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e+µ−µ− + anything ; this cross-section is calculated by using the helicity amplitude
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√
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above 150GeV is inaccessible but at LEPII-LHC, with a center-of-mass energy
√
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1790GeV , masses up to 650 GeV can be discovered. In an e+e− collider, the signature

is e+e− → 2e+2µ− or 2e−2µ+ . The cross-sections of this process are also calculated

for the center-of-mass energies
√
s = 200, 500 and 1000GeV .
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I. INTRODUCTION

In a recent paper [1], two of the present authors (P.H.F. and D.N.) have studied the phe-

nomenology of dilepton gauge bosons predicted by certain simple extensions of the standard

model of strong and electroweak interactions. In particular, the existence of a SU(2)L dou-

blet (X−−, X−) of vector gauge bosons with lepton number L = 2 is a plausible prediction

of a general class of theories in which the electroweak SU(2)⊗U(1) gauge group is expanded

to SU(3)⊗ U(1) (e.g. Ref [2]). The crucial theoretical and practical question is then what

is the mass scale MX ?

In Ref. [1], a lower bound of MX > 120GeV was established by studying e+e− → e+e− as

well as the ”wrong” muon decay µ− → e−νeν̄µ ; the s-channel resonance in e−e− → X−− →

µ−µ− was also computed. For polarized muons, a stronger limit [3] of MX > 230 GeV was

estimated. Since certain assumption about the couplings of the dilepton were made in Refs.

[1,2] we shall here entertain a more general range 100GeV < MX < 1TeV , although it

should be borne in mind that the lower end is probably already excluded by existing data.

In the present paper, we shall focus on some striking signatures of lepton number violating

processes in electron-proton and electron-positron colliders. A light dilepton gauge boson as

anticipated in Ref. [2] couples democratically to the three lepton family associated with e,µ

and τ . Total lepton number L = Le+Lµ+Lτ is conserved but the separate flavors of lepton

Le, Lµ, Lτ are violated. This is different from the minimal standard model where Le, Lµ, Lτ

are necessarily separately conserved. This in turn means that there exist dramatic signatures

for light (below 1TeV ) dileptons which violate Le, Lµ and hence have no background events

from standard model processes; such evidence for a dilepton gauge boson will be accessible

to the next generation of e−p and e+e− colliders as we shall show by explicit estimates of

the relevant cross sections.

In an electron-proton collider one may see the process e−p → e+µ−µ− + anything with

zero background from the Standard Model. This is relevant to the HERA collider at DESY

in Hamburg, Germany; presently beginning operation with 30GeV electrons colliding on
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820GeV protons (
√
s = 314GeV ) with luminosity [4] 1.6 × 1031cm−2s−1(0.5fb−1yr−1). In

the future an e−p collider is planned at CERN with 100 GeV electrons on 8000 GeV protons

(LEPII-LHC) (
√
s = 1790GeV ) and luminosity 2× 1032cm−2s−1(6fb−1yr−1).

In an e+e− collider, one may see the background-free process e+e− → 2e+2µ− or 2e−2µ+

. This is relevant to LEPII and the Next Linear Collider (NLC) with the center-of-mass

energies
√
s = 200, 500 and 1000GeV and luminosities [4] 1.7 × 1031, 1 × 1032 and 1 ×

1033cm−2s−1 (0.5, 3 and 30fb−1yr−1).

The outline of this paper is as follows. In Sect. II, we compute the amplitude of the

Feynman diagrams of the above processes. In Sect. III, the cross-sections are calculated

for e−p and e+e− colliders. In Sect. IV, there are some concluding remarks. Appendix A

contains the analysis of production of a real on-shell dilepton; we used this to check our

computations.

