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We compute the phase diagram of strongly interacting fermions in one dimension at finite tem-
perature, with mass and spin imbalance. By including the possibility of the existence of a spatially
inhomogeneous ground state, we find regions where spatially varying superfluid phases are favored
over homogeneous phases. We obtain estimates for critical values of the temperature, mass and
spin imbalance, above which these phases disappear. Finally, we show that an intriguing relation
exists between the general structure of the phase diagram and the binding energies of the underlying
two-body bound-state problem.

Introduction - Continuous progress in ultracold-atom
experiments in the last decade have made it possible
to study strongly coupled quantum gases with an un-
precedented degree of versatility [1, 2] and precision [3].
From the time of the first experiments able to cool down
fermions into the degeneracy regime, multiple groups
around the world have pursued the determination of the
thermal and structural properties of these gases, with an
increasing degree of control on parameters such as tem-
perature, polarization, trapping potential, and interac-
tion strength. Such advances have enabled, in addition,
the study of mixtures of atoms with different masses, yet
another variable in the multidimensional phase diagram
of these remarkable systems.

One of the most salient features of these degenerate
Fermi gases in three spatial dimensions is that, at low
enough temperature, they may spontaneously break an
internal symmetry to form a condensate. Depending on
the value of the parameter kFas (where the Fermi mo-
mentum kF is determined by the density n, and as is
the s-wave scattering length), the condensate may be
a simple Bose-Einstein condensate (BEC) of di-fermion
molecules (for strong interatomic attraction), or the well-
known condensate of Cooper pairs (in the weakly in-
teracting BCS regime). As kFas is varied along this
BCS-BEC crossover, non-zero spin polarization and mass
asymmetry may lead to exotic phases such as a Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase [4]. In the lat-
ter, the condensate displays spatial oscillations with a
characteristic wavelength, before it is expected to disap-
pear at large polarization or asymmetry.

In fact, several theoretical studies in three spatial di-
mensions have suggested the existence of phases of the
FFLO type [5] (see also Ref. [6] for a review). However,
their experimental verification appears to be very chal-
lenging as it may only exist in a narrow band between the
conventional BCS-type phase in the core of the trap and
a non-superfluid mixed phase in the outer layer. On the
other hand, experiments in tightly constraining external
potentials have also analyzed the problem in one spatial
dimension [7–9], where it is expected that the phase di-
agram is to a large extent occupied by a phase of the

FFLO type [10–14].
Such one-dimensional problems have attracted much

interest in the last three decades, as bosonization and
density matrix renormalization group techniques have
been able to provide remarkable insights into the nature
of the low-energy excitations, namely the Luttinger liquid
(see, e.g. Ref. [15] for an introduction). Besides their rel-
evance for condensed-matter systems, studies of inhomo-
geneous phases have recently gathered attention in other
areas, such as the theory of the strong interaction [16].
The latter were triggered by Thies’ pioneering analytic
studies of inhomogeneous phases in one-dimensional rel-
ativistic fermion models [17].

In the present work, we provide a first study of the
full finite-temperature phase diagram of strongly cou-
pled, mass- and spin-imbalanced Fermi gases in one spa-
tial dimension. In particular, we include an analysis of
the fate of FFLO-type phases under a variation of the ex-
perimentally accessible parameters, such as the tempera-
ture and the mass difference of the fermions. To this end,
we employ a mean-field approach, which can be viewed
as the lowest-order approximation of the underlying path
integral. Such mean-field studies of one-dimensional sys-
tems are usually expected to be at best qualitative. As
is well known, long-range fluctuations hinder the spon-
taneous breakdown of a continuous symmetry at finite
temperature in dimensions lower than three (in particular
the breaking of the U(1) symmetry associated with su-
perfluidity). In current experiments, however, quasi one-
dimensional systems are realized by a two-dimensional
lattice array of atomic tubes [7, 8]. If the inter-tube cou-
pling is weak but finite, a mean-field analysis of the sys-
tem is justified, as explained in Refs. [10, 13]. In the fol-
lowing, we shall work in the strict one-dimensional limit,
i.e. in the limit of vanishing transverse coupling, where
the validity of mean-field theory may again be debat-
able [18]. However, we assume that at least the quali-
tative features of our study can be extrapolated to the
regime with finite but weak transverse coupling.
Formalism - In our analysis we consider a Hamiltonian

that describes the dynamics of a theory with two fermion
species, denoted by ↑ and ↓, interacting only via a zero-
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range two-body interaction:

Ĥ = −
∫
dx

 ∑
σ=↑,↓

ψ̂†σ(x)
∂2x

2mσ
ψ̂σ(x) + gρ̂↑(x)ρ̂↓(x)

 .

