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CAUSAL NETWORK INFERENCE

BY OPTIMAL CAUSATION ENTROPY∗

JIE SUN† , DANE TAYLOR‡ , AND ERIK M. BOLLT§

Abstract. The broad abundance of time series data, which is in sharp contrast to limited
knowledge of the underlying network dynamic processes that produce such observations, calls for
a rigorous and efficient method of causal network inference. Here we develop mathematical theory
of causation entropy, an information-theoretic statistic designed for model-free causality inference.
For stationary Markov processes, we prove that for a given node in the network, its causal parents
forms the minimal set of nodes that maximizes causation entropy, a result we refer to as the optimal
causation entropy principle. Furthermore, this principle guides us to develop computational and
data efficient algorithms for causal network inference based on a two-step discovery and removal al-
gorithm for time series data for a network-couple dynamical system. Validation in terms of analytical
and numerical results for Gaussian processes on large random networks highlight that inference by
our algorithm outperforms previous leading methods including conditioned Granger causality and
transfer entropy. Interestingly, our numerical results suggest that the number of samples required
for accurate inference depends strongly on network characteristics such as the density of links and
information diffusion rate and not necessarily on the number of nodes.
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1. Introduction. Research of dynamic processes on large-scale complex net-
works has attracted considerable interest in recent years with exciting developments
in a wide range of disciplines in social, scientific, engineering, and medical fields [48,
49, 74]. One important line of research focuses on exploring the role of network struc-
ture in determining the dynamic properties of a system [6, 17, 18, 19, 27, 55, 67, 79]
and utilizing such knowledge in controlling network dynamics [15, 70] and optimizing
network performance [13, 38, 50, 56, 72]. In applications such as the study of neu-
ronal connectivity or gene interactions, it is nearly impossible to directly identify the
network structure without severely interfering with the underlying system whereas
time series measurements of the individual node states are often more accessible [68].
From this perspective, it is crucial to reliably infer the network structure that shapes
the dynamics of a system from time series data. It is essential that one accounts for
directed “cause and effect” relationships, which often offer deeper insight than non-
directed relationships (e.g., correlations) [53, 62, 66]. In particular, causal network
inference is considered a central problem in the research of social perception [35],
epidemiological factors [57], neural connectivity [11, 12], economic impacts [34], and
basic physical relationships of climatological events [60, 61]. Evidently, understanding
causality is a necessary and important precursor step towards the goal of effectively
controlling and optimizing system dynamics (e.g., medical intervention of biological
processes and policy design for economic growth and social development).

In a network dynamic process involving a large number of nodes, causal relation-
ships are inherently difficult to infer. For example, the fact that a single node can
potentially be influenced by many (if not all) others through network interactions
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Fig. 1.1. Network dynamics, time series, and the causal network inference problem. Modern
scientific approaches such as simulation, experiments, and data mining have produced an abundance
of high-dimensional time series data describing dynamic processes on complex networks (a→b).
Given empirical observations, an important problem is to infer the causal network structure that
underlies the observed time series. As shown in (c), for each node i, the goal is to identify its
“causal parents”, the nodes that directly influence its dynamics (nodes in shaded region), while
pruning away the nodes that do not (nodes outside the shaded region), thus recovering the direct
links to node i in the causal network. The key to efficiently and accurately identify direct causal
links from non-causal ones is to follow an algorithm involving tests for independence via judiciously
selected conditioning sets. The main goal of this paper is to develop and validate such algorithms
for stationary Markov processes.

makes it challenging to untangle the direct causal links from indirect and erroneous
ones (see Fig. 1.1 for illustration). Granger recognized the crucial role played by
conditioning and defines a causal relationship based on two basic principles [29, 30]:

(i) The cause should occur before the effect;
(ii) The cause should contain information about the caused that is not available

otherwise.

A relationship that fulfills both requirements is unambiguously defined as causal. In
practice, although the first requirement is straightforward to examine when temporal
ordering of the data is available, it is difficult to check the second as it involves the
consideration of all available information (time series data from all variables). Trade-
offs are often made, by either restricting to small-scale networks with no time delay
and just a handful of variables [32, 71], or partially removing the second require-
ment therefore reducing the accuracy of network inference [76]. Inferring large-scale
networks from time series data remains to be a relatively open problem [41, 68].

The classical Granger causality test was designed for linear regression models [29,
30], although several extensions have been proposed to nonlinear models, including
local linear approximations [14] and partial functional expansion via radial basis func-
tions [2]. Information-based causality inference measures represent a systematically
way of overcoming the model-dependent limitation in the linear Granger causality
test. In particular, Schreiber proposed transfer entropy as a measure of information
flow, or effective coupling, between two processes regardless of the actual functional
relationship between them [63]. The transfer entropy from process Y to X measures
the uncertainty reduction of the future states of X as a result of knowing the past of
Y given that the past of X is already known, and is essentially the mutual information
between the future of X and history of Y conditioning on the history of X [37, 51].
Because of its ability to associate temporal and spatial directionality with coupling,
transfer entropy has quickly started to gain popularity in a broad range of disciplines
including bioinformatics, neuroscience, climatology and others, as a tool to infer ef-
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fective pairwise coupling that underlie complex dynamic processes [9, 76]. However,
transfer entropy, which was introduced specifically for detecting the directionality of
information flow between two processes, has fundamental limitations when applied in
a multivariate setting, to the inference of networks [65, 71]. In particular, without
proper conditioning, inference based on transfer entropy tends to produces system-
atic errors due to, for example, the effects of indirect influences and dominance of
neighbors [71]. As shown in Fig. 1.1(c), the main purpose of this work is to identify
for each node i its “causal parents” that directly influence node i, while not falsely
inferring indirect (i.e., non-causal) nodes.

Proper conditioning can distinguish between direct and indirect causal relation-
ships, and it is thus unsurprising that conditioning is widely adopted as a key ingre-
dient in many network inference methods [21, 32, 37, 51, 60, 61, 65, 66, 71]; however,
even within such a general theme, the inference of networks requires a theoretically
sound approach that is also algorithmically reliable and efficient. For example, one
must develop a strategy for choosing which potential links to examine and which
nodes to condition on. Thus we note two essential steps in causal network inference:
(1) adopting a statistic for the inference of a causal relationship, and (2) developing
an algorithm that iteratively employs step (1) to learn the causal network. Whereas
accuracy, tractability, and generality of the chosen statistic is often the priority for
(1), various challenges arise regarding (2). In particular, these often include mini-
mizing the computational cost by reducing the number of statistics that needs to be
computed, as well as reducing the error incurred by finite-sized data by keeping the
size of the conditioning sets (i.e., the dimension of the estimation problem) as small as
possible. In general, the inaccuracy when estimating statistical measures from finite
data grows rapidly with dimensionality, making the dimensionality of the problem a
priority for any networks containing more than a couple nodes.

One approach for network inference is to test each candidate causal link condi-
tioned on all other variables [32]. That is, a direct link j → i is inferred if such a
relationship remains effective when conditioning on all other variables in the system.
Although intuitive and correct in theory, this method requires computing a statistic
in a sample space as high dimensional as the entire system and therefore falls short
when applied to a large networks. The PC algorithm [66] overcomes this difficulty by
repeated testing of the candidate causal link conditioned on subsets of the remaining
variables [60, 61]. To be more specific, a link j → i is disqualified as a candidate
causal relationship if it is insignificant when conditioned on some subset of the nodes.
The advantage of the PC algorithm is that it reduces the dimensionality of the sample
space the test of independence to be proportional to the size of the conditioning set
(which in some cases can be much smaller than the system size). However, unless the
maximum degree of the nodes are known a priori, the algorithm in principle needs
to be performed for combinations of subsets as the conditioning sets up to the size
of the entire network. In this respect, regardless of the dimensionality of the sample
space, the combinatorial search itself can be computationally infeasible for moder-
ate to large networks. In practice, tradeoff needs to be made between an algorithm’s
computational cost and data efficiency (in terms of the estimation of the test statistic).

In this paper we develop theory of causation entropy—a type of conditional mu-
tual information designed for causal network inference. In particular, we prove the
optimal causation entropy principle for Markov processes: the set of nodes that di-
rectly cause a given node is the unique minimal set of nodes that maximizes causation
entropy. This principle allows us to convert the problem of causality inference into the
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optimization of causation entropy. We further show that this optimization problem,
which appears to be combinatorial, can in fact be solved by simple greedy algorithms,
which are both computational efficient and data efficient. We verify the effectiveness
of the proposed algorithms through analytical and numerical investigations of Gaus-
sian processes on various network types including trees, loops, and random networks.
Somewhat surprisingly, our results suggest that it is the density of links and informa-
tion diffusion rate rather than the number of nodes in a network that determines the
minimal sample size required for accurate inference.