II. FEYNMAN DIAGRAMS AND HELICITY AMPLITUDES

A. Preliminary

For the processes we consider in this paper, it is most convenient to calculate Feynman

diagrams using the method of helicity amplitudes, particularly when the external particles

are taken to be massless, which is a sensible approximation in the present case. The formal-

ism can be found in Ref. [5]. The outer product of a massless spinor with momentum p and

helicity λ(= ±1) is

uλ(p)ūλ(p) = ωλ 6p , ωλ =
1

2
(1 + λγ5) . (2.1)

Let us define two four-vectors kµ
0 and kµ

1 with the following properties:

k0 · k0 = 0 , k1 · k1 = −1 , k0 · k1 = 0 . (2.2)

Hence any massless spinors with momentum p and helicity λ can be constructed from u−(k0)

by the following relations,
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u+(k0) = 6k1u−(k0) , uλ(p) = 6pu−λ(k0)/
√

2p · k0 . (2.3)

The expressions in Eq.(2.3) can be verified by substituting into Eq.(2.1). From the second

equation, we have uλ(−p) = iuλ(p). Therefore, there is an (unobservable) overall phase

when we replace an antifermion spinor by a fermion spinor.

For massless spinors, there are only two non-zero invariant products which are defined

as follows,

s(p, q) = ū+(p)u−(q) = −s(q, p) , t(p, q) = ū−(p)u+(q) = [s(q, p)]∗ . (2.4)

In fact, it is enough to derive the expression of s by using Eqs.(2.1)-(2.3). We obtain

s(p, q) = ū−(k0) 6p 6q 6k1 u−(k0)/
√

4(k0 · p)(k0 · q)

= Tr[6p 6q 6k1 6k0 ω+]/
√

4(k0 · p)(k0 · q) . (2.5)

The expression for t(p, q) can be obtained from the second equation in Eq.(2.4). To calcu-

lation the invariant quantity s(p, q), we can choose k0 and k1 to be, for example,

k0 = (1, 1, 0, 0) , k1 = (0, 0, 1, 0) . (2.6)

With the help of Eqs.(2.5) and (2.6), s(p, q) are given by

s(p, q) = (py + ipz)

[

q0 − qx

p0 − px

]1/2

− (qy + iqz)

[

p0 − px

q0 − qx

]1/2

. (2.7)

Using Eqs.(2.1) and (2.4), we can derive the following useful formulae:

γµu±(p)ū±(q)γµ = −2u∓(q)ū∓(p) , (2.8a)

γµu+(p)ū−(q)γµ = 2ω−t(q, p) , (2.8b)

γµu−(p)ū+(q)γµ = 2ω+s(q, p) . (2.8c)

Therefore, we can express any amplitude with external massless fermions in terms of the

invariant quantities s and t. For more general applications of the helicity amplitude technique

involving massive particles, the reader is recommended to read Ref. [5]. For the purpose of

this paper, however, the above preliminary introduction is sufficient.
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B. The amplitudes of e−q → e+2µ−q

In this section, we will compute the helicity amplitudes for the process e−q → e+2µ−q .

The Feynman diagrams are shown in Fig. 1. Using the Feynman Rules given in Ref [1], the

corresponding amplitudes are given by

Amp(a) =

(

g3l√
2

)2

e2Qq
−1

(p2 − p4)2
−1

(p5 + p6)2 −M2
X + iMXΓX

× 1

(p3 + p5 + p6)2
M(a) , (2.9a)

Amp(b) =

(

g3l√
2

)2

e2Qq
−1

(p2 − p4)2
−1

(p5 + p6)2 −M2
X + iMXΓX

× 1

(−p1 + p5 + p6)2
M(b) , (2.9b)

Amp(c) = 2

(

g3l√
2

)2

e2Qq
−1

(p2 − p4)2
−1

(p1 − p3)2 −M2
X + iMXΓX

× −1

(p5 − p6)2 −M2
X + iMXΓX

M(c) , (2.9c)

Amp(d) =

(

g3l√
2

)2

e2Qq
−1

(p2 − p4)2
−1

(p1 − p3)2 −M2
X + iMXΓX

× 1

(p1 − p3 − p5)2
M(d) , (2.9d)

