer look at the CM and

fche full potential of these opumlzed _m‘f"te”a's was n_ot real_the basic physics involved in it, with the hope that such an
ized because of progressive deviation from their low-

temperature Arrhenius behavior toward conductivity saturasxamination might shed further light on those factors leading

tion, beginning well below theirT, values. Thus, for to saturation in fast ion conductors or, indeed, in any con-

example, instead of reaching the room-temperature extrap(.‘ij—UCting material with a physically necessary crossover at
lated value of 0.04Q cm)~L, one of their Agl-doped mate- V€'Y high frequencies. Identification of the controlling fac-

rials only yielded a value of 0.00&8Y cm)~ ! at that tem- tors migh'F then al_low one.to optimi_ze such a conductor i.n
perature. Kincs and Martin also suggested that the transitiofrder to el_ther entirely avoid saturation or at least to push its
to such non-Arrhenius behavior at higher temperatures i§nSet to higher temperatures.
ubiquitous in all superionic fast-ion-conductive glasses. In the course of my examination of the published work
It thus seems as though Nature somehow acts to restri@n the CM, | found some limitations in the CM approach,
the maximum conductivity reachable in the saturated regionwhich, in turn, led me to examine a closely related but sim-
In fact, as the present work shows, that conductivity seems tpler alternative to the CM, the cutoff modéCOM). In the
depend only slightly on the degree of doping. Although KM present work, the CM is corrected and generalized where
suggested a mobility-oriented qualitative explanation for theappropriate; the two models are described in detail; their pre-
approach to saturation, Ngai and RiZ¢&R) soon proposed dictions are compared, in general; and their success in ex-
an alternate and more satisfactory explanation for the deviglaining the KM results is evaluated. It should be empha-

A. General
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sized that although the results of the application of the Ngaing electrical and mechanical relaxation in disordered mate-
coupling model to the KM data are compared with those ofrials, for simplicity the present work will be restricted to the
the COM in Sec. Il, and although some of the changes in themall-signal electric response of such materials in the time
Ngai CM made by Ngai and his associates over the years a@nd frequency domains, the area considered in the original
summarized in Sec. | C, the present changes and generalizderivation of the NgCM>
tions of the CM render it different from the current or earlier
versions of the Ngai CM. Thus, in order to maintain the
distinction, | shall use, where appropriate, NgCM to denoteB. Types of response
the Ngai CM and just CM for the current extensions of the |t pas recently been showi*®that in the discussion and
original coupling model or for referring to common features gnajysis of electrical relaxation data it is important to distin-
of both approaches. guish between dielectric-system dispersive respgB&D)

The coupling model of relaxation was proposed by Ngaigng conductive-system dispersive respori&SD), even
in 19797~ it has been applied to a wide range of physicalthough such a distinction is somewhat idealized and fails to
phenomena since its inception; and it has been derived byapture the full complexity of all but the simplest processes.
several alternate approaches. Over the years there have prafyr DSD, the dispersion is taken to involve such dielectric
ably been well over a thousand pages, published in scientifiguantities as rotating or induced dipoles, and the principal
journals and in the reports of conferences and meetings, th@spersion process thus leads to no dc conductivity. It is then
have been devoted to explicating and applying the modeknost appropriate to describe the data in terms of a model
References 2-38 are representative. It is not, however, thgefined at the complex dielectric constant, or susceptibility,
large number of published pages devoted to the NgCM thakvyel. In contrast, CSD involves mobile charges that are able
make it worthy of further consideration, but instead theto contribute to a dc conductivitys’ (0), which is an intrin-
claims that it can explain a very wide variety of linear- sic part of the dispersive process. Then, a model for such a
response, relaxation-related experimental results. For eXesponse is best developed and applied at the complex resis-
ample, Ngal® has said, “The usage of these coupled rela-tivity or impedance level. Finally, as discussed below, it is
tions in enhancing the understanding of relaxations in severamportant to distinguish between two types of CSD behavior,
classes of correlated systems hasie] been amply demon- denoted CSDO and CSD1. Incidentally, when a DSD situa-
strated in the past. Examples of these remarkably successftibn includes an unrelated, nondispersed dc conductivity, it
applications will be given later in the present review. It is has been found that its frequency response may be very well
worthwhile to emphasize that these coupled relations weréit by either a CSDO or CSD1 mod#l(andvice versa, and
derived ... long before they were applied to experiments anehe limiting log—log slopestermed just slopes hereaftenf
subsequently verified by the data.” DSD and CSD responses are then edi#\. choice of the

Most of the great body of work on the NgCM has di- most appropriate model to fit such data is greatly aided when
rectly involved Ngai and his various coauthors, and only adata are available over a range of temperatures.
relatively small amount of independent discussion of the ap-  In terms of a distribution of relaxation timé®RT), 7,
proach has appeared in the literature. It is worth mentioningDSD can be represented by a Maxwell circlfigne involv-
however, that Ngai rebuts some criticisms of the model at théng a parallel set of dielectric-entity relaxors, each of which
end of Ref. 15, and replies to comments and questions comnay be formally represented by a resistor and a capacitor in
cerning it in the discussion section appearing at the end oferies, in either discrete or differentiedontinuou$ form.
Ref. 23. The discussions in Refs. 19 and 39 are also relevaiithese circuit elements model energy dissipation and storage
to the application of the NgCM to the analysis of the time processes. Similarly, the DRT for CSD response can be mod-
decay of remanent magnetization. The characteristics of theled with a Voigt circuit’® one that involves a series set of
NgCM are compared to those of some other relaxation modresistivity-level relaxors, each of which may be represented
els in Refs. 15 and 22. by a resistor and capacitor in parallel, in either discrete or

As demonstrated below, because of the development dfifferential form. Note that the use of a DR®r a distribu-
the LEvM computer program for accurate and rapid datation of activation energigsassociated with given temporal or
analysis appropriate for comparing a fitting model with ex-frequency response does not necessarily imply that the theo-
perimental dat4°~*?it is now pertinent and possible to ex- retical or experimental response is best interpreted physically
amine the content of the NgCM, the methods used in the past terms of such a distribution. But since techniques for dis-
to verify it, and finally to evaluate its applicability more tinguishing between discrete and continuous distributions are
quantitatively and accurately than has been possible previrow available’*“®if one finds that experimental response is
ously. We begin with a brief summary of the main featuresbest described by one or only a few discrete Debye relax-
of the NgCM, provide a needed generalization of it, and noteation times, this will certainly be the appropriate model to
its connection to the more general COM, one applicable talescribe the physical processes that contribute to the relax-
any relaxation situation. Then the utility of the two models ination response.
explaining non-Arrhenius conductivity behavior in glassy Let us use the subscript with n=D, 0, or 1, to desig-
fast-ionic conductors is examined. Finally, time and fre-nate DSD, CSDO, or CSD1 behavior, respectively. Deffine
guency domain responses of the two approaches are coras an unnormalized measured or model quantity of interest.
pared in detail and discussed. Although the NgCM has beelt is mathematically convenient to express the normalized
applied to a wide variety of relaxation procesée$,includ-  form of U,, I,, in terms of a DRT, sayg,(7). Let x
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=17, wherer is a characteristic response time, and defineC. The coupling model

— 144245
y=In(x). We may then writ& The NgCM was originally developed for dielectric po-

larization involvin ermanent dipoles or nonpercolatin
Un(©) = Uy(>) o ' ' J

1,(Q)= charged particlés and thus applied to DSD situations. It
Un(0)=Un(=) has, however, later been used for the analysis of the CSD

B Jm Gp(x)dx fw F.(y)dy . response as WeZ"?'10’14’21’27’30’3_%he.C|\/| involves two sepa-
=, a+iox ). m, (1) rate, coupled response equations; one applying at very short

times and high frequencies and the other for long times and
low frequencies. A crucial assumption of the CM is that
there exists a temperature-independent microscopic time,
before which the entities that contribute to the relaxation
process are uncorrelated, so that interactions do not affect the

whereG,(X)=73,(7), Fr(y)=xG,(X), Q=wT7,, and the
F, form, which may be simply related to a distribution of
activation energie®’ is particularly appropriate for numeri-

cal quadrature. Here the DRTSs are normalizedi %0)=1 dynamical relaxation process for shorter timie$.Let us

andln(oc)_z 0, as indicated aboye. : write t.=r7.=1/w., wherer. has been stated to fall in the
Consider now some possible connections between the