2. Stochastic Process and Causal Network Inference. We begin by intro-
ducing a theoretical framework for inferring causal networks from high-dimensional
time series. This framework is general in that it is applicable to both linear and
non-linear systems with or without added noise.

Consider a network (graph) G = (V , E), with V = {1, 2, . . . , n} being the set of
nodes and E ⊂ V × V × R being the set of weighted links (or edges). The adjacency
matrix A = [Aij ]n×n is defined as

(2.1) Aij =

{

weight of the link j → i, if j → i in the network;

0, otherwise.

We use χ0(A) to denote the corresponding unweighted adjacency matrix defined entry-
wise by χ0(A)ij = 1 iff Aij 6= 0 and χ0(A)ij = 0 iff Aij = 0. We define the set of
causal parents of i as

(2.2) Ni = {j|Aij 6= 0} = {j|χ0(A)ij = 1}.

For a subset of nodes I ⊂ V , we similarly define its set of causal parents as

(2.3) NI = ∪i∈INi.

We consider stochastic network dynamics in the following form (for each node i)

(2.4) X
(i)
t = fi

(

Ai1X
(1)
t−1, Ai2X

(2)
t−1, . . . , AijX

(j)
t−1, . . . , AinX

(n)
t−1, ξ

(i)
t

)

where X
(i)
t ∈ R

d is a random variable representing the state of node i at time t,

ξ
(i)
t ∈ R

d is the random fluctuation on node i at time t, and fi : Rd×(n+1) → R
d

models the functional dependence of the state of node i on the past states of nodes j

with Aij 6= 0. Note that other than the noise term ξ
(i)
t , the state X

(i)
t only depends

(stochastically) on the past states of its causal parents, X
(j)
t−1 (j ∈ Ni).

For a subset K = {k1, k2, . . . , kq} ⊂ V , we define

(2.5) X
(K)
t ≡ [X

(k1)
t , X

(k2)
t , . . . , X

(kq)
t ]⊤.

If K = V , we simplify the notation and denote

(2.6) Xt ≡ X
(V)
t = [X

(1)
t , X

(2)
t , . . . , X

(n)
t ]⊤.

2.1. Problem of Causal Network Inference and Challenges. Given quan-
titative observations of the dynamic states of individual nodes, often in the form of
time series, a central problem is to infer its (causal) system dynamics, which involves
the inference of (1) the causal network topology, χ0(A); (2) the link weights, {Aij};



CAUSAL NETWORK INFERENCE BY OPTIMAL CAUSATION ENTROPY 5

and (3) the specific forms of functional dependence between nodes, {fi}. These prob-
lems are interrelated and all challenging. We focus on the first problem: inferring the
causal network topology χ0(A), which serves as the skeleton of the actual network
dynamics. See Fig. 1.1 as a schematic illustration. In particular, the problem of causal
network inference can be casted mathematically as:

(2.7)











Given: Samples of the node states x
(i)
t (i = 1, 2, . . . , n; t = 1, 2, . . . , T ).

Goal: Infer the structure of the underlying causal network,

i.e., find argminÂ ‖χ0(A)− Â‖0, where ‖M‖0 ≡
∑

i,j |Mij |0.

One key challenge is that in many applications, the number of nodes n is often
large (usually hundreds at least), but the sample size T is much smaller than needed
for reliable estimation of the (n× d)-dimensional joint distribution. We propose that
a practical causation inference method should fulfill the following three requirements:

1. Model-free. The method should not rely on assumptions about either the
form or parameters of a model that underlie the process.

2. Computational Efficient. The method should be computationally efficient.
3. Data Efficient. The method should achieve high accuracy with relatively

small number of samples (i.e., convergence in probability needs to be fast).

In this paper we address the model-free requirement by utilizing information-theoretic
measures, and in particular, by using causation entropy. On the other hand, our
theoretical developments of the optimal causation entropy principle enables us to
develop algorithms that are both computationally efficient and data efficient.

2.2. Markov Assumptions. We study the system in a probabilistic framework
assuming stationarity and existence of a continuous distribution. We further make
the following assumptions regarding the conditional distributions p(·|·) arising from
the stationary process given by Eq. (2.4). For every node i ∈ V and time indices t, t′:

(2.8)







































(1) Temporally Markov:

p(Xt|Xt−1, Xt−2, . . . ) = p(Xt|Xt−1) = p(Xt′ |Xt′−1).

(2) Spatially Markov:

p(X
(i)
t |Xt−1) = p(X

(i)
t |X

(Ni)
t−1 ).

(3) Faithfully Markov:

p(X
(i)
t |X

(K)
t−1 ) 6= p(X

(i)
t |X

(L)
t−1) whenever (K ∩Ni) 6= (L ∩Ni).

Throughout the paper, the relationship between two probability density functions p1
and p2 are denoted as “p1 = p2” iff they equal almost everywhere, and “p1 6= p2” iff
there is a set of positive measure on which the two functions do not equal.

In Eq. (2.8), condition (1) states that the underlying dynamics is a time-invariant
Markov process1. Condition (2) is often referred to as the (local) Markov property [44],
which we call Spatially Markov here to differ from Temporally Markov. This condition
guarantees that in determining the future state of a node, if knowledge about the past
states of all its causal parents Ni [as defined in Eq. (2.2)] is given, information about
the past of any other node becomes irrelevant. Finally, condition (3) ensures that the

1If the process is Markov but with higher order, our approach is to convert it into a first-order
one as illustrated in Appendix A and then apply the theory and algorithms in the main body of the
paper to the resulting first-order process.
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set of causal parents is unique and that every causal parent presents an observable
effect regardless of the information about other causal parents2.

The conditional independence between two random variables X and Y given Z
is denoted by (X ⊥⊥ Y | Z), i.e.,

(2.9) (X ⊥⊥ Y | Z) ⇐⇒ p(X |Y, Z) = p(X |Z).

The following results regarding conditional independence will be useful in later sec-
tions and are direct consequences of the basic axioms of probability theory [31, 44, 53]:

(2.10)































Symmetry: (X ⊥⊥ Y | Z) ⇐⇒ (Y ⊥⊥ X | Z).

Decomposition: (X ⊥⊥ YW | Z) =⇒ (X ⊥⊥ Y | Z).

Weak union: (X ⊥⊥ YW | Z) =⇒ (X ⊥⊥ Y | ZW ).

Contraction: (X ⊥⊥ Y | Z) ∧ (X ⊥⊥W | ZY ) =⇒ (X ⊥⊥ YW | Z).

Intersection: (X ⊥⊥ Y | ZW ) ∧ (X ⊥⊥W | ZY ) =⇒ (X ⊥⊥ YW | Z).

Here “ ∧ ” denotes the logical operations “and” (the symbol “ ∨ ” is used later for
“or”), and YW denotes a joint random variable of Y and W .

2.3. Causation Entropy as an Information-Theoretic Measure. We re-
view several fundamental concepts in information theory, leading to causation entropy,
a model-free information-theoretic statistic that can be used to infer direct causal re-
lationships [71].

Originally proposed by Shannon as a measure of uncertainty and complexity, the
(differential) entropy of a continuous random variable X ∈ R

n is defined as [16, 64]3

(2.11) h(X) = −

∫

p(x) log p(x)dx,

where p(x) is the probability density function of X . The joint and conditional en-
tropies between two random variables X and Y are defined as [also see Fig. 2.1(a)]

(2.12)











Joint entropy: h(X,Y ) ≡ h(Y,X) ≡ −
∫

p(x, y) log p(x, y)dxdy.

Conditional entropies:

{

h(X |Y ) ≡ −
∫

p(x, y) log p(x|y)dxdy;

h(Y |X) ≡ −
∫

p(x, y) log p(y|x)dxdy.

For more than two random variables, the entropies are similarly defined (as above)
by grouping the variables into two classes, one acting as X and the other as Y .

The mutual information between two random variables X and Y (conditioning
on Z) can be interpreted as a measure of the deviation from independence between X
and Y (conditioning on Z). The corresponding unconditioned and conditional mutual
information are defined respectively as

(2.13)











Mutual information: I(X ;Y ) ≡ h(X)− h(X |Y ) ≡ h(Y )− h(Y |X).

Conditional mutual information:

I(X ;Y |Z) ≡ h(X |Z)− h(X |Y, Z) ≡ h(Y |Z)− h(Y |X,Z).

2Note that without condition (3), the “true positive” statement in Theorem 2.2 is no longer valid.
One simple example is given in Appendix B to illustrate this point.