Amp(e) =

(

g3l√
2

)2

e2Qq
−1

(p2 − p4)2
−1

(p1 − p3)2 −M2
X + iMXΓX

× 1

(p1 − p3 − p6)2
M(e) , (2.9e)

where

M(a) = ū(p4)γαu(p2)ū(p6)γµγ5CūT (p5)v
T (p3)Cγµγ5( 6p3+ 6p5+ 6p6)γau(p1) , (2.10a)

M(b) = ū(p4)γαu(p2)ū(p6)γµγ5CūT (p5) v
T (p3)Cγα(− 6p1+ 6p5+ 6p6)γµγ5u(p1) , (2.10b)
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M(c)= ū(p4)γ
αu(p2)ū(p6)γ

µγ5CūT (p5)v
T (p3)Cγβγ5u(p1)

× [(p2 − p4 + p5 + p6)βgµα + (−p5 − p6 − p1 + p3)αgµβ

+(p1 − p3 − p2 + p4)µgαβ] , (2.10c)

M(d) = ū(p4)γαu(p2)ū(p6)γ
α( 6p1− 6p3− 6p5)γµγ5CūT (p5)v

T (p3)Cγµγ5u(p1) , (2.10d)

M(e) = ū(p4)γαu(p2)ū(p6)γ
µγ5( 6p1− 6p3− 6p6)γαCūT (p5)v

T (p3)Cγµγ5u(p1) . (2.10e)

ΓX is the total width of X−− which decays into e−e−, µ−µ− and τ−τ− democratically. After

some Dirac matrix manipulation, Eq.(2.10c) can be rewritten as

M(c) = −M(a)−M(c) . (2.11)

For massless spinors, we can replace v(p) by u(p). Therefore, we can decompose M(a)−

(e) into various helicities as follows:

M±±±(a) =









ū+(p4)γαu+(p2)

ū−(p4)γαu−(p2)

















ū+(p6)γµu+(p5)

−ū−(p6)γαu−(p5)









×









ū+(p3)γ
µ( 6p3+ 6p5+ 6p6)γαu+(p1)

−ū−(p3)γ
µ( 6p3+ 6p5+ 6p6)γαu−(p1)









, (2.12a)

M±±±(b) =









ū+(p4)γαu+(p2)

ū−(p4)γαu−(p2)

















ū+(p6)γµu+(p5)

−ū−(p6)γµu−(p5)









×









ū+(p3)γ
α(− 6p1+ 6p5+ 6p6)γµu+(p1)

−ū−(p3)γ
α(− 6p1+ 6p5+ 6p6)γµu−(p1)









, (2.12b)

M±±±(c) = −M±±±(a)−M±±±(b) , (2.12c)

M±±±(d) =









ū+(p4)γαu+(p2)

ū−(p4)γαu−(p2)

















ū+(p6)γ
α( 6p1− 6p3− 6p5)γµu+(p5)

−ū−(p6)γ
α( 6p1− 6p3− 6p5)γµu−(p5)









×









ū+(p3)γµu+(p1)

−ū−(p3)γµu−(p1)









, (2.12d)
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M±±±(e) =









ū+(p4)γαu+(p2)

ū−(p4)γαu−(p2)

















ū+(p6)γ
α( 6p1− 6p3− 6p6)γµu+(p5)

−ū−(p6)γ
α( 6p1− 6p3− 6p6)γµu−(p5)









×









ū+(p3)γµu+(p1)

−ū−(p3)γµu−(p1)









. (2.12e)

Since Mλ1λ2λ3
= M∗

−λ1−λ2−λ3
, we need calculate only the helicity amplitudes,M+±±(a)− (e),

explicitly in terms of s and t. The results are given in Table 1.