DSD and CSDO, quantities and their associated DRTSs. Sup—rangezgg %Rrj_ 10" s, with the latter the .curren-tly favqred
pose that the specific form of a DRT, s@®gy(x), is known value = For t> 7 B hovyever, thg relaxing umts begin to
for the DSD situation. Then, it has been shéivthat this become porrelated. It is this t_ransmon to co_uplmg to a com-
same form may be used in EQ) with n=D or 0 to define plex environment that has given the CM its name. In the

either the DSD or CSDO response, respectively. Here, wg"9inal NgCM, the complexity of the system is represented
shall be primarily concerned with CSD situations, but noteby low-lying, cqrrel%ted—states excitations with a distribution
that every CSDO model implies the existence of a DSD oné&! €nergy s_pacmg%. o _
with the same formal DRT. An important quantity common O particular value of the quantity. is predicted by the
to both CSD and DSD situations é,.. , the high-frequency- Ngai theory; instead the presence =f there follows from
limiting dielectric constant associated with pure dielectrict® assumption of the existence of a cutoff energy of the
processes. distribution of low-energy states posited to be present in the
Long ago, Macedo, Moynihan, and co-work8rgro- material. Similarly, the fractional exponent-type coupling pa-
posed that conductive-system relaxation response could g@metern=1— g, of the theory arises from the assumptions
appropriately expressed at the complex modulM{), that the density of excitation states at enefgys propor-
level in terms ofrgy(7), or, equivalentlyxGy(x), thus de- tional toE and thatn< 158 Although Ngat’ has stated that
fining what is here designated as the CSD1 response, a restfie¢ NgCM “does not address the microscopic significance of
obtained independently somewhat I&f&This later work in-  the parameten,” in later work®® he has stated that his Eq.
dicated that CSD1 analysis is more appropriate for(4.2) of that work, which relates to an anomalous diffusion
conductive-system dispersive situations in which the conduccoefficient without a detailed analysis, is “the central result
tivity is thermally activated than is the CSDO approach.  of the coupling model.”
The normalized moments of a normalized CSDO or Like most present-day relaxation theories that do not in-
CSD1 distribution may be expressedZas volve microscopic interactive many-body analysis, the Ngai
approach does not predict explicit temperature dependence
R for n or B. Although both the CM and the COM involve by
(XM)n= fo X"Gp(x)dx, (2 hypothesis the same limiting quantity,, its interpretation
is somewhat different for the latter model, as discussed later.
wherd?45 G, (x) = (x/{X)0) Go(X): and so it follows in this The NgCM approgch.has the virtu.e't.hat its gnderlying theo'ry
situation that(x 1);=1/X),. The connection between the IS Very general, yielding the possibility of widespread appli-
CSDO and CSD1 response need not be made at the modul@&Pility, but the concomitant defect that such generality does

level. It may alternatively be written %s*° not include a detailed description and analysis of specific
processes and quantities involved in the actual response of
1(Q)=((x" 1 /IQ)[1—14(Q)]. (3)  the system. Much the same strengths and weakness are in-

herent in the COM as well, although it requires fewer as-
It is crucial to recognize that when E(®) is used to fit data, Sumptions and is more generally applicable than is the CM
any parameters involved ihy(Q), such as a fractional ex- since it applies to any response model, rather than only to the
ponent, ones that would ordinarily invalva 0 subscript, single specific model of the NgCM. Here we shall omit a
must be interpreted as CSD1 quantities and must involve afurther discussion and critique of the physical bases of the
n=1 subscript. Further, although E() shows that an ex- CM, already exhaustively covered in the present NgCM ref-
pression forl 1(Q2) may be obtained when one fog() is  erences, and we shall be more concerned with the conse-
available without explicit knowledge dBqy(x) or G(x) if guences and structure of the theory than with its metempir-
(X)q is known, this is not the case for the transient responsdcs.

Then,Gy(x) is needed to fornG,(x) for use in the temporal As one might expect, there have been some changes in
analog of Eq.(1), that where the quantity 1/(2iQx) is  the NgCM during its 20 years of existenteBecause the
replaced b§? exd — (t/7,)/X]. changes are instructive and relevant to the present work, and
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because Ngai does not generally relate his changes or comhose value is determined by those of the other quantities in
rections to his earlier work, | shall attempt to illuminate Eq. (6). In the modern version of the NgCR4, applying
some parts of the historical development of the NgCM andsince the early 1990's, howeveQ is given the value of
then discuss present extensions to the model. unity, one that follows from settingq(t.) = ¢<(t.). Devia-

The NgCM, as it existed in the 1988%5was usually tions from this value are a measure of the appropriateness of

defined by the following three time-domain equation%?!  this choice. In particular, for a KWW1 CM or COM re-
_ sponse, since Ed5) does not applyQ+# 1.

Pe(l)=exp(—Ure), 1<, @ In the present work, we shall be primarily concerned
the simple exponential response involving the “primitive” with KWWO0 and KWW1 temporal and frequency response
relaxation timer,= 7. (termedr, by Ngaij; for three situations: no cutofNCO), the COM, and the CM.

Since the NgCM deals only with the KWW@r KWWD)
¢(O=exl —(U7)"], t7, ®) temporal response of E¢b), the scope of the present analy-
the stretched-exponentia[Kohlrausch—Williams—Watt§  sis and results is far greater than that of that approach. The
(KWW)] response for &< 1, with a characteristic relax- distinction betweerB, and3; is considered in more detail in
ation time r,=75; and, finally, an important relation be- Refs. 45 and 46, and in Ref. 45 it is also shown that the
tween ther's that can be most simply expressed as neglect of the DSD quantityp., in the usual Moynihan
modulus fitting approacfl can render the resulting estimates

el 7e=(75/79)7Q, ©) of B quite inaccurate and misleading.
where, in turn, it is convenient to define The> restriction of Eq.(5) appears in the original work
R on the NgCM~%and is necessary to indicate that the KWW-
Q=p""exd~(1=B)nd, @ related expression found in the analysis is only asymptotic.

with Q=Qyg when v, has the value appearing in the Furthermore, although in most of the published work on the
NgCM. This value was originalfygiven as 0.57; laté® it ~ NgCM, the fractional-exponential E¢5) expression is taken
was defined as 0.5722; and it was fin%_”ylentified asy as the fil’Sl‘Q’,3 or first “universal” relationt® of the NgCM, the
=0.577, the Euler constant, about 0.577 22, the quantity adull analysis actually yieldet an expression only for
tually involved in the theorfj;e d¢(t)/dt in the regiont> 7. If that expression is compared

The constanty,, not necessarily equal tg, is intro-  With the derivative of Eq(5), one finds that, except for a
duced in Eq(7) to allow Q to vary from its originaly,=y  scale factor involving the dielectric polarization strength, an
theoretical value, which, foB=0.5, isQyg=1.5. This gen- additional (rs/7.)1 # term is present in the original, a term
eralization turns out to be desirable, both because the condihat should then presumably multiply E) in order to
tions defining the NgCM have not remained completely consmake it consistent with the original NgCM theory. Unfortu-
stant since its genesis and because, as demonstrated later figtely, the calculation op(t) itself from the original analy-
the COM,Q is not temperature independent, even wigds.  Sis over the entire time range of interest would require
The ¢(t) quantities above are termed relaxation functionsdouble numerical integrations of an exponential of a cosine-
for DSD and correlation functions for CSD situations andintegral function, sufficiently complex and prone to error that
may also stand for the stress relaxation function for mechaninro such results have been published.
cal measurements, et¢1®># Although the above expression Although the important Equatiof6) follows from the
for Qng appeared in inverse form in the early papers on thel¢(t)/dt expression in the original Ngai analysishen
NgCM, for several years after 1984, Bd) was simplified®  Q=Qy,) and was termed the second universafity of the
to Q=1/=1/(1—n). This change may be interpreted as aNgCM, if one setsp.(7;) = ¢ds(7.), the result is just Eq6)
rescaling’ of w., but this was not usually noted, often mak- with Q=1, not the originaQyq value. To obtain this result,
ing the actual definition ofv, uncertain, as well as making it is necessary that th& and > conditions of Eqs(4) and
w. itself potentially temperature dependent. Finally, the(5) be replaced by and=. Ngai and Rizos have implicitly
< and> conditions appearing in Eq&4) and(5) have often done so in the work of Ref. 2, where they preseft)
been replaced, without explanation, by and > since curves for the full range of, including the crossover point
1986223:27:29-34 t=r7.. But the choiceQ =1 is inconsistent with the original

In most of the Ngai workg is replaced by +n. When  theory in the asymptotic limit, and it is unlikely that that
the NgCM has been applied to CSDO or DSD situatighis, theory would lead t@Q=1 for <1 at the crossover point
has been identified as that associated with stretchedwere it practical to calculate its predictions there.
exponential behavior, here denoted KWWO wiBy, or Rendell and Ngaf have stated, “The first and second
KWWD with Bp. For CSD1 analysis, howeve8=3;, not  universalities together address many physical questions con-
a pure stretched-exponential parameter, as demonstrated éerning the meaning of relaxation and its relation to the ma-
the next section, although it has usually been so identified. Iterial structure,” and “a true activated process is not re-
this case, the relevant KWW response model will be denoteduired for the second universality,” but, of course, the
KWW1 with a parametep;; Eq. (5) is inapplicable, but a NgCM has been often applied to thermally activated CSD
modified CM can still be defined, as discussed later. situations. Finally, Ngai and Rend@llhave stated, “Al-

Note that when Eq(7) applies, any temperature depen- thoughn may be a function of temperature, the relation be-
dence of 8 will induce some inQ. In the present work, tween the effective KWW relaxation time, and the micro-
however, | shall just tak&) as a proportionality constant scopic 7, [here Eq. (6)] continues to hold at all
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temperatures.” In fact, as shown herein, even for a=r, expEL(T)/KT) and substitute these results into E6).

temperature-independent value rof Eq. (6) only holds for  with 7, and 7.,, taken independent of temperature. The re-
the COM approacttor a CM fit to it) if Q is allowed to be  sult may be put in the form

strongly temperature dependent at high temperatures, incon-
sistent with the original NgCM second-universality relation. ~ Ee(T)=Eeot kT IN[Q(T)/Q(0)], (10)

. For completer;gess, it is worth mentipnin_g_ that Ng'ai a”dvvhereEeo andQ(0) are low-temperature-limiting values for
his collaborators’®® have presented a simplified version of the relaxation process considered, &hg=BE.. From the
) S

the NgCM theory, which involves a constant reaction rate ofyn5\ysis of a fast-ion conductor presented in Secs. Il and I,

71 . .
7e~ for t<7. and a time-dependent, inverse-power-law, re-ong finds that) remains close t@(0) over an appreciable
action rate qulvmm for t> 7. Integration then leads to temperature range, and in this low-temperature range the
Eq. (4) with < instead of<f, Eq. ('5) with > msteaq of>, original NgCM resulf E.=E,= BE, with E, assumed to
and Eq.(6) with Q=1/8, inconsistent with matching & e temperature independent, will be a good approximation.