3We follow the convention in Ref. [16] to use h(·) for the entropy of a continuous random variable
and reserve H(·) for the entropy of a discrete random variable. In the discrete case, we need to replace
the integral by summation and probability density by probability mass function in the definition.
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(a) (b)

h(I    )

I causation entropy
C       

h(X) h(Y)
h(X,Y)

h(Z)

X Y

Z

conditional entropy
h(X |Y)=h(X,Y)-h(Y)

mutual information
I(X;Y)=h(X)+h(Y)-h(X,Y)

mutual information
I(X;Y;Z)=I(X;Y)-I(X;Y |Z)

t+1 Jt

Kt

t+1 h(J )t

h(K )t

(if K = I    

J   I |K

C  J   I |K    = T    )J   I

h(I    ,J )t+1 t

Fig. 2.1. Venn-like diagrams for information-theoretic measures. (a) Visualization of the
relationships between entropy, conditional entropy, and mutual information. (b) Visualization of the
relationships between conditional entropy, causation entropy, and transfer entropy. In the picture
of (b), letters I, J, and K are used to denote X(I), X(J), and X(K), respectively.

The mutual information among three variables X , Y , and Z is defined as4

(2.14)
I(X ;Y ;Z) ≡ I(X ;Y )− I(X ;Y |Z) ≡ I(Y ;Z)− I(Y ;Z|X) ≡ I(X ;Z)− I(X ;Z|Y ),

The mutual information between two variables is always nonnegative, I(X ;Y ) ≥ 0,
with equality if and only if X and Y are independent. Similarly, I(X ;Y |Z) ≥ 0, with
equality if and only if X and Y are independent when conditioned on Z. Interestingly,
for three or more variables, such an inequality does not hold: the mutual information
I(X ;Y ;Z) can be either positive, negative or zero [47]. Figure 2.1(a) visualizes the
relationships between entropy, conditional entropy, and mutual information.

To measure the directionality of information flow between two random processes,
Schreiber proposed a specific type of conditional mutual information called transfer
entropy [63]. For a stationary first-order Markov process such as the one given by
Eq. (2.4), the transfer entropy from j to i can be expressed as

(2.15) Tj→i ≡ h(X
(i)
t+1|X

(i)
t )− h(X

(i)
t+1|X

(i)
t , X

(j)
t ),

where h(·|·) denotes conditional entropy [16]. Since h(X
(i)
t+1|X

(i)
t ) measures the un-

certainty of X
(i)
t+1 given information about X

(i)
t and h(X

(i)
t+1|X

(i)
t , X

(j)
t ) measures the

uncertainty of X
(i)
t+1 given information about both X

(i)
t and X

(j)
t , the transfer entropy

Tj→i can be interpreted as the reduction of uncertainty about future states of X(i)

when the current state of X(j) is provided in addition to that of X(i).

Networks of practical interest inevitably contain (many) more than two nodes.
As we will show later, without appropriate conditioning transfer entropy fails to dis-
tinguish between direct and indirect causality in networks. To overcome the pairwise
limitation of transfer entropy, we define causation entropy. The relationships between
entropy, transfer entropy and causation entropy are illustrated in Fig 2.1(b).

Definition 2.1 (Causation Entropy [71]). The causation entropy from the set

4This quantity is often referred to as interaction information [47] or co-information [7]. Another
multivariate generalizations of mutual information is total correlation [78] (also known as multivariate
constraint [24] or multi-information [69]).
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of nodes J to the set of nodes I conditioning on the set of nodes K is defined as5

(2.16) CJ→I|K = h(X
(I)
t+1|X

(K)
t )− h(X

(I)
t+1|X

(K)
t , X

(J)
t ),

where I, J,K are all subset of V = {1, 2, . . . , n}. In particular, if J = {j} and I = {i},
we simplify the notation as Cj→i|K . If the conditioning set K = ∅, we often omit it
and simply write CJ→I .

Remark 2.1. Causation entropy is a natural generalization of transfer entropy
from measuring pairwise causal relationships to network relationships of many vari-
ables. In particular, if j ∈ K, then the causation entropy Cj→i|K = 0 as j does not
carry extra information (compared to that of K). On the other hand, if K = {i},
causation entropy recovers transfer entropy, i.e.,

(2.17) Cj→i|i = Tj→i.

Interestingly, in this framework we see that transfer entropy assumes that nodes are
self-causal, whereas causation entropy relaxes this assumption. Preliminary explo-
ration of the differences between the two measures can be found in Ref. [71].

Remark 2.2. We note that in addition to Ref. [71], the conditional mutual
information between time-lagged variables has been proposed as a statistic for network
inference in a few previous studies [21, 60, 61, 75] (although not referred to as transfer
or causation entropy).

Remark 2.3. It seems plausible to conjecture that if two subsets of the nodes
satisfy K1 ⊂ K2, then Cj→i|K1

would be no less than Cj→i|K2
. We remark that this

statement about monotonicity is false (see the two examples below).

Example 1. Consider the stochastic process

(2.18) X
(1)
t = X

(2)
t−1 +X

(3)
t−1

where X
(k)
t are i.i.d Bernoulli variables: P (X

(k)
t = 0) = P (X

(k)
t = 1) = 0.5 (k = 2, 3).

Let i = 1, j = 2, K1 = ∅ and K2 = {3}. It follows that

(2.19)

{

C2→1|∅ = 3
2 log 2− log 2 = 1

2 log 2

C2→1|{3} = log 2− 0 = log 2
⇒ C2→1|∅ < C2→1|{3}.

Example 2. Consider the stochastic process

(2.20) X
(1)
t+1 = X

(3)
t , X

(2)
t+1 = X

(3)
t ,

where X
(3)
t are Bernoulli variables with P (X

(3)
t = 0) = P (X

(3)
t = 1) = 0.5. Let i = 1,

j = 2, K1 = ∅ and K2 = {3}. It follows that

(2.21)

{

C2→1|∅ = log 2− 0 = log 2

C2→1|{3} = 0− 0 = 0
⇒ C2→1|∅ > C2→1|{3}.

The seemingly paradoxical observation that Cj→i|K1
can either be larger or smaller

than Cj→i|K2
despite the fact that K1 ⊂ K2 can be understood as follows: When

5 Note that the definitions in Eq. (2.15) and Eq. (2.16) can be extended for asymptotically
stationary processes by taking the limit of t → ∞, although the proofs in this paper do not directly
apply to such general scenario.
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K1 ⊂ K2, Cj→i|K1
−Cj→i|K2

corresponds to the mutual information among the three

variables X
(i)
t+1|X

(K1)
t , X

(i)
t+1|X

(j)
t and X

(i)
t+1|X

(K2−K1)
t (see Fig. 2.1). Contrary to the

two-variable case where mutual information is always nonnegative, the mutual infor-
mation among three (or more) variables can either be positive, negative or zero [47].

2.4. Theoretical Properties of Causation Entropy and the Optimal

Causation Entropy Principle. In the following we show that analysis of causation
entropy leads to exact network inference for the network stochastic process given by
Eq. (2.4) subject to the Markov assumptions in Eq. (2.8).

We start by exploring basic analytical properties of causation entropy, which is
presented as Theorem 2.2 and also summarized in Fig. 2.2.

Theorem 2.2 (Basic analytical properties of causation entropy). Suppose that
the network stochastic process given by Eq. (2.4) satisfies the Markov assumptions in
Eq. (2.8). Let I ⊂ V be a set of nodes and NI be its causal parents. Consider two sets
of nodes J ⊂ V and K ⊂ V. The following results hold:
(a) (Redundancy) If J ⊂ K, then CJ→I|K = 0.
(b) (No false positive) If NI ⊂ K, then CJ→I|K = 0 for any set of nodes J .
(c) (True positive) If J ⊂ NI and J 6⊂ K, then CJ→I|K > 0.
(d) (Decomposition) CJ→I|K = C(K∪J)→I − CK→I .

Proof. Under the Temporal Markov Condition in Eq. (2.8), there is no time
dependence of the distributions. For notational simplicity we denote the joint distri-

bution p(X
(I)
t+1 = i,X

(J)
t = j,X

(K)
t = k) by p(i, j, k) and use similar notation for the

marginal and conditional distributions. It follows that

CJ→I|K = h(X
(I)
t+1|X

(K)
t )− h(X

(I)
t+1|X

(K)
t , X

(J)
t ) = −

∫

p(i, j, k) log
[ p(i|k)

p(i|j, k)

]

didjdk

≥ − log

∫

p(i, j, k)
p(i|k)

p(i|j, k)
didjdk (by Jensen’s inequality [58])

= − log

∫

p(j, k)
p(i, k)

p(k)
didjdk = − log(1) = 0,(2.22)

where equality holds if and only if p(i|k) = p(i|j, k) almost everywhere. The above
inequality is also known as the Gibbs’ inequality in statistical physics [26].