III. CROSS-SECTIONS

Since the violation of Le and Lµ conservation is clearly evidenced by the processes e−q →

e+2µ−q and e+e− → 2e+2µ− or 2e−2µ+ , it is totally free of the minimal standard model

background. Before we proceed, let us justify neglecting the Feynman diagrams in which

the photon of Figs. 1(a)-(e) is replaced by a Z-boson. Aside from the suppression due

to the mass in the Z propagator, the axial vector couplings of electron and Z-boson do

not contribute in this process because of the Fermi statistics, see Ref. [1]. Only the vector

coupling of Z contributes, but it is proportional to gv = (1
4
− sin2θW ) ≃ 0.02. The three

boson coupling ofX−−−X++−Z is also proportional to gv from the group theory. Therefore,

the Z-boson contributes at most 0.5% to the processes and it can be safely neglected.

A. e−p colliders

To evaluate the production cross-section for the process e−p → e+µ−µ− + anything in

the electron-proton colliders, we use EHLQ [6] parton structure functions (set 1), Fq(x) for

quark q. Hence the production cross-section for the process is given by

σ(MX) =
∫

1

0

dx
∑

q

Fq(x,Q
2)σ̂(

√
ŝ = xs,MX) , (3.1)

where σ̂ is the elementary cross-section of the process e−q → e+2µ−q ; x is the fractional

momentum of the proton carried by the quark q, hence
√
ŝ is the center of mass energy
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available for e−q → e+2µ−q . Q2, defined to be −(p2 − p4)
2, is the scale for the structure

functions for quarks. The result for σ(MX) are shown in Fig. 2 for the cases
√
s = 314GeV

(HERA) and 1790GeV (LEPII-LHC).

For HERA, the planned luminosity is 1.6 × 1031cm−2s−1 giving an annual integrated

luminosity of 0.5fb−1yr−1. From Fig. 2, we see that there will be less than one event per

year if the mass of the dilepton is heavier than 120GeV . The situation become hopeless for

MX > 150GeV without an upgrade in energy and/or luminosity. For example, an up-grade

in center of mass energy up to 400GeV will allow, for the same luminoisity, discovery of

dileptons up to about 200GeV . We thus conclude, given the mass bounds mentioned in the

introduction, that the chance of HERA discovering such a dilepton state is very marginal.

At LEPII-LHC with
√
s = 1790GeV the prospects for dilepton discovery are far better.

The expected luminosity is about 2× 1032cm−2s−1 and hence annual integrated luminosity

6fb−1yr−1. Requiring at least 2 events per year for e−p → e+µ−µ− + anything , we can

detect MX up to 650GeV .

B. e+e− colliders

At an e+e− collider, dilepton signatures include e+e− → 2e+2µ− or 2e−2µ+ . This

calculation is quite similar to e−q → e+2µ−q described above and we include also the

charge-conjugation of the corresponding Feynman diagrams. We have computed the result

for the center-of-mass energies
√
s = 200GeV (LEPII), 500GeV and 1000GeV (possible NLC

energies). The results are displayed in Fig. 3. Requiring at least 2 events per year, we can

detect MX up to 180,450 and 950 GeV in e+e− colliders with energies
√
s = 200, 500 and

1000GeV assuming the integrated luminosities [4] to be 0.5, 3 and 30 fb−1yr−1 respectively.

The amplitude-squared for the real production of the dilepton is given in the Appendix

A. The production cross-sections are also calculated and compared with the curves in Figs.

(2) and (3). We find that the contribution from the Feynman diagrams Figs. 1 (d) and

(e) are at most 10% relative to that of other diagrams in a wide range of dilepton mass
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MX except at the high values of MX in which the curves have longer tails. Therefore, it

is important to include Figs. 1 (d) and (e) in our calculation in order to provide a better

estimation for the maximum MX being probed in high energy colliders.