=7, but characterized as a minor inconsistency by _’%?i' But unlessQ(T) =1 for all temperatures, the modern form of
one that could be overtly eliminated by the renormalizatiory,q NgCM is not applicable.

of 7. Incidentally, in this piecewise approach, the presence  ngaj identifies the observed macroscopic activation en-

of 7o in Eq. (6) arises because of the assy;nption_ that theyrgy £, as not fundamental but derivative and instead takes
time-varying reaction rate Is proportional tg *. Ngai and = g_"as the basic microscopic activation enefdy® Inciden-
Rendelf® have stated that the basic physics of the NgCM “estally, since it is rare for a DSDy = 75, , to exhibit Arrhenius

in the relaxation-rate equations rather than in the KWWpanavior over a wide temperature raftgeand the CSD1
function. Finally, it is worth noting that in Ref. 34, published approach is much more appropriate for thermally activated
in 1995, it was stated that the three coupled equations of th@onductive-system situations than is the CSDO one,(E).
NGCM (written there with noQ term present, equivalent 0 shoid apply primarily for CSD1 situations. Although Raja-
Q=1), “were first proposed more than 14 years ago andyopa| and Ngdf have stated that most relaxation theories,

have remained unmodified.” _ including DRT ones, do not lead to the second universality
Suppose that one continued to require that@pshould  o|ation of the NgCM, Eq(6), with Q=Qy, (or currently,

hold r?md maintaiqed gontinuity at 7., even forQ unequal Q=1), the present more general E6) with temperature-
to unity? On multiplying Eq(5) by a consistency factoh  jependentQ is likely to be applicable for any physically
and setting the equations equaltatr., one then finds that regjizaple relaxation model with power-law behavior at high

Eq. (5 should be replaced by frequencies before cutoff effects dominate.
t)=ex — DY (r ) lexd — (t/7.)8 Excellent agreement with th&.,,=BE, relation has
¢s(0) =extl(Q= D)i{rel7c) Jextd = (t/7,)"] been found by Ngai and his collaboratbt5?®using nuclear
=exp[(7c/79)P = (t/79)P]—(1cl70)}, t=7c, spin lattice relaxation results to obtai estimates and em-

(8) ploying conductivity relaxation results to obtain estimates of
B andEg. There are, however, some potential problems with
and Eq.(4) by these results. First, as already mentioned, there are likely to
_ _ be appreciable inaccuracies in estimategafbtained with
Pty =exp(—U7e), t=Tc. © the common conductivity-relaxation-analysis approach used
Clearly the prefactor in Eq(8) is quite different from in the past, the Moynihan modulus formalisfas discussed
(7s/ 7)Y P, and it reduces to unity whe@=1. Further, it  recently***>47 Second, when a KWWO response model is
approaches unity at low temperaturesraér, increases. In  used for the CSDO response, the related CSD1 transient re-
the absence of analytical or numerical results from the origisponse isot of the Eq.(5) stretched exponential form, and,
nal Ngai analysis in the neighborhoodtef 7., Eqs.(6), (8), concomitantly, the CSD1 KWW1 frequency response is not
and (9) represent a consistent KWWD or KWWO coupling the same as the CSD0 KWWO frequency response, as dis-
model, although one not in full agreement with the originalcussed later herein. It is worthwhile to demonstrate the de-
NgCM analysis'=® Although Egs.(8) and (9) lead to the parture from stretched exponential behavior for both the
same result at= 7, it is clear that there will be a disconti- KWWO0 and KWW1 response models, and such results ap-
nuity in slope at this point. As Ngai, Rajagopal, and Teffler pear in the next section. The above possible problems sug-
have pointed out, the discontinuity in the NgCM is an artifactgest that further tests of the present activation-energy rela-
of the piecewise construction of the relaxation function andions might prove useful, although it is shown herein that the
“a completely satisfactory treatment would presumably beE. = BE, relation applies well for the KM COM analysis
continuous in all derivatives.” The cutoff model, which does situation below temperatures where appreciable conductivity
lead to the response that is continuous for all derivatives, andaturation occurs.
to Eq. (6) for both temporal and frequency response, will be  Because the KWW1 temporal response is not of the
discussed in the next section. stretched-exponential character of E@S. or (8), it should
Both the CM and the COM lead to an important resultbe clear that the NgCM, defined in the time domain, is only
for thermally activated systems that involve relaxation-timefully applicable for the KWWD and KWWO0 temporal re-
Arrhenius behavior. Suppose that(T)= 7. expEs/KT), sponse. If we match exponential and KWW1 time response
where Ts_wl is an attempt frequency arig is, as usual, also or Debye and KWW1 frequency responsetatr. or o
taken to be temperature independent. Then writ€T) = w., We expect that although such equation$&s(7), and
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(10) should still apply, they will involve differen@ values ity indeed reaches a plateau at a roughly temperature-
than those appropriate for KWWD and KWWQO situations. independent frequency of about 1 THz, consistent with the
Unfortunately, these distinctions have not usually been recehoice 7,=10"12s.
ognized in the past when applying the NgCM to CSD situa- In Ref. 59, Funke compares the original NgCM to his
tions, and KWWO analysis has been used for situationgump relaxation model and finds both similarities and differ-
where the KWW1 approach seems to be more appropriateences. Although the jump relaxation model also exhibits
crossover between types of response below and abovi
avoids the slope discontinuities present in the CM. The in-
D. The cutoff model teresting question remains as to whether the COM can not

Although many empirical or semiempirical frequency- _only simulate jump-relaxation response accurately but can do

response models that are associated with a continuous DRI, IN @ simpler way for a wider range of experimental re-
such as those of Davidson and CBSland the stretched SPOnse than possible with the more specific and much more
exponentiaP® involve a physically realizable low-frequency COMPlicated jump approach. , _

response, their high-frequency behavior is not necessarily f one has available &(x) expression defined over the

limited by a smallest nonzero response time. For exampldU!l range ofx=r/7, the present type of cutoff is achieved

both the Davidson and Cole and KWW models lead to &Y réPlacing one or more of the integration limits of Edj)

high-frequency-limiting power-law frequency response in-Py finite, nonzero values. Because the temporal and fre-
volving o’ < ¢, where O<¢<1. Thus, thew—o limit of ~ dUENCY response then follow through integration, a kind of

the corresponding conductivities is infinite. Physical realiz-2Veraging process, such sharp cutoffs of the distribution do
ability requires, however, that any response must involve fot produce the slope discontinuities inherent in the CM. For

shortest nonzero response time, here defined.asand a numerical work, it is unnecessary to use an infinite or ex-
1 (o . . . . .

longest noninfinite on& A hierarchy of processes is present ¢€€dingly large value for the upper integration limit because

in any given real material, and each process will involve®f the larger cutoffs inherent in the form of the KWW and

such limits. Here we consider only those limiting responsg?@vidson—Cole models. In terms of thevariable, it has
times appropriate for small-signal electrical relaxation/°€€n found adequate to use a maximum upper limiy of

dispersion and omit such contributors to the response as Ymac15 or so. The lower limit of the rightmost integral of
phonons! Eq. (1) with cutoff becomes jusyin=Y.=In(7./n)=In(xy),

The problem of the nonphysical limiting high-frequency With 7= 75 for the KWW response. Note that except at high
or short-time response is sidestepped in the CM by its ademperaturey, W|Il_usually be negative. I_:urther, a value of
sumption of an abrupt transition from KWW behavior to the ~ 80 Or less foly¢ yields no cutoff effects in any measurable
simple exponential response a& 7.. The COM achieves frequency range. At a sufﬂmentlly hlgh temperature,.how—
the same result in a smoother and simpler fashion by cuttin§Ver:Ye Will approach the upper limit of the integral, yield-
off a DRT (or distribution of activation energigst some ing a very nearly single-relaxation-time response over the
nonzero small value of, 7, which is here equated tq. . full time or frequency domain. Incidentally, the effects of
Such a cutoff yields a smooth transition from the dispersivéjiffer,e”t gutoff values for an exponential distribution of re-
response, say that of a KWW form, to nondispersive Iimitingl_axag'oOn times have been illustrated long ago for both the
Debye relaxation in the frequency domain or to a simpleiMe ™ and frequency domairfs. _
exponential response in the time domain. Cutoff is by no !N the present work, we shall illustrate the COM re-
means a new approach, and it much antedates the initigPOnse for various KWW situations. To do so, one needs to
NgCM work. In fact, cutoff DRTs have been used since, andP® able to calculat&,(x) or, equivalently Fy(y), with and
before, Frochlich’¥ 1949 discussion of the non-Debye di- Without cutoff. For the KWWO situation wittB,=0.5, the

electric response associated with a rectangular box distrib2tter quantity, without cutoff, is given By

tion. A modern application, involving an effective-medium = — (1/2Jm)exd 0.5v— e 14 11
approach with cutoffs of an initial activation-energy box dis- oy)=( Vm) XHL0.5y—expty)/]. D
tribution, appears in Ref. 58. No general expression fdéty(y) is known for arbitraryg3,,