To prove (a), we note that J ⊂ K implies that p(i|k) = p(i|j, k) and therefore
equality holds (rather than inequality) in Eq. (2.22).

To prove (b), it suffices to show that for J 6⊂ K, CJ→I|K = 0. Since J 6⊂ K and
NI ⊂ K, based on the Spatial Markov Condition in Eq. (2.8), we have:

(2.23) p(X
(I)
t+1|Xt) = p(X

(I)
t+1|X

(K∪J)
t ) = p(X

(I)
t+1|X

(K)
t ) = p(X

(I)
t+1|X

(NI)
t ).

Therefore p(i|j, k) = p(i|k) and equality holds in Eq. (2.22).
To prove (c), we use the Faithfully Markov Condition in Eq. (2.8). Since J ⊂ NI

and J 6⊂ K, it follows that

(2.24) p(X
(I)
t+1|X

(K)
t ) = p(X

(I)
t+1|X

(K∩NI)
t ) 6= p(X

(I)
t+1|X

(K)
t , X

(J)
t ).

Thus, p(i|j, k) 6= p(i|k) and strictly inequality holds in Eq. (2.22).
Finally, part (d) follows directly from the definition of C.

Theorem 2.2 allows us to convert the problem of causal network inference into
the problem of estimating causation entropy among nodes. In particular, for a given
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(a) (b) (c)

J K

I

J

N

K

JN

K

I I

I I

C      = 0J   I |K C      = 0 J   I |K C      > 0  J   I |K 

Fig. 2.2. Basic analytical properties of causation entropy (Theorem 2.2) allowing for the in-
ference of the causal parents NI of a set of nodes I. (a) Redundancy: If J is a subset of the
conditioning set K (J ⊂ K), then the causation entropy CJ→I|K = 0. (b) No false positive: If NI

is already included in the conditioning set K (NI ⊂ K), then CJ→I|K = 0. (c) True positive: If a
set J contains at least one causal parent of I that does not belong to the conditioning set K, i.e.,
(J ⊂ NI ) ∧ (J 6⊂ K), then CJ→I|K > 0.

set of nodes I, each node j can in principle be checked independently to determine
whether or not it is a causal parent of I via either of the following two equivalent
criteria (proved in Theorem 2.3(a) below)

(2.25)

{

(1) Node j ∈ NI iff there is a set K ⊃ NI , such that Cj→I|(K−{j}) > 0;

(2) Node j ∈ NI iff for any set K ⊂ V , Cj→I|(K−{j}) > 0.

Practical application of either criteria to infer large networks is challenging. Criterion
(1) requires a conditioning set K that contains NI as its subset. Since NI is generally
unknown, one often must useK = V . When the network is large (n≫ 1), this requires
the estimation of causation entropy for very high dimensional random variables from
limited data, which is inherently unreliable [60, 61]. Criterion (2), on the other hand,
requires a combinatorial search over all subsets making it computationally infeasible.

In the following we prove the two inference criteria in Eq. (2.25). Furthermore,
we show that the set of causal parents is the minimal set of nodes that maximizes
causation entropy, which we refer to as the optimal causation entropy principle.

Theorem 2.3 (Optimal causation entropy principle for causal network inference).
Suppose that the network stochastic process given by Eq. (2.4) satisfies the Markov
properties in Eq. (2.8). Let I ⊂ V be a given set of nodes and NI be the set of I’s
causal parents, as defined in Eq. (2.3). It follows that
(a) (Direct inference) Node j ∈ NI iff ⇔ ∃K ⊃ NI such that Cj→I|(K−{j}) > 0 ⇔
∀K ⊂ V , Cj→I|(K−{j}) > 0.

(b) (Partial conditioning removal) If there exists K ⊂ V such that Cj→I|(K−{j}) = 0,
then j /∈ NI.

(c) (Optimal causation entropy principle) The set of causal parents is the minimal
set of nodes with maximal causation entropy.
Define the family of sets with maximal causation entropy as

(2.26) K = {K|∀K ′ ⊂ V , CK′→I ≤ CK→I}.

Then the set of causal parents satisfies

(2.27) NI = ∩K∈KK = argminK∈KK.
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Proof. First we prove part (a). If j ∈ NI , then for every K ⊂ V , Cj→I|(K−{j}) > 0
following Theorem 2.2(c). This proves both “⇒”. On the other hand, suppose that
∀K ⊂ V , Cj→I|(K−{j}) > 0, then for K = V ⊃ NI , it follows that Cj→i|(V−{j}) > 0.
Node j ∈ NI since otherwise (V−{j}) ⊃ NI which would imply that Cj→i|(V−{j}) = 0
from Theorem 2.2(b). Therefore, the two “⇐”s are also proven.

Next, part (b) follows directly from the contrapositive of Theorem 2.2(c).

Finally, we prove part (c). Note that if NI 6⊂ K, then J = NI − K 6= ∅, and
so C(K∪J)→I − CK→I = CJ→I|K > 0. Therefore, K ∈ K ⇒ NI ⊂ K. This implies
NI ⊂ ∩K∈KK. On the other hand, if ∃j ∈ ∩K∈KK with j /∈ NI . Let K ∈ K and
L = K − {j}. Since j /∈ NI , we have NI ⊂ L ⊂ K, and therefore CK→I − CL→I =
Cj→I|L = 0, where the second equality follows from Theorem 2.2(c). This shows that
L ∈ K, contradicting with j ∈ ∩K∈KK. So j ∈ ∩K∈KK ⇒ j ∈ NI , which implies
that ∩K∈KK ⊂ NI . Since K is finite, it follows that ∩K∈KK = argminK∈KK.

Based on the optimal causation entropy principle, it seems straightforward to
solve the minimax optimization for the inference of NI by enumerating all subsets of
V with increasing cardinality (starting from∅), and terminating when a setK is found
to be have maximal causation entropy among all subsets of cardinality |K|+ 1 (i.e.,
adding any node j to set K does not increase the causation entropy CK→I). Based on
Theorem 2.3, the set K = NI . However, this brute-force approach requires O(n|NI |)
causation entropy evaluations, which is computationally inefficient and therefore in-
feasible for the inference of real world networks which often contain large number of
nodes (n ≫ 1). Such limitation is removed only when the number of causal parents
is moderately small, |NI | = O(1). In the following section we develop additional the-
ory and algorithms to efficiently solve this minimax optimization problem for causal
network inference.

2.5. Computational Causal Network Inference. Algorithmically, causal net-
work inference via the optimal causation entropy principle should require as few com-
putations as necessary (computational efficiency) and as few data samples as possible
while retaining accuracy (data efficiency). We introduce two such algorithms that
jointly infer the causal network. For a given node i, the goal is to infer its causal
parents, as illustrated by nodes in the shaded region of Fig. 2.3(a). Algorithm 2.1
aggregatively identifies nodes that form a superset of the causal parents, K ⊃ Ni

(proven by Lemma 2.4, illustrated in Fig. 2.3(b)). Start from a set K ⊃ Ni, Algo-
rithm 2.2 prunes away non-causal nodes from K leaving only the causal parents Ni

(proven by Lemma 2.5, illustrated in Fig. 2.3(c)).

Lemma 2.4 (Aggregative Discovery of Causal Nodes). Suppose that the network
stochastic process given by Eq. (2.4) satisfies the Markov properties in Eq. (2.8). Let
I ⊂ V and NI be its causal parents. Define the sequences of numbers {x1, x2, . . . },
nodes {p1, p2, . . . }, and nested sets {K0,K1,K2, . . . } as: K0 = ∅, and

(2.28)











xi = maxx∈(V−Ki−1)Cx→I|Ki−1
,

pi = argmaxx∈(V−Ki−1)Cx→I|Ki−1
,

Ki = {p1, p2, . . . , pi}

for every i ≥ 1. There exists a number q, with |NI | ≤ q ≤ n, such that

(a) The numbers xi > 0 for 1 ≤ i ≤ q and xi = 0 for i > q.
(b) The set of causal parents NI ⊂ Kq = {x1, x2, . . . , xq}.