The operators ρ̂↑,↓ are the particle density operators asso-
ciated with the two fermion species (↑, ↓). The coupling g
is related to the s-wave scattering length as by g = 1/as.
For our analysis, we shall employ a path-integral repre-
sentation of Z:

Z =

∫
Dψ†Dψ e−S[ψ

†,ψ] ,

where the fields ψT = (ψ↑, ψ↓) obey anti-periodic bound-
ary conditions in the imaginary-time direction, and

S[ψ†, ψ] =

∫ β

0

dτ

∫
dx

{
ψ†
(
∂τ −

1

m+
∂ 2
x − µ̄

)
ψ

−ψ∗↑
(

1

m−
∂ 2
x + h

)
ψ↑+ψ

∗
↓

(
1

m−
∂ 2
x + h

)
ψ↓

+
g

2
(ψ†ψ)(ψ†ψ)

}
(1)

with β = 1/T being the inverse temperature. For conve-
nience, we have introduced the average chemical poten-
tial µ = (µ↑ + µ↓)/2 and the spin polarization param-
eter h = (µ↑ − µ↓)/2. Moreover, we introduce simple
measures for the mass imbalance:

m± =
4m↑m↓
m↓ ±m↑

, m̄ =
m+

m−
, mr =

m+

4
. (2)

where 0 ≤ |m̄| < 1 and mr is the reduced mass. In the
following we choose units such that m+ = 1.

To derive the effective potential for the desired order
parameter, which in this case corresponds to off-diagonal
long-range order, i.e. condensation of Cooper pairs, we
employ a Hubbard-Stratonovich transformation and in-
troduce an auxiliary bosonic field ϕ to remove effec-
tively the four-fermion interaction from the action. The
fermions can then be integrated out straightforwardly to
obtain the quantum effective action Γ ∼ − lnZ:

Γ[ϕ,ϕ∗]

= −β
∫
dx
|ϕ(x)|2

g
+

∞∑
j=−∞

Tr ln

(
K−j ϕ(x)

ϕ∗(x) K+
j

)
. (3)

Here, the sum covers the Matsubara frequencies ωj =
(2j + 1)π/β, and K±j = (−iωj ± ∂2x − m̄∂2x ± µ̄− h). The
ground state of the theory is then obtained by minimiz-
ing Γ with respect to the scalar fields. As we allow for
a spatially varying ϕ(x), we are able to detect inhomo-
geneous phases whenever they are energetically favored
over their homogeneous counterparts.

The minimization of the effective action is done numer-
ically, and is based on two types of expansions: first, we
write the effective action as sum of n-point functions Γ(n):

Figure 1. (Color online) Phase diagram in the (T ,m̄,h) space,
where 0 ≤ T/µ ≤ 0.6, 0 ≤ m̄ ≤ 0.95 and −1 ≤ h/µ ≤ 1,
The (orange-brown) ‘dome’ corresponds to the conventional
BCS phase governed by a homogeneous ground state. The
greenish-colored domains attached to the left and to the right
of the BCS ‘dome’ represent the FFLO-type phase.

Γ =
∑nmax

n=0 Γ(2n) · (ϕ∗ϕ)n, where an integration over the
spatial coordinate is implicitly assumed. Second, we ex-
pand the field ϕ in plane waves, i.e.

ϕ(x) = α0 +

lmax∑
l=1

αl cos(lωϕx) , (4)

which is motivated by standard FFLO theory [4]. In
practice, it is necessary to truncate both sums at some
given values nmax and lmax. The stability of the re-
sults for the phase structure can then be tested by vary-
ing nmax and lmax (see also below). The parameter ωϕ
has been used to optimize the expansion (4) of the field ϕ.
More specifically, for given nmax and lmax, we varied the
parameters {αl} and ωϕ to find the ground state (gs) of
the theory. This state ϕgs(x) is then directly related to
the fermion gap ∆(x) ∼ |ϕgs(x)|2.
Results - To verify our approach, we first computed the

phase diagram of the one-dimensional massless Gross-
Neveu (GN) model in the plane spanned by tempera-
ture and chemical potential (see Refs. [17] for analytic
studies). With our numerical approach, we were able
to reproduce the position of the phase boundary of the
inhomogeneous phase at the level of 0.1%.

The phase diagram of the strongly-interacting one-
dimensional Fermi gas in the (T, m̄, h) space for kFas =√

2mrµ/g2 =
√
µ/(2g2) = 1/(

√
2π) is shown in Fig. 1.