It is worth emphasizing that it is unnecessary, althoughmaking it difficult but not impossible to calculate the KWWO0
often convenient, to define cutoff in terms of a DRT. Any and KWW1 frequency response accurately for an arbitgary
physically realizable response model, such as the correlatachlue?®*243|n fact, the current V. 7.01 of theevm fitting
hopping (jump) model of Funke?® must show cutoff effects program allows such a frequency response to be calculated
because of the above restrictions on the range of possiblextremely accurately and used for fitting when cutoff plays
response of a given relaxation process. In the frequency dao role?° In addition, the soon-forthcoming versionievm,
main, these effects lead, in a complex plane plot of, say, th¥. 7.1, includes an algorithm for the accurate calculation of
complex resistivity, to vertical approaches of the imaginarythe KWW temporal or frequency response with an arbitrary
part of the resistivity to the real resistivity axis at the ex-amount of cutoff and arbitrarg, needed to allow fitting the
tremes of frequency and to a high-frequency plateau in th€OM to appropriate data. The present work, however, deals
real part of the conductivity. Funke, Cramer, and theirprincipally with the3=0.5 choice since closed-form expres-
associate¥ have recently measured the frequency responssions forGy(x) and its moments foB,=0.5 are available
of an ion-conducting glass up to about 50 THz and find, afteeand have been presented previously for arbitearycutoff
vibrational effects are removed, that the hopping conductivvalues??
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over the range 10°<t<10 *s. Similarly, when
— KWW1 CO frequency-response data are available, one can fit the Debye
I WL NS range of 1&*<w=<10' r/s in order to estimate,. For cut-
- — — KWWO NCO off time and frequency response data calculated as described
above, one obtains fof =400 K the following 7/ 7. esti-
mates for frequency and time, respectively, KWW1: 1.35,
1.46, and KWWO: 1.28, 1.35. These values lead, using Eq.
(6), to Q estimates of the order of 4, very different from 1.
There is, of course, no single-relaxation-time response region
| B=0.5 \ for the NCO KWWO temporal data, but fitting of the NCO
| T=400K T KWW1 response with the stretched-exponential model over
JTs=1.311x10 7s ™0 s the above smalk range yields 7./7.=0.373 and 3,
- — =0.948, not the simple-exponential response but close to it.
0 2 4 More Q results are presented in Sec. Ill.

(1 ()121/7-N)1/2 It is worth emphasizing that for real data of a sufficient
range,LEvM fitting with a response model such as that of
FIG. 1. Some temporal-response relaxation curves for KWW1 and KwwoDavidson and Cole, for whicls(x) is known (or can be
models with(CO) and without(NCO) small-r DRT cutoff atr=7.. Here rapidly and accurately calculated numerically, e.g., the

B1=B0=0.5,7.=10"25s, andry=1s here and hereafter. Theaxis in- . )
volvest®®in order to show the approach to stretched-exponential behaviorKWW) for all values of its power-law exponerg, leads not

The 74 value is that appropriate for th€=400 K, z=0 ionic-conductor f)nly to es_timates ofsandg bUt.tO one ofy; as well, yield-
material analyzed in Sec. II. ing an estimate of.. As shown in the present work, because

of the saturation effect associated with a nonzero value of

7., one need not measure the frequency response up to fre-
Some characteristic temporal responses are illustrated fiuencies of the order ab.= 7. *; instead, it is only neces-
Fig. 1. These essentially exact results have been calculat&@ry to have data available over a limited frequency range at
using the appropriate expressions ﬁ){\'(y) Here we con- @ temperature where somt%-related deviation from dc-
trast KWW1 and KWWO responses, each with cutoff, thusconductivity Arrhenius behavior is present.
yielding COM behavior, and response without it. The ab-
scissa is taken proportional t'? in order to immediately
show similarities and differences from an ordinary stretche
exponential response witB,=0.5. The vertical dashed line
indicates the position of;. The value ofrg used here is that As mentioned in the Introduction, Ngai and Rizémve
following from the analysis of the next section fdr recently claimed that the NgCM can quantitatively explain
=400 K. In addition, that analysis yielded a value of thethe non-Arrhenius conductivity of glassy, fast-ionic conduc-
cutoff parametey, of 2.032 for this relatively high tempera- tors, and they have demonstrated their approach using the
ture. All these values are used for both the KWW1 and=0 results of Kincs and Martinfor the zAg |+ (1—2)
KWWO responses. X(0.525 AgS+0.475B,S;:SiS)) glass, data that NR “chose

Figure 1 shows that the KWWO response without cutoffto model as closely as possible.” Although the pioneering
is just stretched exponential behavior, as required from th&R work is a simulation/modeling of the situation and does
present definitions. But the figure also demonstrates that onlgot involve direct fitting of the actual KMe=0 data, NR
for t>r. do the other curves appear to approach themake the remarkable statements that, “The non-Arrhenius
stretched-exponential response. Note that the limiting slopefemperature dependence of the experimental data of KM is
of the two cutoff lines are the same, as are those withouteproduced in its entirety by the calculations using the cou-
cutoff. At the present temperature, we see that the KWWpling model without any unknown or indeterminable param-
curve is not of the stretched-exponential form over its fulleter,” and, “...the coupling scheme can reproduce this non-
range, even in the absence of cutoff. But the present type d&rrhenius temperature dependence quantitatively without the
presentation is not very sensitive to departures from théntroduction of any unknown or indeterminable parameter.”
stretched-exponential response, and the more detailed analere, it will be shown that, even though the NR results pre-
sis presented in Sec. Il B indicates that true stretcheddict an approach to conductivity saturation at high tempera-
exponential behavior only appears for the KWWO withouttures, they are not in adequate qualitative agreement with the
cutoff; all other situations lead to the stretched-exponentiatlata of KM, and it will be demonstrated how the COM ap-
response with time-dependept indicating that Eq.5) is  proach may be used to achieve semi-quantitative agreement,
then not appropriate, except perhaps over a very limited temas well as an additional physical insight into the phenomena
poral range. present.

Although one does not need to knawy in order to cal- First, let us list the actual parameters and their values
culate the COM temporal response, its value may be estdused in the NR analysis and then demonstrate how that
mated by fitting the response over a time range where simplanalysis may be modified and corrected. Note that in a simu-
exponential behavior, arising from cutoff, is dominant. Forlation, no model parameter values are determined by direct
the present value of;, such a fitting has been carried out fitting of the model to the data, and it is thus necessary to

log[¢(t)]

I. EXPLANATION OF NON-ARRHENIUS BEHAVIOR IN
AST IONIC CONDUCTORS
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rely on other information to obtain what one hopes will be anbetweenec., and €., has usually gone unrecognized in the

appropriate set. But NR claim that the NgCM they use forpast, and fitting measurements have yielded an estimate only

their analysis is “parameterless,” suggesting that no paramef €., , rather than of botle..,, and ep., Separately. A recent

eters are present and thus no values are needed. This is n@vm analysis of NgO—SiO, at 321 K yielded!” however,

the case. The following values were actually used by NRgstimates of these quantities of about 5.3 and 4.8, respec-

apparently based on guesses and/or values found in othgvely, consistent with the-,, value of the order of 10 often

experiments for other material@,=0.4, 7.=10 *?s, and quoted for such glassy materials. Further, an earlier

€,.=15. In addition, NR used the=0 KM low-temperature- analysi§* of CaTi0;:30% AF" suggested thakc, was

limiting activation energy estimat&g, of 0.33 eV and the about 60 at 422 K, certainly quite different from any likely

KM T=298 K low-temperature-extrapolated dc conductiv- ep,, value.

ity, oq=1/ps=0.0014 Q2 cm) L. Finally, the glassy fast- With all possible temperature dependencies shown ex-

ionic material analyzed here and by NR is a thermally actiplicitly, the correct equation for the CSD1 response, one that

vated conductive system, and so should be analyzed by replaces Eq(13), is***°

CSD1 approach, as done using the KWW1 below. But in the . _

work of Ref. 2, NR show only the KWWO results and appar- po(T) =74 evec(NX(M} Hal, (14)

ently did not recognize that their use of the Moynihan CSD1which can be rewritten with temperature dependence sup-

formalism should require that the stretched-exponential bepressed as

havior of their Eq(3) [the present E(5) with t= 7] should .

be replaced by the KWW1 temporal response, the response ps=1s(X)o/ (evec.). (15)

not fully of stretched-exponential character. Note that even whelc.,. is less than unity, as it is for the
Since Arrhenius behavior was observed by KM at suffi-present KM data, it plays a crucial role in determining the

ciently low temperatures, the abowg. value may be used to ratio pg/7s.

obtain the temperature dependence of the dc resistipity, Here, Eg. (15, unlike Eq. (13), involves only
in the low-temperature region only, conductive-system quantities, as it should. Note that al-
though(x~1);, and thugx),, do not involver,(T) directly,
ps(T)=ps. eXp(E/KT) they will, in general, involve possibly temperature-dependent