Proof. If NI = ∅, the lemma holds trivially. Suppose that |NI | ≥ 1 and so x1 > 0.
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(b) (c) Divisive removal
of non-causal nodes

True network structure(a) Aggregative discovery 
of causal nodes

K j i

K

j

if C      is maximal
then K’ = K   {j}

j   i |K if C          = 0
then K’ = K-{j}

j   i |(K-{j})

i

K’

K’

i

Fig. 2.3. Causal network inference by optimal causation entropy. (a) Causal parents and non-
causal nodes of a node i. Causal network inference corresponds to identifying the causal parents Ni

(nodes in shaded region) for every node i ∈ V. (b) Nodes are added to the set K in an aggregative
fashion, maximizing causation entropy at each step (see Algorithm 2.1). (c) Starting from a set
K ⊃ Ni (K obtained by Algorithm 2.1), non-causal nodes are progressively removed from K if their
causation entropy to node i conditioned on the rest of K is zero (see Algorithm 2.2).

Algorithm 2.1 Aggregative Discovery of Causal Nodes

Input: Set of nodes I ⊂ V
Output: K (which will include NI as its subset)
1: Initialize: K ← ∅, x←∞, p← ∅.
2: while x > 0 do

3: K ← K ∪ {p}
4: for every j ∈ (V −K) do
5: xj ← Cj→I|K

6: end for

7: x← maxj∈(V−K) xj , p← argmaxj∈(V−K)xj

8: end while

To prove (a), we define q ≡ minxi=0(i − 1) (if all xi > 0, define q ≡ n). By
construction, xi > 0 when i ≤ q and xq+1 = 0. This implies that NI ⊂ Kq since
otherwise there is a node j with Cj→I|Kq

> 0⇒ xq+1 > 0. For any i > q, NI ⊂ Kq ⊂
Ki−1, and thus Cj→I|Ki−1

= 0 for all j ∈ (V −Ki−1), which implies that xi = 0.

To prove (b), we note that if there is a node j ∈ NI such that j /∈ Kq, then by
the definition of xi and Theorem 2.2(c), it follows that xq+1 ≥ Cj→I|Kq

> 0. This is
in contradiction with the fact that xi = 0 for all i > q. Therefore, NI ⊂ Kq.

Algorithm 2.1 recursively constructs the set Kq ⊃ NI (further denoted as K)
as described by Lemma 2.4 and illustrated in Fig. 2.3(b). To remove indirect and
spurious nodes in K that do not belong to NI , we apply the result of Theorem 2.2(c),
Cj→I|(K−{j}) = 0⇒ j /∈ NI . This gives rise to Lemma 2.5 and Algorithm 2.2.

Lemma 2.5 (Progressive Removal of Non-Causal Nodes). Suppose that the net-
work stochastic process given by Eq. (2.4) satisfies the Markov properties in Eq. (2.8).
Let I ⊂ V and NI be its causal parents. Let K = {p1, p2, . . . , pq} such that K ⊃ NI .
Define the sequence of sets {K0,K1,K2, . . . ,Kq} by K0 = K, and

(2.29) Ki =

{

Ki−1, if Cpi→I|(Ki−1−{pi}) > 0;

Ki−1 − {pi}, if Cpi→I|(Ki−1−{pi}) = 0.
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Algorithm 2.2 Progressive Removal of Non-Causal Nodes

Input: Sets of nodes I ⊂ V and K ⊂ V
Output: N̂I (inferred set of causal parents of I)
1: for every j ∈ K do

2: if Cj→I|(K−{j}) = 0 then

3: K ← K − {j}
4: end if

5: end for

6: N̂I ← K

for every 1 ≤ i ≤ q. Then Kq = NI.

Proof. By definition, K0 = K ⊃ NI . We prove that Kq ⊃ NI by induction. Sup-
pose that Ki−1 ⊃ NI . If node pi ∈ NI , then Cpi→I|(Ki−1−{pi}) > 0 by Theorem 2.2(c)
and therefore Ki = Ki−1 ⊃ NI . If node pi /∈ NI , then Ki ⊃ Ki−1 − {pi} ⊃ NI .

Next we prove that Kq ⊂ NI . Suppose that node pi /∈ NI . Since Ki−1 ⊃ NI , the
causation entropy Cpi→I|(Ki−1−{pi}) = 0 by Theorem 2.2(b), and soKi = Ki−1−{pi}.
Therefore, p /∈ Ki ⊃ Kq, which implies that Kq ⊂ NI (contrapositive).

Algorithm 2.2 iteratively removes nodes that are not causal parents from a set K
until the set converges to NI as described by Lemma 2.5 and illustrated in Fig. 2.3(c).

Jointly, Algorithms 2.1 and 2.2 can be applied to identify the causal parents of
each node, thus inferring the entire causal network6.

Remark 2.4. There exists a number of algorithms for the problem of network in-
ference, and we will comment on two most relevant techniques. First, we note that the
ARACNE algorithm [46] attempts to infer a (non-causal) interaction network based
on mutual information. The ARACNE algorithm first computes the mutual informa-
tion between all pairs of nodes/variables, filtering out the nonsignificant ones, and
then enumerates through all triplets and removes links based on the data processing
inequality. It was proven to correctly infer the undirected network under the assump-
tions that (i) mutual information are estimated without error, and (ii) the network is
a tree [46]. Second, the PC algorithm developed by Spirtes, Glymour, and Scheines re-
moves non-causal links by potentially testing all combinations of conditioning subsets,
and was proven to correctly infer general causal networks if the conditional indepen-
dence between the variables can be perfectly examined [66]. Runge et. al. [60, 61]
recently utilized the PC algorithm to infer causal networks by establishing the con-
ditional dependence/independence via estimation of appropriately defined conditional
mutual information between time-lagged variables. We note that whereas we utilize
Algorithm 2.2 for the divisive step in network inference, an alternative would be to
utilize the PC algorithm for the divisive step. Although the accuracy versus efficiency
tradeoff for such a modification has yet to be tested, we expect that it may be helpful
specifically for inferring the causal parents for nodes with large degree, suggesting that
in practical applications one may wish to switch back and forth between Algorithm 2.2
and the PC Algorithm for the divisive step, depending on a node’s degree.

3. Application to Gaussian Process: Analytical Results. In this section
we make analytical comparison among three approaches to causal network inference:

6Numerically estimated causation entropy is always positive due to finite sample size and numer-
ical precision. In practice, one needs to use a statistical test (e.g., permutation test as described in
Section 4) to examine the conditions x > 0 in Algorithm 2.1 and Cj→I|(K−{j}) = 0 in Algorithm 2.2.
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causation entropy, transfer entropy [63], and conditional Granger causality [29, 30].
The next section will be devoted to the exploration of the numerical properties of
these approaches for general random networks.

While information-theoretic approaches including causation entropy do not re-
quire stringent model assumptions, a linear model must be assumed to offer a fair
comparison with the conditional Granger causality. As a benchmark example, we
focus on the following linear discrete stochastic network dynamics

(3.1) X
(i)
t =

∑

j∈Ni

AijX
(j)
t−1 + ξ

(i)
t

(

or in matrix form: Xt = AXt−1 + ξt
)

.

Here X
(i)
t ∈ R represents the state of node i at time t (i ∈ {1, 2, . . . , n}, t ∈ N),

ξ
(i)
t ∈ R represents noise, and AijX

(j)
t−1 models the influence of node j on node i.

Equation (3.1) finds application in a broad range of areas, including time series anal-
ysis (as a multivariate linear autoregressive process [10]), information theory (as a net-
work communication channel [16]), and nonlinear dynamical systems (as a linearized
stochastic perturbation around equilibrium states [43]). It is straightforward to check
that Eq. (3.1) is a special case of the general network stochastic process, Eq. (2.4),
and asymptotically (as t→∞) satisfied the Markov assumptions in Eq. (2.8).

3.1. Analytical Properties of the Solution.

3.1.1. Solution Formula. Defining X0 = ξ0 for convenience, the solution to
Eq. (3.1) can be expressed as

(3.2) Xt =
t
∑

k=0

Akξt−k.

We assume that ξ
(i)
t are i.i.d Gaussian random variables with zero mean and finite

nonzero variance, denoted as ξ
(i)
t ∼ N(0, σ2

i ) with σi > 0. Therefore,

(3.3) ξt ∼ N(0, S),

where the covariance matrix S is defined by Sij = δijσ
2
iwith δ denoting the Kronecker

delta. It follows that

(3.4)

{

E[ξ
(i)
t ] = 0,

Cov(ξ
(i)
t , ξ

(j)
τ ) = δijδtτ .

Note that a random variable obtained by an affine transformation of a Gaussian
variable is also Gaussian. For example, if Y = [Y1;Y2] is Gaussian, the distribution
of Y1 conditioned on Y2 is also Gaussian [20]. The proposition below follows by
expressing random variables via appropriate affine transformations of ξt’s.

Proposition 3.1. Let I and K be any subsets of V. Let t ∈ N and τ ∈ {0} ∪N.