To obtain this diagram, we used nmax = 2 in the ex-
pansion of the effective action and up to lmax = 5 for
the expansion of the field ϕ. We have checked that
our results for the various phase boundaries are not al-
tered by increasing nmax, at least to the accuracy of our
calculations. The values of observables other than the
phase boundaries (such as the fermion gap) may, how-
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Figure 2. (Color online) FFLO phase boundaries for vari-
ous dimensionless temperatures T̄ = T/µ in the (m̄, h) plane.
The red line presents the position of the critical points T̄cp at
which the FFLO phase boundary merges into the BCS phase
boundary. For comparison, the gray-shaded area gives the
size of the BCS phase at T = 0 as obtained from a standard
mean-field study, i.e. without taking into account the possi-
bility of an inhomogeneous ground state. Our results suggest
that the latter studies overestimate the size of the homoge-
neous phase in the (m̄, h) plane.

ever, be significantly altered when nmax is increased, at
least for nmax ≤ 4.

The (orange-brown) ‘dome’ in Fig. 1 depicts the stan-
dard BCS phase with a homogeneous ground state. In
this phase, the U(1) symmetry is spontaneously broken,
which is associated with superfluid behavior. The ap-
pearance of such a conventional BCS phase is not unex-
pected. In fact, at h/µ = m̄, the Fermi momenta asso-
ciated with the up and down fermions coincide, which
favors BCS-type pairing. Increasing the temperature at
fixed m̄ and h, within the BCS phase, a critical tem-
perature exists above which the U(1) symmetry is re-
stored and superfluid behavior is lost. Specifically, we
find Tcr/µ = 0.55 for m̄ = h = 0. The phase transition
between the BCS phase and the U(1)-symmetric phase
(normal phase) is of second order.

Note that the theory is not invariant under h→ −h for
given fixed temperature and a finite mass-imbalance m̄;
it is only invariant under a simultaneous change of the
sign of m̄ and h. From an experimental point of view,
this implies that the finite-temperature phase diagram of
a spin-imbalanced 6Li-40Ka- mixture (m̄ ≈ 0.74) is sub-
stantially different from that of a mass-balanced gas (see
also Fig. 2). In fact, our study suggests that, depending
on as, a large part of the (finite-temperature) phase di-
agram is occupied by the inhomogeneous phase for the
6Li-40Ka-mixture, see also below for a discussion of the
dependence on as = 1/g.

At sufficiently low temperatures, our results indicate
that the system undergoes a phase transition from the ho-
mogeneous BCS phase to a FFLO-type phase character-

ized by an inhomogeneous ground state (see also below).
The latter is portrayed by the greenish-colored areas to
the left and to the right of the BCS ‘dome’ in Fig. 1. Here,
the ground state is also associated with superfluid behav-
ior, but translational invariance is broken spontaneously
as well. For the ground-state configurations within this
phase, we find from our numerical analysis that αgs

l = 0
for even l ≥ 0, and αgs

l 6= 0 otherwise. Moreover, we
observe that αgs

1 is at least one order of magnitude larger
than αgs

3 which is again at least one order of magnitude
larger than αgs

5 . This justifies the truncation of the sum
in Eq. (4) and suggests that the spatial structure of the
inhomogeneity is dominated by the coefficient αgs

1 . Qual-
itatively, the existence of such a FFLO-type phase for a
given temperature can be traced back to the fact that the
difference between the Fermi momenta of the two fermion
species increases away from the line defined by h/µ = m̄.
Far away from this line, pairing of two fermions with op-
posite spins is only possible if the mismatch between the
associated Fermi momenta can be compensated by a fi-
nite center-of-mass momentum of the pair. In the limit
of vanishing temperature, we then observe that there is
no (quantum) phase transition from the FFLO phase to
the normal phase, even for large mass- and/or spin im-
balances. For fixed m̄ and h within the FFLO phase, on
the other hand, we observe that the system undergoes a
second order phase transition when the temperature is
increased.

The homogeneous, FFLO and normal phases coexist
on a line that we define as T = Tcp(m̄, h), and is de-
picted in Fig. 2. Interestingly, we find that the phase
transition from the BCS-type to the FFLO-type phase
is of first order, at least for the considered truncations
of the effective action, nmax = 2, 3, 4, (see white-shaded
area in Fig. 1). Note that the corresponding phase tran-
sition line in the GN model was found to be of second
order [17]. However, an exact determination of the order
of this transition is beyond the scope of the present work.