—0.001 874 8 ex{D.33 eVKT) (Q cm), (12 shape parameters, such as phef Eq. (5), and they may be
strongly affected by the presence of cutoff of the DRT in-

in agreement with the NR result. Ngai and Rizos then usedolved in a fitting model. Further, as already mentioned, if a
the electric modulus formalisthin order to obtain an ex- KWWa1 fit of frequency-response data yields an estimate of
pression for the temperature dependence ofrthef Eq. (5). g, it should be designated, , then used ifx 1), or (x),,
Although NR characterized this approach as “formal,” sinceand distinguished from the different quantigg, which is
the actual DRT introduced in this formalism may be of only approximately given B ~*”1— g, . For real data situations,
mathematical use and not necessarily of physical signifiones whereep,.>1, it should also be emphasized that since
cance, it is interesting that in earlier work Ngai andthe standard methods of Moynihan modulus-formalism fit-
coauthor8! invoked the fundamental Paley—Wiener Fourier-ting do not take separate account of the effectegf., a
transform criterion to show that simple exponential decayguantity always present, the obtained from such a fitting,
(and thus a continuous or discrete distribution of single renot distinguished fronB, in the past, is usually a poor esti-
laxation times such as that considered hésenot a viable mate of ;.
description of relaxation phenomena. Luckily for DRT For a KWWD or KWWO0 response, the general expres-
analysis and for the CM, it has recently been shown that theion for (x) is*>*°
Paley—Wiener criterion does not, in fact, preclude simple

exponential relaxation respon¥e. (X)o=T(1IB)IB, (16)
The pertinent equation following from the Moynihan whererl is the ordinary gamma function, amglis 8, or 8p,
modulus formalism may be written Bs respectively. But, as discussed above, for the CSD1 re-
_ _ sponse, it isB,. Equation(16) only applies exactly in the
74l T) = eve [{7)o= eve [ 7s(T)(X)ol, (13 absence of cutoff. Therefore, it is not appropriate to employ

where ey is the permittivity of vacuum, and in the original Il €Xcept in the low-temperature region, where the high-
work ep., appeared in place @, . In spite of the widespread frequency simple-Debye part of the response at frequencies

usage of Eq(13) since 1973, it has recently been shown toin the neighborhood o and larger is a completely negli-
be incorrecf24547 gible part of the full response. At higher temperatures, for

For CSD situations, in addition to the ubiquitoes.. both the CM and the COM one should use the cutoff version
there is an additional frequency-dependent effective real diof Ed- (16) for the KWWO response. As shown earférthe
electric constant preseff, ec(w). Its low- and high- @Ppropriate expression f@=0.5 is
frequency-limiting values are denoted &g, and ... and —AT(2 % /AT (L x./4 1
are purely conductive-system quantities. The full high- {X)o (2XSDIT(3%cl4), (17
frequency-limiting dielectric constant is thug,=ec. whereT'(a,z) is the incomplete gamma functiofix), de-

+ €p, . INn many cases of intereséc..(<ecg) iS not negli- creases ax. decreases and reaches a value of 2 when
gible in size compared tep., . Unfortunately, the distinction x.=0, as does Eq.16) for 3=0.5.
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Ngai and Rizos did not use E@L7) in their work. But, —
recognizing that Eq(16) was inappropriate, they obtained bz
approximate values ofx), at several temperatures above N
275 K by using Eq.(2) with approximate estimates of <

>,
o])]
O

—

Gy(X). The latter quantities were themselves obtained by a
Tikhonov inversion of the full NgCM temporal response, the
combination of Egs(8), with Q=1, and(9). Because of the
poor resolution of such an inversion, required by this method ]
to tame the ill-posed character of inversion calculations in- —3]
volving continuous distributions, their results did not yield 1 B1=0.5
an isolated discrete line for thi,(t) part of the response but ]
instead led to an appreciably broadened continuous DRT in
place of it. TheLEvM program includes an inversion algo-

z=0.4
“Es=0.25
N, €V

rithrn Wit_h mueh higher resolution, one .that allows one_to 6_5001 ' 0_0'03 ' 0_0'05
obtain single lines for discrete distributions and to distin- T-1 K-—1
guish continuous and discrete parts of a complete ( )
distribution#0:41:46

- . . FIG. 2. Log plots of calculatedry(T) curves versus T/ for zAgl
Note that whenrg exhibits Arrhenius behavior, the usual +(1-2)x (0.525 AgS+0.475 BS,'SiS) glass withz=0 and 0.4. All re-

CSD1 situation, the cutoff quantity, becomes sults were calculated by the present COM approach 8itk:0.5. Glass
transition temperatures are indicated by the vertical dashed lines. The Ng-
Y=~ (KT) " Eg+KT (7. /7)1, (18 : ) ’

COM curve involves arec,, value of 15, rather than its far smaller proper
somewhat reminiscent of ELO). Since will usuallv be value, in order to illustrate some of the effects of the Ngai and Rizos choice
. D ) . Tsx Yy of €,=15. Here and hereaftes;y=1 (2 cm)™ 1.
appreciably less thanm, it is possible fory, to become
positive at a sufficiently high temperature.

To obtain an expression with which to calculat€T),  aqgitional information, which would be available from fitting
Ngai and Rizos combined Eqd.2), (13), and(16), using the ¢ 1| data, we shall take., temperature independent, just

guessed valueo=0.4 ande..=15. They gave the result 55 NR did fore,,. Had the original modulus-formalism ex-

7(T)=10"8exp(0.33 eVKT) s, (190  pression of Eq(13) used by NR been appropriate rather than
] ] ) Eqg. (15), an estimate ok,, smaller than unity would have
where the sign of the exponent of the|r pre—expon_entlal factopeen found by the above procedure, but it would have had to
has been corrected. In conggsst, direct calculation uging pe rejected on physical grounds. On the other hand, since
=B1=0.6 yields 7(T)=10""""exp(0.33 eVKT) s. But, . s essentially just a conductive-system proportionality

as we shell see, neither result is adequat?- _ constant, as shown by Ed15), it may be either much
Consider now a much more appropriate calculation of

- g smaller or even much larger than unity.
75(T) using the cutoff model. Althoug8; is often found to Now that an appropriate expression fay(T) is avail-

be temperature dependent, in the absence of further informay e over the full temperature range, we can use the combi-
tion we shall take it independent of temperature, as d_id NRyation of Egs.(15 and (17) to calculateoy(T)=1/p«(T)
for By . Further, we teke its value as 0.5, consonant with the; 4 7(T) “data” as functions of temperature. This has been
KWWO DRT expression of Eq(11). done at 10° intervals over the range90=<610 K, and the
Kincs and Martin listed twoz=0 o values at 298 K:  zpqye procedure has also been used to obtain results for
a value extrapolalted from low-temperature resuli§e  ;—0.4 as well. Conductivity curves are presented in Fig. 2
=0.0014 @ cm) ", and the smeller actual value at that tor poth the low-temperature-extrapolated Arrhenius behav-
temperaturé g, =0.0010 (2 cm) = Only e Was used o and the corresponding calculated non-Arrhenius re-
by NR, but the use of both quantities allows one to avoid the;,,nse Because of the density of calculated points, here and
need to make any arbitrary assumption about the value of thg hsequently, only lines connecting the points are included,
€c~ quantity of Eq.(15). From Eqgs.(19), (16) with 8=0.5, \yithout the points themselves. The actual data points shown
and(17), it follows from the cutoff model that were obtained by scaling from an enlarged copy of the KM
Fig. 2. Note that the data values showriTat'= (298 K)!
were used in the calculations and so agree exactly with the
Since the above ratio is 1.4 a=298 K for thez=0 mate- corresponding calculated values. The small deviations appar-
rial, we need only solve Eq20) for x. and so obtairrg (298  ent at the lower temperatures may arise from multiple
K) using 7.=1012s. A root-finding procedure yieldeds,  causes: for example, the present assumption of temperature-
=3.4724< 10 12 s, This value and&E,=0.33 eV then led to independeni8; and ec.., errors in the graphical estimation
Te.=9.114x 10 s, much smaller than that in E(L9). by KM of the dc conductivities at each temperature, errors in
We may now solve Eq.18) for the temperature at which the present scaling procedure, and possible small differences
y.=0 and7s=7.. The result is about 330 K. Finally, since between the actual activation energies Z6r0 and 0.4 and
all quantities in Eq.(15) are now known aff=298 K out  those estimated by KM and used herein.
€c, It may be evaluated. The result found is 0.1098, very  Incidentally, for z=0.4 whereEs=0.25 eV, ec,. was
much smaller than the NR value ef = 15. In the absence of found to be about 0.0919, surprisingly close to the above

O Taca= 2T (3,X/4)IT (5,x.14). (20)
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/>\ . tirety, their work on the problem was nevertheless seminal.
® 3] ES’Z_/O” B i Figure 3 also includes a dotted curvemf,,, the com-
Ve ] .,/ B E =04 mon apparent activation energy of the Debye-region quanti-
3 Vs jfﬂ__ -5 ties pe and 7., which are connected by EL5) with (x),
o 1% ,°0 =1 and the ‘s” subscripts changed to €.” See the next
LS 021 / " ¢+ 0 E. 7=0 section for a discussion of the calculation of these quantities
N A j,,;/..w SO with the CM or COM. As expected, the low-temperature
g 1, ¢ R asymptotic limit of theE,, curve for thez=0 case is 0.33
= ] g X 0.5=0.165 e\=E,. Finally, Fig. 3 also includes a curve
0.11;
g s ;T HggaM of the E4(T) activation energy, calculated using E4.0).
&= / s U770 Apparent Unlike the apparenEg curve, we see that it increases with
o f PP
< 0.0 - _ L/ eeeeeEq. (10) temperature rather than remaining temperature independent.
0001 0.003  0.005 0.007 This is, of course, an |n_d|cat|on of the unsunat_)lht_y _of the
' ) Arrhenius equation at high temperatures and is intimately
T (K ) linked with the approach to saturation @f(T) at high tem-
peratures.