The conditional distribution of X
(I)
t+τ given X

(K)
t is Gaussian.

3.1.2. Covariance Matrix. Under an affine transformation from Gaussian vari-
able Y to Z as Z = CY + d, the mean and covariance of Y and Z are related by:
µZ = CµY + d and ΣZ = CΣY C

⊤ [20]. We consider covariance matrices Φ(τ, t),
where the (i, j)-th entry of Φ(τ, t) is defined as

(3.5) Φ(τ, t)ij ≡ Cov[x
(i)
t+τ , x

(j)
t ].
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It follows from Eqs. (3.2) and (3.3) that

(3.6) Xt ∼ N(0,Φ(0, t)), where Φ(0, t) =
t
∑

k=0

AkS(Ak)⊤.

In the following we prove a sufficient condition for the converge of the covariance
matrix Φ(0, t) as time t→∞. Denote the spectral radius of a square matrix M by

(3.7) ρM ≡ max{|λ| : λ is an eigenvalue of M}.

Note that ρM = ρM⊤ since a square matrix and its transpose have the same set of
eigenvalues. For the dynamical system defined by Eq. (3.1), matrices A with |ρA| < 1
are the only matrices for which the underlying system poses a stable equilibrium in
the absence of noise. We refer to these matrices as stable.

Definition 3.2 (Stable Matrix). Matrix M is stable if ρM < 1.

The following is a known result from classical matrix theory [36].

Theorem 3.3 (Convergence of Matrix Series [36]). The matrix series
∑∞

k=0 Mk

converges if the scalar series
∑∞

k=0 ‖Mk‖ under any induced norm ‖ · ‖ converges.

Note that it is possible for the matrix series
∑∞

k=0 Mk to be convergent while
the corresponding scalar series

∑∞
k=0 ‖Mk‖ diverges, analogous to the possibility of

a scalar series that is convergent but not absolutely convergent. Next we state and
prove a sufficient condition under which the matrix series in Eq. (3.6) converges.

Proposition 3.4 (Convergence of the Covariance). The series
∑∞

k=0 A
kS(Ak)⊤

converges if A is stable.
Proof. Let ‖ · ‖ be any induced norm. Then ‖AkS(Ak)⊤‖ ≤ ‖Ak‖ · ‖S‖ · ‖(A⊤)k‖

for any k ∈ N. Gelfand’s formula (see Ref. [25]) implies that

(3.8) lim
k→∞

‖Ak‖1/k = lim
k→∞

‖(A⊤)k‖1/k = ρA.

On the other hand, limk→∞ ‖S‖1/k = 1. Therefore,

lim
k→∞

‖AkS(Ak)⊤‖1/k ≤ lim
k→∞

(

‖Ak‖ · ‖S‖ · ‖(A⊤)k‖
)1/k

= ρ2A < 1,

where the last inequality follows from the fact that A is stable. Hence the scalar series
∑∞

k=0 ‖A
kS(Ak)⊤‖2 is convergent. The proposition follows by Theorem 3.3.

For the remainder of this section, it will be assumed that A is stable in Eq. (3.1).
As t→∞, we drop the second argument in Φ(0, t) and define the asymptotic covari-
ance matrix

(3.9) Φ(0) ≡ lim
t→∞

Φ(0, t) =

∞
∑

k=0

AkS(Ak)⊤.

It follows that Φ(0) satisfies an algebraic equation given by the proposition below.

Proposition 3.5 (Asymptotic Covariance Matrix). Assume that A is stable.
The asymptotic covariance matrix Φ(0) =

∑∞
k=0 A

kS(Ak)⊤ satisfies the equation

(3.10) AΦ(0)A⊤ − Φ(0) + S = 0.

Proof. Since A is stable, both of the two matrix series below converge:



16 J. SUN, D. TAYLOR, AND E. M. BOLLT

{

Φ(0) = S +ASA⊤ +A2S(A2)⊤ +A3S(A3)⊤ + · · ·

AΦ(0)A⊤ = ASA⊤ +A2S(A2)⊤ +A3S(A3)⊤ + · · ·
Subtracting the two equations gives the result of the proposition.

Equation (3.10) is a (discrete) Lyapunov equation which often appears in stability
analysis and optimal control problems [59]. Using “⊗” as the Kronecker product and
“vec” for the operation of transforming a square matrix to a column vector by stacking
the columns of the underlying matrix in order, Eq. (3.10) can be converted into:

(3.11) (In2 −A⊗A) vec(Φ(0)) = vec(S),

where In2 denotes the identity matrix of size n2-by-n2. Matrix Φ(0) can be computed
by either solving Eq. (3.10) through iterative methods (see Ref. [5]) or by directly
solving Eq. (3.11) as a linear system. In practice, we found the iterative approach to
be numerically more efficient and stable compared to direct inversion.

Covariance matrices are in general positive semidefinite [20]. For for the network
dynamics defined in Eq. (3.1), we show that they are indeed positive definite.

Proposition 3.6 (Positive Definiteness of the Covariance Matrix). The covari-
ance matrix Φ(0, t) is positive definite for any t ∈ N. The asymptotic covariance
matrix Φ(0) is also positive definite.

Proof. For any unit vector v ∈ R
n, v⊤AΦ(0, 0)A⊤v = (A⊤v)⊤A⊤v ≥ 0. From

Eqs. (3.2) and (3.3), for any t ∈ N, Φ(0, t) = AΦ(0, t− 1)A⊤ + S. By induction,

v⊤Φ(0, t)v = v⊤AΦ(0, t− 1)A⊤v + v⊤Sv

≥
(

A⊤v
)⊤

Φ(0, t− 1)
(

A⊤v
)

+min
i

σ2
i ≥ min

i
σ2
i > 0.(3.12)

This shows that Φ(0, t) is positive definite (indeed we have: ρΦ(0,t) ≥ mini σ
2
i > 0).

Taking t→∞ in the above estimate also shows that Φ(0) is positive definite.

3.1.3. Time-Shifted Covariance Matrices. We define the time-shifted co-
variance matrix Φ(τ, t) for each t ∈ N (time) and τ ∈ N (positive time shift between
states). If A is stable, then the covariance matrix Φ(t, τ) converges for each time
shift τ as t→∞. The (asymptotic) covariance matrices with different time shifts are
related by a simple algebraic equation given in the following proposition.

Proposition 3.7 (Relationship Between Time-Shifted Covariance Matrices).
Assume that A is stable. For each τ ∈ N, the following limit exists

lim
t→∞

Φ(τ, t) = Φ(τ),

where matrix Φ(τ) satisfies

(3.13) Φ(τ) = AΦ(τ − 1) = A2Φ(τ − 2) = · · · = AτΦ(0).

Proof. For every τ ∈ N and t ∈ N, it follows that

(3.14) Φ(τ, t)ij = E
[

n
∑

k=1

aikx
(k)
t+τ−1 + ξ

(i)
t+τ , x

(j)
t

]

=

n
∑

k=1

aikΦ(τ − 1, t)kj .

Therefore, the matrix Φ(τ, t) satisfies

(3.15) Φ(τ, t) = AΦ(τ − 1, t) = A2Φ(τ − 2, t) = · · · = AτΦ(0, t).

Taking the limit as t → ∞ in and making use of the fact that A is stable, we reach
the conclusion of the proposition.
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3.2. Analytical Expressions of Causation Entropy. Here we provide ana-
lytical expressions for causation entropy of the Gaussian process described in Eq. (3.1).
Because causation entropy can be interpreted as a generalization of both transfer en-
tropy and conditional Granger causality under the appropriate selection of nodes i
and j and the conditioning set K, these results also provide analytical expressions for
transfer entropy and conditional Granger causality.

3.2.1. Joint entropy expressions. Let Σ be the covariance matrix of a mul-
tivariate Gaussian variable X ∈ R

n (i.e., X ∼ N(µ,Σ)), it follows that [1]

(3.16) h(X) =
1

2
log[det(Σ)] +

1

2
n log(2πe).

Note that the right hand side of the above is actually an upper bound for a general
random variable (i.e., the equality “ = ” becomes inequality “ ≤ ” [16]). Therefore, a
Gaussian variable maximizes entropy among all variables of equal covariance.

The random variable Xt is Gaussian and converges to N(0,Φ(0)) as t→∞. For
an arbitrary subset of the nodes K = {k1, k2, . . . , kℓ}. The joint entropy is

(3.17) h(X(K)) = lim
t→∞

h(X
(K)
t ) =

1

2
log(|ΦKK(0)|) + log(2πe).