IV. CONCLUSION

We have considered a direct search for doubly-charged dilepton X−−(X++) by lepton-

number violating processes in e−p and e+e− colliders. The mass of X−− ranging from 100

to 1000GeV is expected from the theory of SU(15). The striking signature for a dilepton

gauge boson is e−p → e+µ−µ−+anything in an e−p collider and e+e− → 2e+2µ− or 2e−2µ+

in an e+e− collider. The chance of discovering a dilepton at HERA is very marginal unless

MX is less than 150GeV . The direct discovery of such a dilepton state depends on future

colliders such as LEPII-LHC and NLC at which interesting mass ranges will be explored.
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FIGURES

FIG. 1. Feynman diagrams for e−q → e+µ−µ−q

FIG. 2. Cross-sections for the process e−p → e+µ−µ− + anything with Q2 > 25GeV 2 at the

center-of-mass energies
√
s = 314GeV (solid line) and

√
s = 1790GeV (dashed line)

FIG. 3. Cross-sections for the process e+e− → 2e−2µ+ or 2e+2µ− with Q2 > 25GeV 2 at the

center-of-mass energies
√
s = 200GeV (solid line),

√
s = 500GeV (dashed line) and

√
s = 1000GeV

(dotted line)
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TABLES

TABLE I. Helicity amplitudes for the Feynman diagrams shown in Fig. 1

M +++ ++− +−+ +−−

M(a) 4t(p2, p1)s(p6, p3) −4t(p5, p3)s(p4, p1) −4t(p2, p1)s(p5, p3) 4t(p6, p3)s(p4, p1)

×[t(p5, p3)s(p4, p3) ×[t(p2, p3)s(p6, p3) ×[t(p6, p3)s(p4, p3) ×[t(p2, p3)s(p5, p3)

+t(p5, p6)s(p4, p6)] +t(p2, p5)s(p6, p5)] +t(p6, p5)s(p4, p5)] +t(p2, p6)s(p5, p6)]

M(b) 4t(p5, p1)s(p4, p3) −4t(p2, p3)s(p6, p1) −4t(p6, p1)s(p4, p3) 4t(p2, p3)s(p5, p1)

×[t(p2, p5)s(p6, p5) ×[t(p5, p6)s(p4, p6) ×[t(p2, p6)s(p5, p6) ×[t(p6, p5)s(p4, p5)

−t(p2, p1)s(p6, p1)] −t(p5, p1)s(p4, p1)] −t(p2, p1)s(p5, p1)] −t(p6, p1)s(p4, p1)]

M(c) −M(a)−M(b)

M(d) 4t(p1, p5)s(p4, p6) −4t(p3, p5)s(p4, p6) −4t(p2, p6)s(p3, p5) 4t(p2, p6)s(p1, p5)

×[t(p2, p1)s(p3, p1) ×[−t(p2, p3)s(p1, p3) ×[−t(p1, p3)s(p4, p3) ×[t(p3, p1)s(p4, p1)

−t(p2, p5)s(p3, p5)] −t(p2, p5)s(p1, p5)] −t(p1, p5)s(p4, p5)] −t(p3, p5)s(p4, p5)]

M(e) 4t(p2, p5)s(p3, p6) −4t(p2, p5)s(p1, p6) −4t(p1, p6)s(p4, p5) 4t(p3, p6)s(p4, p5)

×[−t(p1, p3)s(p4, p3) ×[t(p3, p1)s(p4, p1) ×[t(p2, p1)s(p3, p1) ×[−t(p2, p3)s(p1, p3)

−t(p1, p6)s(p4, p6)] −t(p3, p6)s(p4, p6)] −t(p2, p6)s(p3, p6)] −t(p2, p6)s(p1, p6)]
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APPENDIX A:

In this appendix, we will present the calculation of the real production of dilepton X−−.

If there is sufficient center-of-mass energy and the dilepton is light enough, it will be possible

to produce a real dilepton in the final state. This limit of light dilepton mass provides, in

any case, a useful check on all the calculations given in the main text. Clearly, for a light

dilepton, the calculation based on the Feynman diagrams given in Figure 1 with a Breit-

Wigner form of the dilepton propagator should agree with a real dilepton calculation using

three-body (rather than four-body) phase space. It is because of the fact that Figs. 1(a)-(c)

are dominant over Figs. 1 (d) and (e). The success of this comparison gives us confidence

that the four-body phase space calculation in the main text is reliable. Only the first three

diagrams in Fig. 1 are relevant. The amplitude is

Amp = Qqe
2
g3l√
2
ǫµ(p)aµαb

α 1

(p2 − p4)2
, (A1)

where

aµα = vT (p3)Cγµγ5
6p3+ 6p

(p3 + p)2
γau(p1) + vT (p3)Cγα

− 6p1+ 6p
(−p1 + p)2

γµγ5u(p1)