FIG. 3. Temperature variation of the apparéntactivation energy forz . . T )
=0 and 0.4, solid and long-dashed lines, respectively. Also, temperature It is important to emphasize the distinction between ap

variation of thez=0 apparenE, Debye-response activation energy, and its Parent and actual activation energies for the present situation.
actual behavior calculated using EG.0). The NgCOM curve is derived  If there were no cutoff effects present, it would be necessary

from that of Fig. 2, and the NgCM curve is a smoothed version of thatfgp Esto increasenot decrease, with increasing temperature,
presented by Ngai and RizgRef. 2. The large open squares show values in order to explain the approach to saturation of the conduc-
estimated by Kincs and Martin from their data. Hgtg= 0.5 for the COM P PP

curves and3,=0.4 for the NgCM results. tivity. For thez=0 situation E¢ would then have to be about

0.40 eV at 400 K and 0.56 eV at 590 K to explain the ob-

served saturation. Kincs and Martin have suggested that the
z=0 value. Figure 2 also includes a curve marked NgCOMsaturation effects in their data might be associated with a
the outcome of az=0 calculation of the present cutoff- temperature-dependent ionic mobility in the region where all
model type using a constant value ef..=15, in order to  available mobile ions are fully dissociated. But such a full
illustrate the deleterious effect of such a large value. Fogdissociation, in the absence of cutoff, would lead to a limit-
completeness, all the curves have been extended beyond tig conductivity of more than 53a cm)~*, as shown by
T=T,4 points, ones designated by the vertical dotted lines. the high-temperature limit of Eq12).

Numerical differentiation has been used to calculate the ~ While some temperature-dependent mobility effects can-
apparent activation energfs,,, curves from the present not be ruled out by the present analysis, its good prediction
o4dT) calculated curves, and the results are illustrated byf the approach to saturation, based entirely on cutoff, at
the solid and long-dashed lines in Fig. 3. In addition, Fig. 3an effect unconnected with temperature-dependent mobility
includes curves derived from the NgCOM results of Fig. 2,0r Eg activation energy changes, strongly suggests that cutoff
and a smoothed curve, designated NgCM, the result of this likely to be the cause of the observed approach to satura-
NR coupling model calculatiof.lt is not clear why the tion. If so, it appears that the only practical way to obtain
NgCM curve approaches 0.31 eV rather than the propehigher high-temperature conductivity is to find or create a
value of 0.33 eV at low temperatures. Further, this curvematerial with a smaller value af;, clearly not an easy task.
reaches an implausible high-temperature limiting value of A comparison of the saturated conductivities shown in
EsB0=0.33x0.4=0.132 eV, rather than continuing to de- Fig. 2 for thez=0 and 0.4 values indicates that the lower
crease smoothly toward zero as the temperature increasesvalue of Eg of the latter material does not lead to higher

Also shown in Fig. 3 are a few apparent activation en-limiting conductivity, although ifec., were larger, a higher
ergy points(large open squargscaled from Fig. 3 of Kincs saturation value would be achieved, as shown by the Ng-
and Martin! Although the present solid-line and long-dashedCOM curve of Fig. 2. Buiec.. is not a separately disposable
COM curves and these KM points are in semiquantitativequantity, as confirmed by Eq15), which demonstrates that
agreement, there are several reasons, in addition to those low temperaturesc., is determined by the/ 7 ratio for
listed above in connection with the Fig. 2 results, for thea given value of. Although it might appear from Eq15)
remaining discrepancie&) the present work is a simulation, that to obtain maximum dc conductivity at a given tempera-
not a fit of extensive datap) differentiation magnifies er- ture 75 should be as small as possible, decreastagn-
rors; the 0.5 value of3; used here is unlikely to be fully creasey, and thug(x)y, resulting in a compensating effect.
appropriate, especially sing® may be temperature depen- It thus seems that higher conductivity requires either a
dent; and(c), in obtaining their values of4., KM appar- smaller temperature-independent valuergbr a 7. that de-
ently took no account of possible electrode efféét&Most  creases with increasing temperature, neither choice a readily
of these same limitations, or their CM equivalents, apply tocontrollable possibility. Even though their application of the
the NR analysis as well. Thus, although it seems an exagNgCM to explain the non-Arrhenius effects observed by KM
geration to claim, as NR have done, that their application ofs imperfect, Ngai and Rizos deserve great credit for first
the CM to the presenz=0 data reproduces the non- suggesting that the effect in fast ionic conductors is associ-
Arrhenius temperature dependence of the KM data in its enated with the influence of a nonzerg.
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TABLE |. Calculated and fitting frequency—domain results B+ 0, T

Te=1. itself. In the calculation ofr,(T) for the z=0 situa-
=200 K, KWW situations withB=0.5 andr,=10 *?s. Here and else-

where,py=10Q cm andry=1s.n=1: KWW1; n=0: KWWO.

tion of the previous section, it was found thatapproaches
7. asymptotically as the temperature increases, and it is 35%

A B c D E larger thant, at T=400 K and is still 2% larger at 500 K.
Type,n COoMm CM COM fit of CM This behavior is physically plausible. l. is the primitive
iy O1 3.928¢10° 3,928 10° 3.925¢ 10° (NgCM) or limiting (COM) response t!me of the system,
oy 01 1.885¢10~° 1.885¢ 109 1.875¢ 102 there should be no smaller response time for the overall re-
Ve 1 -7542 -60 —7.756 laxation process considered.
. 0 —7542 —60 —8.708 The above behavior of,(T), which applies for either
<’<( >>1 (1) 2'3225 2'3(9)8’5 g'gfgz the temporal or frequency-domain response, as discussed be-
X)o . . . . .
pulpn 1 (7.974¢ 10%) 71481 low, means thatre(T)_, like pg(T), can_only exhibit an
0 (1.490< 10%) 1.114x 10* Arrhenius response with a temperature-independgntand
Tl Ty 1 (7.752 1071 6.955< 107 1 E. at low temperatures. By contrast, the conventional NgCM
0 (794010  9.819x10° *° treatment involves Arrhenius behavior af(T) over the full
Q 1 1.786 1.602 temperature range. The derivation of Ef0) assumes that
0 0.0677 0.0226 - . S .
y 1 0.2268 04438 the deviation from Arrhenius behavior involves changes in
" 0 6.771 8.965 E., but, alternatively, one could take, temperature inde-

Ill. COMPARISON OF CUTOFF AND COUPLING
MODEL PREDICTIONS

A. General

pendent and ther,, variable if one insisted on using the
Arrhenius equation at all at high temperatures. Incidentally,
although p, indeed approaches; asymptotically, it is al-
ways smaller thap,, about 8% smaller af =400 K for the
z=0 calculations. More details are provided later.

Most of the comparisons in this section deal with fre-
guency rather than with the temporal response, and they a}g
involve the results of the=0 calculations of the last sec-
tion. Until now, the CM has only been defined at the tempo-  In the temporal domain, there are several ways to obtain
ral level; thus, it is appropriate to consider how it might beneededQ or 7, values at each temperature of interest when
defined in the frequency domain. Although COM time de-the Q=1 choice is not appropriate. First, one could fit the
pendence has already been illustrated in Fig. 1 for KWWEXWWO0 or KWW1 COM response directly to actual tempo-
and KWW1 models with and without cutoff, some compari- ral or frequency response data. If the data allowgdo be
son in the time domain between COM and CM dependencieadequately estimated or if it were known independently, such
is worthwhile and will be presented first. Because of the highan analysis would usually be sufficient. Although knowledge
frequencies or short times involved in the Debye part of theof 7, is not needed for COM fitting, it could be obtained by
CM or COM response, there has, so far, been little or naseparate fitting of the short-time or high-frequency response
detailed fitting of data with either of these models in theregion, as already discussed. With such a value available, a
range neat. or 7.. This is one reason why the results in the corresponding CM response could be calculated using Egs.
preceding section are important: they explain an interesting8) and (9) for the KWWO temporal-response situation. To
and relatively common observed effect using the COM ap-obtain the KWW1 CM response, one would use Bj.and
proach without the need for data actually extending updo match its value at= 7, with the calculated KWW1 response
or down tor. without a cutoff. In the present work, the exact KWW

The range of expressions for and valuesothat have COM time response is calculated using the appropi@&ie
appeared implicitly or explicitly in previous NgCM work DRT.
might be thought to make its actual application ambiguous in ~ Some time domainB,=3, COM and CM results at
situations wherer, is not determined directly from data fit- T=340 K for KWWO0 and KWW1 are compared in Fig. 4.
ting, i.e., in most previous NgCM studies. For example, EqHere, as usuak.=10 12s. Figure 4a) is plotted so that the
(6) shows that without knowledge &), 7. cannot be deter- exponential response yields a straight line, and its range is
mined, orvice versa NR have avoided this problem in the limited to the region &t/7.<2 in order to show the CM
work of Ref. 2 by using the modethversion of the NgCM, transition clearly. For both KWWO0 and KWW4,,=0.343;
one where in Eq(6), Q=1 by hypothesis® It should be and 7, and Q are about 1.05810 *'s and 12.48 for
recalled that this choice @ only applies for the KWWQor ~ KWWO, and 3.186& 10 2 s and 3.186 for KWW1, respec-
KWWD) response, not for the KWW1 time or frequency tively. For comparison, the KWW® value in the frequency
response; see Sec. Il C and Table | for details. domain is about 2.531 at this temperature. The present re-

Ngai and Rizos have presented a form of Etp) for  sults, besides illustrating the large differencesirbetween
Te= 1., With the equation rewritten for, rather than forry, KWWO0 and KWW1 situations, clearly show the much
and with({x),= 1. Although these choices are appropriate forgreater CM discontinuity in slope at= 7. for KWWO as
the exponential response region, there remain several probompared to KWW1; thus, KWW1 analysis characteristi-
lems with this approach: the use ef instead ofec..; the  cally leads to much closer agreement between the COM and
implicit identification ofp, with p;= agcl; and the condition CM approaches than does KWWO.