Here we have introduced the notation

(3.18) ΦIJ (0) ≡ P (I)Φ(0)P (J)⊤,

where for a set K = {k1, k2, . . . , kℓ}, P (K) is the ℓ-by-n projection matrix defined as

(3.19) P (K)ij = δki,i

3.2.2. Causation Entropy. For the Gaussian process given by Eq. (3.1), we
obtain the analytical expression of causation entropy as

(3.20) CJ→I|K =
1

2
log





det
[

Φ(0)II − Φ(1)IKΦ(0)−1
KKΦ(1)⊤IK

]

det
[

Φ(0)II − Φ(1)I,K∪JΦ(0)
−1
K∪J,K∪JΦ(1)

⊤
I,K∪J

]





If J = {j} and I = {i}, this equation simplifies to

(3.21) Cj→i|K =
1

2
log

(

Φ(0)ii − Φ(1)iKΦ(0)−1
KKΦ(1)⊤iK

Φ(0)ii − Φ(1)i,K∪{j}Φ(0)
−1
K∪{j},K∪{j}Φ(1)

⊤
i,K∪{j}

)

.

3.2.3. Transfer Entropy. Recall that causation entropy recovers transfer en-
tropy when K = {i}. Letting K = {i} in the formula above gives the transfer entropy
(with single time lag) for multivariate Gaussian variables:

Tj→i = Cj→i|i =
1

2
log
(

1 +
αij

βij − αij

)

,

where

{

αij ≡
(

Φ(0)iiΦ(1)ij − Φ(0)ijΦ(1)ii
)2
,

βij ≡
(

Φ(0)2ii − Φ(1)2ii
)(

Φ(0)iiΦ(0)jj − Φ(0)2ij
)

.
(3.22)

It follows that βij ≥ αij ≥ 0, and therefore Tj→i ≥ 0 (Ti→i = 0). Furthermore,

(3.23) Tj→i = 0 ⇐⇒ αij = 0 ⇐⇒
n
∑

k=1

Aik

(

Φ(0)iiΦ(0)kj − Φ(0)ijΦ(0)ki
)

= 0.
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3.2.4. Conditional Granger Causality. As shown in Ref. [3], when the ran-
dom variables are Gaussian, expression of Granger Causality is equivalent as that of
transfer entropy (and also causation entropy introduced here). In fact, for Gaussian
variables, the Granger Causality from j to i without conditioning equals 2Cj→i, while
the conditional Granger causality (with full conditioning) equals 2Cj→i|(V−{j}).

3.3. Analytical Results for Directed Linear Chain, Directed Loop, and

Directed Trees. We derive expressions of transfer entropy and causation entropy
for several classes of networks including directed linear chains, directed loops, and
directed trees. These results highlight that although transfer entropy may indicate
the direction of information flow between two nodes, its application to causal network
inference is often unjustified as it cannot distinguish between direct and indirect causal
relationships (unless appropriate conditioning is adopted as in causation entropy).

3.3.1. Directed Linear Chain. Denote a directed linear chain of n nodes as

(3.24) 1→ 2→ 3 · · · → n.

For simplicity we assume that all links have the same weight w = 1. Consequently,
the corresponding adjacency matrix A = [Aij ]n×n is given by

(3.25) Aij = δi,j+1.

It follows that ρA = 0 and therefore A is stable. By inverting the lower-triangular
matrix (In2 −A⊗A) in Eq. (3.11) and applying Eq. (3.13), we obtain that

(3.26)

{

Φ(0)ij = δij
∑j

k=1 σ
2
k,

Φ(1)ij = δi,j+1

∑j
k=1 σ

2
k.

Letting K = ∅ and K = {i} respectively in Eqs. (3.21) and (3.22), it follows that

(3.27) Cj→i = Tj→i =
1

2
δi,j+1 log

(

1 +

∑j
k=1 σ

2
k

σ2
i

)

.

Therefore, for the directed linear chain defined in Eq. (3.25), transfer entropy
Tj→i = Cj→i, and it is positive if and only if there is a direct link j → i, i.e.,

(3.28) Cj→i = Tj→i > 0 ⇔ Aij = 1, and Cj→i = Tj→i = 0 ⇔ Aij = 0.

Interestingly, both causation entropy Cj→j+1 and transfer entropy Tj→j+1 increase
monotonically as a function of j, and the values only depend on part of the chain from
the top node (node 1) to node j + 1 and not on the rest of the network. Interpreting
the monotonicity in term of the network structure, the closer node j is to the end
of the chain, effectively the more information is transferred through the directed link
j → j + 1. Figure. 3.1(a) illustrates this via a network of n = 1000 nodes.

3.3.2. Directed Loop. Consider now a directed loop with n nodes, denoted as

(3.29) 1→ 2→ 3 · · · → n→ 1.

Let w > 0 be the uniform link weight. It follows that ρA = w. Thus, for the adjacency
matrix A to be stable, we must have w < 1. To keep the symmetry of the problem,
we further assume that the variance of noise is the same at each node, therefore

(3.30) σ2 ≡ σ2
1 = σ2

2 = . . . σ2
n.
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Fig. 3.1. Causation Entropy and transfer entropy for a Gaussian process on three classes
of networks. (a) For directed linear chains, both causation entropy and transfer entropy correctly
identify the network as Cj→i = Tj→i > 0 iff i = j+1 (otherwise Cj→i = Tj→i = 0). The dependence
of Cj→j+1 on node index j is given by Eq. (3.27) and plotted. (b) For directed loops, causation
entropy and transfer entropy again correctly identify the network topology with Cj→i = Tj→i > 0
iff j → i. The dependence of Cj→i on link weight w is given by Eq. (3.33) as shown. (c) For
directed trees, causation entropy given by Eq. (3.41) correctly identifies the network topology based
on Eq. (3.43). In contrast, transfer entropy without appropriate conditioning infers many links that
do not exist in the actual network (red dashed lines), as described by Eq. (3.42).

The entries in Φ(0, t) satisfy

(3.31) Φ(0, t)ij = w2Φ(0, t− 1)pi,pj
+ δijσ

2,

where pi denotes the unique node that directly links to node i. Taking the limit as
t→∞ and solve the resulting recursive equations, we obtain that for

(3.32)

{

Φ(0)ij = δijσ
2/(1− w2),

Φ(1)ij = δpi,jσ
2w/(1− w2).

where the second equation is obtained through Φ(0)ij and Eq. (3.13). Letting K = ∅

and K = {i} respectively in Eqs. (3.21) and (3.22), we conclude that

(3.33) Cj→i = Tj→i =
1

2
δpi,j log

( 1

1− w2

)

.

Note that causation entropy and transfer entropy equal and do not depend on the
noise variation σ2, and they are positive if and only if there is a direct link j → i, i.e.,

(3.34) Cj→i = Tj→i > 0 ⇔ Aij = 1, and Cj→i = Tj→i = 0 ⇔ Aij = 0.

By symmetry, causation entropy and transfer entropy through each directed link is the
same. As the link weight w increases in (0, 1), both increase monotonically in (0,∞).
The larger the link weight w is, the larger amount of information is transferred via
each directed link, as intuitively expected. Also see Fig. 3.1(b) as an illustration.

3.3.3. Directed Trees. We now consider directed tree networks with uniform
link weight w = 1 and unit node variance7

(3.35) σ2
1 = σ2

2 = . . . σ2
n = 1.

7Similar results hold for trees with general link weights and node variances but the corresponding
equations are too cumbersome to list.
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A directed tree has one root (indexed as node 1 without loss of generality) and each
non-root node i (i 6= 1) has exactly one ancestor, denoted by pi. The corresponding
adjacency matrix A = [Aij ]n×n thus satisfies

(3.36) Aij = (1− δi1)δi,pi
.

It can be shown that ρA = 0. For i 6= 1, we denote the directed path from 1 to i by

(3.37) 1 = p
(di)
i → p

(di−1)
i → · · · → p

(1)
i ≡ pi → p

(0)
i ≡ i,

where di is the depth of node i in the tree (for node 1, we define its depth d1 = 0).
Thus, the highest node in the tree is the root, and the lowest nodes have the greatest
depth. For any two nodes (i, j), we denote their lowest common ancestor by pij , i.e.,

(3.38) pij = argmax
{k|∃ℓ,m≥0,s.t.,p

(ℓ)
i

=p
(m)
j

}

dk.

The covariance matrix Φ(0, t) satisfies

(3.39) Φ(0)ij = δ1iδ1jσ
2
1 + (1 − δ1i)(1 − δ1j)[Φ(0)pi,pj

+ δij ].