+vT (p3)Cγβγ5u(p1)
−2

(p1 − p3)2 −M2
X

[(p2 − p4 + p)βgµα

+(−p− p1 + p3)αgµβ + (p1 − p3 − p2 + p4)µgαβ] , (A2)

and

bα = ū(p4)γ
αu(p2) , (A3)

where p1 and p3 are the momenta for the electron and positron; p2 and p4 are the momenta

for the initial and final quarks; p and ǫµ(p) are the momenta and polarization vector for the

dilepton X−−. Here eQq is the quark electric charge and g3l/
√
2 is the coupling constant

for the X++ − e − e interaction. We have neglected the unimportant width of X−− in the

propagator. Notice that (p2 − p4)
µaµα = 0 because of electromagnetic gauge invariance.

Using momentum conservation and Dirac algebra (see Eq. (2.11) in the text), aµα in the

Eq. (2) can be rewritten as

13



aµα =

[

1

(p3 + p)2
+

2

(p1 − p3)2 −M2
X

]

vT (p3)Cγµ( 6p3+ 6p)γαγ5u(p1)

+

[

1

(−p1 + p)2
+

2

(p1 − p3)2 −M2
X

]

vT (p3)Cγα(− 6p1+ 6p)γµγ5u(p1) . (A4)

pµaµα is not zero because the dilepton is not coupled to a conserved current; in fact it is

given explicitly by

pµaµα = 2
(p2 − p4)

2

(p1 − p3)2 −M2
X

vT (p3)Cγαγ5u(p1) . (A5)

Using the polarization sum
∑

ǫµ(p)ǫν(p) = −gµν +pµpν/M2
X , the amplitude-squared is given

by

|Amp|2 = Qqe
4

(

g3l√
2

)2
1

(p2 − p4)4

(

−gµν +
pµpν
M2

X

)

aµαa
∗
νβb

αbβ∗ . (A6)

Therefore |Amp|2, with the help of Eq.(5), can be calculated to be

|Amp|2 = Q2

qe
4

(

g3l√
2

)2
64

(p2 − p4)4





(

1

(p3 + p)2
+

2

(p1 − p3)2 −M2
X

)2

×
[

2 p3.p (p1.p2 p.p4 + p1.p4 p.p2)−M2

X (p1.p2 p3.p4 + p1.p4 p3.p2)
]

+

(

1

(−p1 + p)2
+

2

(p1 − p3)2 −M2
X

)2

×
[

2 p1.p (p3.p2 p.p4 + p3.p4 p.p2)−M2

X (p1.p2 p3.p4 + p1.p4 p3.p2)
]

+2

(

1

(p3 + p)2
+

2

(p1 − p3)2 −M2
X

)(

1

(−p1 + p)2
+

2

(p1 − p3)2 −M2
X

)

×
[

−M2

X p1.p3 p2.p4 + 2 p1.p p3.p2 p3.p4 − 2 p3.p p1.p2 p1.p4

+(2 p1.p3 + p1.p− p3.p)(p1.p2 p3.p4 + p1.p4 p3.p2)

+p1.p3 (p1.p2 p.p4 + p1.p4 p.p2 − p.p2 p3.p4 − p.p4 p3.p2)
]

+2

(

1

(p1 − p3)2 −M2
X

)2
(p2 − p4)

4

M2
X

(p1.p2 p3.p4 + p1.p4 p3.p2)



 . (A7)

The above equation is used to calculate the production of a real dilepton in the e−p and

e+e− collders. We then compared this result with Figs. (2) and (3). We find agreement

for light dilepton mass with the curves in Figs. (2) and (3) and that, as expected, the full

calculation allowing a virtual dilepton gives an extra contribution in the tail of high MX

values.
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