. Time-domain response
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might be expected ify were a proper KWW or power-law

— 0.0 : exponent>4® Next, one sees that the presence or absence of
:’/ Rl (C') cutoff makes little difference in the KWW1 response for
E \ S t/7.>1. Incidentally, a nonlinear-least-squares, stretched-
an ; KWW 1 exponential fit of the KWW1 COM data over the range
o—0.1] KWWO ™ 10" 3<t/7y=<10"'! yielded quite a good fit, with estimates
- R Bo=1/3 of randp of about 2. 10! s and 0.79, respectively, with
'\ one to two percent estimated uncertainties, showing that the
¢ COIM\\ results of such a fitting may be strongly misleading.
—-0.29 -..___ do CM Although both the KWWO response with cutoff and the
- — - \ KWW1 response approacP, asymptotically, the former
s CM
T=340K \\ does it appreciably faster. For the present temperature, the
T7,=7.099x10 Bg cutoff KWWO situation vyields ¢(t) values of about 3
-0.3 — A X107° and 8x10 " att=10"° and 102 s, respectively,
0 12 \ while the KWW1 values are about 18 and 108, respec-
10 t/TN\ tively. It is thus clear that ordinary temporal measurements,
which usually do not extend to very small values ¢fft),
- will not allow one to reach values of close tog, for either
1 - (b) type of response. But only when= 3, does one have true
0.9 - stretched-exponential behavior.
& :
1 C. Frequency-domain response
0.7 Bo=1/3 reneyrEoman Tespons® |
RN Coupling may be achieved in the frequency domain by
] KWW Eco ' setting a frequency response function, evaluated.atequal
I KWW1 INCO', to the Debye response at this frequency. Such coupling has
0.54 ---- Kwwo :CO ' not been considered previously for the CM. Both real and
1 = — Kwwo gNCO S imaginary parts must be matched at the transition point. If
: 1:2374'%59)(1 0% KWW ==« _ we make the usu#**~*" assumption thap,(«)=0, and
0.3 e e = — == — = il consider only the KWW response, an unnecessary limitation,
15 —-13 —-11 -9 but one consistent with the time-domain NgCM, then with

pn(0)=ps,, frequency—response coupling is achieved if

pr(®c)=psnln(wc) =pe/(1+iweTe), (22
FIG. 4. (a) A comparison of COM and CM temporal response curves for . .
KWWO and KWW1 situations, showing response near the CM transition a@ r€lation sufficient to allow values of both, and 7., to be

t=17,=10"'2s. (b) A longer-time comparison of KWWO and KWW1 slope obtained when the complex quantity(w.) is known. Al-
response with(CO) and without(NCO) cutoff. The curves marked CO though rapid and accurate calculation of the KK\WWesponse

involve a COM response. The approach to the KWWO/NCO stretcheds, 1o grequency domain has not been possible in the past for
exponential behaviofwhere n= ;) is relatively slow for the other curves.

Here and hereaftez=0, and a vertical dashed line indicates the position of &rbitrary 8, , a procedure to do so has recently been added to
7. OF w,. The horizontal dashed line in this figure is plottecyat 5. the latest version of theevm complex nonlinear-least-
squares fitting prograi?, as well as one to implement Eq.
(22) for the noncutoff KWW response ab<w.. Thus,
given values ofpg,, 7sn, 7c, andpB,, one can readily cal-
culate the corresponding., 7., Q [from Eq. (6)], and vy,
values and then, if desired, use the results to model the full

When the present KWWO0O and KWW1 COM results are
plotted versus t{ m) 3 curves similar in shape to the cor-
responding ones of Fig. 1 are obtained. But since they do n%sponse. For the present 0 situation, one finds that,.

yield precise information on how closel(t) conforms with —53509%10 s, and for sufficiently small tempera-
stretched-exponential behavior, some of the results of a dif: ’

ferent analysis are presented in Figo} Let us define wres,
T)= pes €XP(Eeo /KT
n=dlog{—In[$(t)]}/dlog(t/y). (21) PelT) = pe EXPBeo/KT)

If ¢(t) is given by the stretched exponential of E§), then =0.550 358 ex(0.165 eV/kD (2 cm). (23
n=p, a result that is indeed obtained over the full time The CM matching defined by E¢R2) leads to a discon-
range for the KWWO response without cutoff. tinuity in slope atw= w., but matters differ between CSDO
Figure 4b) shows» behavior for the usual four choices. (or DSD) and CSD1 situations. With matching between the
First, note thaty is not independent of time for the top three dispersed CSDO response and the Debye response, both the
responses shown in the figure, demonstrating that theeal and imaginary parts of the complex resistivity response
stretched-exponential form is inapplicable for these three reshow slope discontinuities when no separate account is taken
sponse possibilities. Second, note that if we getB, for  of ep., as in Eq.(22). On the other hand, for the more
the KWW1 situations3; is not close to the valug, which  reasonable CSD1 situation, it turns out that only the real part
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shows such a discontinuity, whether or not the effectof

is included in the response at the match point. This fortunate
result follows because the high-frequency CSD1 imaginary
response without cutoff already involV@4’ the proper
physically required limiting slope of- 1. In order to imple-
ment Eq.(22)-matching properly for actual data, one should

KWw1
CM

log[p(w)/pn]

first fit the data in the regiom<w,, taking proper account O_ .
of ep. . This would then allow the quantitigs;, and | ,(w) -2 !
to be obtained, and EQ2) could then be applied ib, were 1 |
known independently or if it could be determined from the — 4
data. Note that although, can be smaller than. at frequen- ] |
cies abovew., the CM or COM response in this region is "6j :
dominated by Debye behavior. _al ' L i
The above procedure is unnecessary for the COM. For 06 8 1b 1'2 1'4 16

this approach, the amount of cutoff is determined by the Iog(co‘r )

75/ 7. ratio, as discussed in the last section, with no cutoff N

effects apparent when,/7.>1000 and with a transition to F|G. 5. The coupling-model frequency response for the real and imaginary
the situation where the full response approaches single-timearts of the complex resistivityp=p'—ip”. Here and elsewhergy
constant Debye behavior fot,/7.<1. In fitting actual data, =1 cm.

one would use an appropriate expression liffiw) associ-
ated with a known DRT and calculated employing E%.

By allowing the DRT cutoff parameter to be one of the free
parameters of the fit, one could then obtain an estimate of th
appropriater, value, provided the experimental frequency
range was adequate.

As an example, consider tlze= 0, T=200 K frequency—
response situation with the usual choicerg 1012 s. The
KWW1 and KWWO cutoff-model parameter values for these
choices are presented in column C of Table I. Thevalue
of about—7.5 leads here to a limiting Debye response for . .
B> w,, without the need for grafting on any separate Deby fransition polnt, does not show up strongly on a small log—
response as in the CM. Since the COM transition to exact’9 _plot_of p VS w and CO.M and CM results are hard FO
Debye behavior is gradual rather than abrupt, the cutoff datg'St'n,gu'Sh, n sth a pI,Ot' Fig. (,5, pres”ents E,he relzitlve residu-
were fitted, using.EvMm, to the Debye model over the fre- als, r’=(pcw=pcom/pcm andr"=(pcy—pcom)/pcu. for

quency region from 1% to 10'6 Hz, yielding a virtually per- }_Te T:tEOOCKMm an t.h? gorre;;port]ﬁmg onte for AI'OO K, del
fect fit that led to the parenthesized and 7, values shown ere, the subschipt denotes ne exact coupiing-mode

in column C. Incidentally, these quantities led, through theda'[a and the COM subscript indicates the complex-

analog of Eq.(15) for a Debye response, to the same, nonlinear-least-squares fit predictions arising from the use of

. . the KWW1 COM fitting model, as in column E of Table I. It
value as that involved in the low-frequency response, show-

ing, as expected, that the response beyond the cutoff fre-
guency is still an integral part of the total KWW1 behavior.

KWW1 complex conductivity defined by the CM parameters
in column D of Table I. Notice that although there is an
abrupt change in the slope of (w) from*=4" —(1+ ;)
=—1.5 to the limiting Debye slope of 2, there is no tran-
sition in the —p"(w) slope of —1. Thus, we see that the
presence or absence of coupling to the final Debye response
makes a negligible difference in a KWW4p"(w) curve for
frequencies appreciably beyond its peak response.

Because the break in the' slope, present at the CM

Coupling-model results are shown in column D of Table »n 0.22 ] i KWW1
I. The largey.= —60 value ensures that calculated KWW g 0.18 1 -0
response data up t@= 10" Hz involves no cutoff effects, o E z=
and the subsequent matched Debye response leads, through 3 0.14
Eq. (22), to the p. and 7. values shown, ones reasonably @x v

close to those for the COM, except for the KWWQvalue. o
In contrast, the column E values are those obtained from a E 0.10 1

LEVM fitting of the COM to the CM data associated with ¢] r', T=200K

column D. We see that all the parameter values agree closely  © 0.06 {.---- r'', T=200K

with those of column C, except.. This substantial agree- o 1 7 r', T=400K

ment indicates that there are only minor differences between 0.02 1 AN

the COM and CM responses, except near the coupling tran- ~Sasmsawoos e s
sition point. Note that although the bottom lines of columns -0.02 T

C and D show KWW1Q and y, values that are not greatly 7 9 1 |1 13
different from Qg and y, the KWWO ones are very differ- og(wTN)

ent, indicating that CM slope discontinuities will be appre- , . o
. . h FIG. 6. Relative residuals for the real and imaginary parts of the complex
C'ably smaller for the KWW1 than for the KWWO situations. resistivity resulting from the KWW1 COM fifcolumn E, Table )l of the
Figure 5 shows the log—log frequency response of theM response of column D of the table shown in Fig. 5.
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- 1 i Q. 407
pi 5 ' 20]
- 5 ] y
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FIG. 9. Complex-plane plots of the complex resistivity for several different
KWW1 situations. The arrow shows the direction of increasing frequency.
0.0 ————T——7—
6 8 10 12 14 16 Figure 8 shows DRT estimates obtained by usiegm