Let us now consider finite temperatures T < Tcp. For a
given m̄, a second-order phase transition from the FFLO
phase to the normal phase occurs for sufficiently large
values of the spin-imbalance parameter h. In Fig. 2, we
show the shape of this phase transition line in the (m̄, h)
plane for various different temperatures. We find that
the corresponding transition line develops an intriguing
back-bending shape when the temperature is lowered.

The basic mechanism underlying this characteristic
back-bending shape of the transition line between the
FFLO and the normal phase can be most easily under-
stood by considering the two-body problem in the pres-
ence of two Fermi surfaces as described by the following
Schrödinger equation:[ ∑

σ=↑,↓

εσ(∂xσ
)− gδ(x↑ − x↓) + EB

]
Ψ(x↑, x↓) = 0 .(5)

Here, Ψ is the wave-function of the bound state. The
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Figure 3. Left panel: Dimensionless binding energy ĒB = EB/µ of the lowest-lying two-fermion bound state in the plane
spanned by the mass imbalance m̄ and the spin polarization parameter h. The gray-shaded area has been included to guide
the eye and depicts the regime in which the total momentum P of the bound state is zero. Right panel: Dimensionless
center-of-mass momentum P̄ = P/

√
µ of the bound state in the (m̄, h) plane.

operator εσ is defined as εσ(∂xσ
) = |−(2mσ)−1∂2xσ

−εF,σ|
with εF,σ (σ =↑, ↓) being the Fermi energy of the up- and
down-fermions, respectively. Along the lines of the two-
body problem in three dimensions, see, e.g., Ref. [19],
the solution of our one-dimensional two-body problem
can in principle also be given in closed form. For our
purposes, rather the (binding) energy of the lowest-lying
bound-state, which is obtained from a minimization of
the energy EB with respect to the total momentum P ,
is of particular interest. For kFas = 1/(

√
2π), the energy

of this state and its total momentum are given in Fig. 3.
From our results of the two-body problem, we reveal,

analogous to BCS theory, an intriguing relation between
the bound-state properties of the two-body problem and
the phase structure of the many-body problem in the
(T, m̄, h) space. Although condensation in a many-body
system is clearly a collective phenomenon, the condensa-
tion pattern in the phase diagram appears to be dictated
largely by the underlying two-body physics. Along the
line h/µ = m̄, we find that the binding energy is min-
imal and the center-of-mass momentum of the lowest-
lying state is zero. This regime translates into the ho-
mogeneous BCS phase in the many-body problem. In-
creasing h/µ starting from a given h/µ = m̄, we observe
that |EB| decreases and the lowest-lying state eventually
assumes a finite center-of-mass momentum P . Unless a
finite P is energetically favored, we do not expect to find a
FFLO-type phase in the many-body phase diagram. This
is indeed the case. Moreover, we find that the character-
istic back-bending shape of the FFLO transition line in
the many-body phase diagram (see Fig. 2) appears to be
dictated by the shape for the lines of constant binding en-
ergy shown in Fig. 3. For increasing temperature, it is in
fact reasonable to expect that the system is first pushed
into the normal phase in those domains of the (m̄, h)
plane in which the absolute value of the binding energy
is minimal. Although the exact values of the phase tran-
sition temperature of the many-body problem cannot be

deduced from the two-body problem, our study confirms
that the general phase structure is directly related to the
underlying two-body problem. In this respect, it is worth
to add that the size of the various regimes with finite and
vanishing center-of-mass momentum depends on the ac-
tual value of the coupling g. To be specific, we find that
the regime with P = 0 increases for increasing g and
shrinks for decreasing g.

Summary - We have studied the finite-temperature
phase diagram of mass- and spin-imbalanced Fermi gases
in one spatial dimension. In our analysis we focused on
the strongly coupled regime and allowed for spatially
varying configurations of the order-parameter field ϕ.
The latter enabled us to discern the appearance of inho-
mogeneous phases, which appear in a considerable region
of parameter space. In particular, we found an intriguing
back-bending structure in the finite-temperature phase
diagram, which can be explained by analyzing the two-
body problem in the presence of Fermi surfaces. The
robustness of this structure in the presence of a finite
transverse coupling between the tubes is an important
question that can be addressed in the future with our ap-
proach. In particular, our analysis of the general phase
structure is not limited to the strict one-dimensional case
but may also be applied to higher-dimensional Fermi
gases; it may therefore contribute to better our under-
standing of strong fermion dynamics also beyond ultra-
cold quantum gases.
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