Iog(coTN) to invert the frequency response data of columns C and D of
Table I. First, we see that since the COM points appear in
FIG. 7. Frequency response of the conductivity(w)=Re1/p(w)], for  different positions on the curve foi=8 and forN=11 total
the CM response of column D of Table | and the COM fit téciblumn E of inversion points, the distribution is continuous, not
Table ). discrete’!*24¢Second, the slope of the left, straight-line part
of the curve is just3;=0.5, as it should be. Third, as
increases, the smallestpoint approaches closer and closer
is clear that while there can be a large relative error preserib 7. and exhibits smaller and smaller strength. But no matter
in the real residuals, about 21% at the= w. peak, there is how largeN, no points appear for<rz., a requirement
practically negligible difference between the fit and thealready mentioned.
model for the imaginary-part residuals. Thus, the major dif-  Although the G(x) distribution found from the COM
ference here between the CM and COM frequency—respongesponse is clearly that for the KWWGE,; DRT with cutoff,
predictions is that the real part of the CM response can showne should not necessarily expect that the DRT found for the
a large abrupt change in slope in the neighborhood.of CM should be of the same form in the= 7. region. We see
while the corresponding COM curve shows only a graduafrom the figure that in fact the results for the CM data begin
slope change between that appropriate for the KWW1 modeb deviate from the5, curve asr decreases toward. . In-
without cutoff, —(1+ 8) and the—2 value for Debye re- version is made difficult in this case by the discontinuity in
sponse. The maximum value atT =400 K is much smaller slope atw=w., and no more than eight significant points
because at this temperatune,~2.03, quite different from could be obtained for it. Nevertheless, unlike the NR inver-
the value of—7.54 atT=200 K. sion result$, no points or DRT density were found far
Another way of illustrating the effect of the slope dis- <7.. This is because the full CM dataset still involves a
continuity in the CM response is presented in Fig. 7. Herecontinuous distribution: the addition of a Debye response for
the COM (column E of Table ) and the CM(column D of w=w, with only a discontinuity in slope at the transition
Table ) o'(w) responses are compared. Note that bothdoes not lead to a discrete response line=at., as it would
curves show the approach to a final plateau at high frequerif there were a region of no density between the low- and
cies. high-frequency(or short- and long-timeresponses. This is
further evidence that the Ngai identification ¢f(7) as ba-
sic and fundamental may be inappropriate, at least in the
Q=1 situation considered in Ref. 2.

— —0.4 T=200K Another way of presenting frequency—response differ-

8 ] ences is illustrated in Fig. 9. Here complex-plane plots of the
Y —0.81 resistivity responses for variols=400 K KWW1 situations
2 T are shown. In this high-temperature caggs=2.032 for the

-1.21 COM curve, and the curve falls quite close to that of the

] single-relaxation-time Debye model. On the other hand, the

—1.6- y.= — 60 no-cutoff response is appreciably different. As ex-

] pected, the low-frequency part of the CM curve agrees with

esess COM N=11 the no-cutoff one, and the high-frequency part lies closer to

_2'0 ] 00000 COM N=8 the Debye curve, but the COM response is certainly more

sssas CM  N=8 plausible than that of the CM here.

-2.4 , 7 Figure 10 shows the dependence dP and
~12-11-10 -9 -8 - (pe!pn)! (ps! pn)®®on T~ 1 andy, for the KWW1z=0 situ-

Iog(T/TN) ation. HereQ varies from its low-temperature limiting value
FIG. 8. Inversion results for the distributions of relaxations times assouate(?f about 1.773 to about 14 at=600 K, quite different from

with the T=200 K KWW1 frequency response defined in Table | for coM the temperature-independent value of unity used by’NR.
and CM situations. The p ratio, in the limit of low temperatures, is, from Egs.
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Ye conductive systems, the KWW1 choice, which is now
14 12 8 4 0 -4 —813 readily available in theevm fitting program?° is much more

0 appropriate than the KWWO one for both the coupling model
12 1 S~ and the DRT cutoff model.
101 é The coupling and cutoff relaxation approaches share the
127y assumption that there exists a minimum relaxation or re-
81 \Q; sponse timeyr., but they differ in its provenance and inter-
6: > pretation. For the NgCMg, is a basic microscopic time that
] 11 & is associated with discrete simple exponential decay, taken as
4 & the fundamental relaxation process, and the dispersed re-
2. Q‘: sponse experimentally observed foer, or w<rt. Lis
~ stated to be much less fundamental in this approach. Further,
00001' "0.003 0 005 10 this latter response is required by the NgCM to be of either

T-1 (K-i) the stretched-exponential form in the time domain or of a
type of associated KWW frequency response, here termed
FIG. 10. Results showing the dependenceodnd (o, /pn)/(po/py)°on  KWWD for dielectric systems or KWWO for conductive
T~ and on the cutoff parametgy, . ones.

In contrast, for the COMy, is just the physically real-
izable minimum response time inherent in the primary relax-
ation process present. Although its presence also leads to a
single-time-constant exponential or Debye response in the
limiting short-time or high-frequency region, no separate dis-

) X o crete relaxation process needs to be assumed, as in the CM.
twgenpe andre, it follows that the h|gh-temperatu're limit of When the full basic relaxation model is expressed in terms of
pe is about 102.891 ¢cm fo_r the present data. Fmallyz the a distribution of relaxation times, always mathematically
frequency—response coupling of H@2) leads tops=pe i ,qqgihle and, for most current models of interest, resulting
the high-temperature limit since _then only Debye behavior '% a continuous rather than a discrete distributignjs just
present. At 6(.)0 K these qugnt_ltles are 105.00 an_d 105'051e lower limit beyond which the distribution is zero. Fur-

{2 cm, respectively, so th.ﬁ ratio is about 1(.)'2.5 at this tem- her, cutoff can be applied for any response model, not just
perature and reaches a high-temperature limit of about 10.1 e stretched-exponential KWWO assumed in the NgCM

Since at present no analytic expression for the DRT asénalysis
sociated with the KWW response exists for arbitr@gyand Ther.e seems to be good experimental evidence that
closed-form DRT expressions are availdBfier only a few plays an important role in relaxatioh®® not surprising,
\?vﬁ)ﬁcgli\\;\?&]/eriggéltaehgr%h{ls(;a?rgztr?aer;r?weec:efrocrnfl:trlnggfi?a;? since_it is an always—prgsenF fundamental limiting response

' quantity. Not least of this evidence is the substantial agree-

least until V. 7.1 of the.evm program is issued. This limi- . o
tation does not apply to other response models whose DR_|1151ent between the non-Arrhenius conduct|V|t¥ results of KM
and the results of the present COM analysis, one that as-

are known, such as that of Davidson and Cole, but if fitting_ . . .
. . : L cribes the departure from Arrhenius behavior observed at
with a KWW approach is desired for data where it is impor- ~ .~ ; :
sufficiently high temperatures entirely to temperature-
tant to take account of cutoff effects, the present results sho
ependent cutoff effects. Although, has generally been

that, especially for the KWW, the CM defined here for thetaken temperature independent, work needs to be done to

f_requency domain could be used to provide an approxXiMagy o\ to what degree its value and temperature dependence
tion to the full COM response.

may vary with different materials and thus with different
relaxation processes, and, if possible, to derive expressions
for it based on different possible specific microscopic relax-
An important limitation in the time-domain Ngai cou- ation processes. Such work would be desirable in order to
pling model has been identified and removed, and the modalubstantiate or reject the plausible NgCM assumptionthat
has been generalized to apply directly in the frequency dois associated with the dynamics of uncorrelated relaxing el-
main without the need for Fourier transformation. The resultements, an assumption likely to be consistent with the COM
ing CM frequency-response model and its COM counterparidentification of 7, as the minimum relaxation time present
require no knowledge of the importa@ parameter of Eq. in the response. A beginning has been made for hopping
(6) when data fitting allows a value af, to be estimated, conduction by the correlated jump mod&la partly micro-
often possible with data limited to frequencies much lesscopic many-body approach but one that involves some em-
than rc’l. The Ngai coupling model involves a stretched- pirical elements.
exponential KWWO response in the time domain, but for  Although the present comparison of the predictions of
thermally activated, conductive-system-dispersion situationghe two models in the time and frequency domains might
the more appropriate KWW1 response is not of a stretchedsuggest that the CM is only an approximate form of the
exponential form, except beyond the normal range of meaholistic COM, the philosophical underpinnings of the two
surement. For both the frequency and temporal response ofiodels are sufficiently different that they should be consid-

(12) and (23), just (pex/pn)!(pse/pn)®>, equal to about
12.71 for the present situation. In the high-temperature limit
7, approaches,, and it has reached about 120 12 by
T=600 K. From the temperature-independent relation be

IV. CONCLUSIONS AND IMPLICATIONS
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ered as separate theoretical approaches. Nevertheless,?i. L. Ngai, J. Non-Cryst. Solid431-133 80 (1991).
seems plausible that most if not all of the good agreement ozfl)K- L. Ngai Egld O. Kanert, d30|id State l0ni5§—56£6 (1293?(3-993

[ : : ; _“"K. L. Ngai, S. L. Peng, and K. Y. Tsang, PhysicalAl, 523 (1 .
NgCM_predlct|on§ W.'th _the experiment found. by Ngal actu 32K, L. Ngai, J. Chem. Phys98, 6424 (1993. The second< in Eq. (4)
ally arises from intrinsic-cutoff COM behavior. Since the g¢nouid be a>.
COM s both simpler in concept and more general than thé3K. L. Ngai, in Disorder Effects on Relaxational Processeslited by R.
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