We solve these recursive equations to obtain

(3.40)

{

Φ(0)ij = δdi,dj
(dpij

+ 1)

Φ(1)ij = (1− δi1)δdi,dj+1(dpij
+ 1),

where pij is defined in Eq. (3.38) and Φ(1)ij is obtained by Φ(1) = AΦ(0).
We calculate causation entropy and transfer entropy through Eqs. (3.21) and (3.22):

(3.41) Cj→i = Tj→i =
1

2
δdi,dj+1 log

(di + 1)(dj + 1)

(di + 1)(dj + 1)− (dpij
+ 1)2

.

Note that in general 0 ≤ dpij
≤ min{di, dj}. Thus Cj→i = Tj→i ≤

1
2 log(1 + di), with

equality if and only if j is the ancestor of i (i.e., j = pi = pij). Therefore, we have

(3.42)

{

Tj→i > 0 ⇔ di = dj + 1 ⇐ Aij = 1 (but Tj→i > 0 6⇒ Aij = 1);

Tj→i = 0 ⇔ di 6= dj + 1 ⇒ Aij = 0 (but Aij = 0 6⇒ Tj→i = 0).

In other words, transfer entropy being positive (without appropriate conditioning)
corresponds to a superset of the links that actual exist in a directed tree, and the
inferred network using this criterion will potentially contain many false positives. See
Fig. 3.1(c) as an example. On the other hand, for a given node i 6= 1, we have

(3.43)

{

pi = argmaxj Cj→i,

Cj→i|{pi} = 0.

Therefore, for each node i, the node j that maximizes causation entropy Cj→i among
all nodes is inferred as the causal parent of i. Conditioned on this node, the causation
entropy from any other node to i will become zero, indicating no other directed links to
node i. This causation entropy based procedure allows for exact and correct inference
of the underlying causal network, a directed tree.
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4. Application to Gaussian Process: Numerical Results. In this section,
we illustrate that causal network inference by optimal causation entropy is reliable
and efficient for the Gaussian process, Eq. (3.1), on large random networks.

4.1. Random Network Model and Time Series Generation. We consider
signed Erdős-Rényi networks, which is a generation of its original model [8]. In partic-
ular, each network consists of n nodes (V = {1, 2, . . . , n}), such that each directed link
j → i is formed independently with equal probability p, giving rise to a directed net-
work with approximately n2p directed links. For generality, we allow the link weight
of each link j → i to be either positive (Aij = w) or negative (Aij = −w), with equal
probability. Recalling that the network adjacency matrix A is defined entry-wise by
Aij ∈ {w,−w} iff there exists a directed link j → i (otherwise Aij = 0), the link
weight w may be selected to tune the spectral radius ρ(A) of matrix A.

We generate time series from the stochastic equation, Eq. (3.1), where matrix
A is obtained from the network model and random variables ξt ∼ N (0, S), where
the covariance matrix S is taken to be the identity matrix of size n × n. To reduce
transient effects, for a given sample size T we solve Eq. (3.1) for 10T time steps and
only use the final 10% of the resulting time series.

To summarize, our numerical experiments contain parameters: n (network size),
p (connection probability), ρ(A) (spectral radius of A), and T (sample size).

4.2. Practical Considerations for Network Inference. We have established
by Theorems 2.2 and 2.3 and Lemmas 2.4 and 2.5 that in theory, exact network
inference can be achieved by optimal causation entropy, which involves implementing
Algorithms 2.1 (Aggregative Discovery) and 2.2 (Progressive Removal) to correctly
identify the set of causal parents Ni for each node i ∈ V .

In practice, the success of our optimal causation entropy approach (and in fact,
any entropy-based approaches) depends crucially on reliable estimation of the relevant
entropies in question from data. This leads to two practical challenges.

(1) Entropies must be estimated from finite time series data. While there are
several techniques for estimating entropies for general multivariate data, the accu-
racy of such estimations are increasingly inaccurate for small sample sizes and high-
dimensional random variables [52]. In this research, we side-step this computational
complexity by using knowledge of the asymptotic functional form for the entropy of
the Gaussian Process, where the covariance matrices Φ(0) and Φ(1) in Eqs. (3.20)
and (3.21) are estimated directly from the time series data.

(2) Application of the theoretical results rely on determining whether the causa-
tion entropy Cj→i|K > 0 or Cj→i|K = 0. However, the estimated value of Cj→i|K

based on sample covariances is necessarily positive given finite sample size and fi-
nite numerical precision. Therefore, a statistical test must be used to assess the
significance of the observed positive causation entropy. We here adopt a widely used
approach in non-parametric statistics, called the permutation test8. Specifically, we
propose the following permutation test based on the null hypothesis that causation
entropy Cj→i|K = 0: first perform r random (temporal) permutations of the time

series {X
(j)
t }, leaving the rest of the data unchanged; we then construct an empirical

cumulative distribution F̂ (x) of the estimated causation entropy from the permuted

8The idea of a permutation test is to perform (large number of) random permutations of a subset
of the data leaving the rest unchanged, giving rise to an empirical distribution of the static of interest.
The observed statistic from the original data is then located on this empirical distribution in order
to associate its statistical significance [28].
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time series9; finally, given a prescribed significance level θ, the observed Cj→i|K = c

is declared significant (i.e., the null hypothesis is rejected at level θ) if F̂ (c) > θ.
To summarize, the inference algorithms contain two parameters to be used in the

permutation test: r (number of random permutations) and θ (significance threshold).

4.3. Comparing Optimal Causation Entropy, Conditional Granger, and

transfer entropy. Here we compare the performance of three approaches of causal
network inference: conditional Granger (see for example Ref. [23, 32]), transfer en-
tropy (see Ref. [76] and the references therein), and optimal causation entropy (oCSE).
In particular, the conditional Granger and transfer entropy approaches under consid-
eration both estimate the entropy Cj→i|K for each pair of nodes (i, j) independently,
with the choice of K = V − {j} in the case of conditional Granger and K = {i} in
the case of transfer entropy. In both approaches, a causal link j → i is inferred if the
observed Cj→i|K > 0 is assessed as significant under the permutation test. The oCSE
approach combines Algorithms 2.1 and 2.2 and the permutation test is used once per
each iteration (line 2 of both algorithms).

The performance of the three approaches are quantified by two types of inference
error: false negative ratio, denoted as ε− and defined as the fraction of links in the
original network that are not inferred; and false positive ratio, denoted as ε+ and
defined as the fraction of non-existing links in the original networks that are inferred.
In terms of the adjacency matrix A of the original network and that of the inferred
network Â, these ratios can be computed as

(4.1)



















ε− ≡
number of (i, j) pairs with χ0(A)ij = 1 and χ0(Â)ij = 0

number of (i, j) pairs with χ0(A)ij = 1
,

ε+ ≡
number of (i, j) pairs with χ0(A)ij = 0 and χ0(Â)ij = 1

number of (i, j) pairs with χ0(A)ij = 0
.

For the random networks considered here, we found that the Algorithm 2.1
achieves almost the same accuracy as the combination of Algorithms 2.1 and 2.2.
We therefore present results which are based on the numerical application of Algo-
rithm 2.1 alone, leaving detailed numerical study of Algorithm 2.2 to future work.

Figure 4.1(a-b) shows that although the conditional Granger approach is theoret-
ically correct and works well for small network size with sufficient samples, it suffers
from increasing inference error as the network size increases and become extremely in-
accurate when the network size n starts to surpass the sample size T . Such limitation
is overcome by the oCSE approach, where both the false positive and false negative
ratios remain close to zero as the network size increases. The reason that oCSE is
accurate even as n increases is that it builds the causal parent set in an aggregative
manner, therefore relying only on estimating entropy in relatively low dimensions
(roughly the same dimension as the number of causal parents per node). In sharp
contrast, the conditional Granger approach requires the estimation of entropy in the
full n-dimensional space and therefore requires many (potentially exponentially) more
samples to achieve the same accuracy when n becomes large.

Figure 4.1(c-d) shows that even for a sufficient number of samples, the transfer
entropy approach without appropriate conditioning can lead to considerable inference
error, and is therefore inherently unsound for causal network inference. In particular,

9The accuracy of this empirical distribution and therefore the permeation test increases with
increasing number of permutations r. However, as r increases, the computational complexity also
increases, scaling roughly as a linear function of r.
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Fig. 4.1. Comparison of causal network inference approaches: conditional Granger, transfer
entropy, and oCSE. The time series are generated from the Gaussian process defined in Eq. (3.1)
using signed Erdős-Rényi networks (see Sec 4.2 for details). Two types of inference error are
examined: false negative and false positive ratios, defined in Eq. (4.1). (a-b) Inference error as a
function of network size n using conditional Granger versus oCSE approaches. Here the networks
have fixed average degree np = 10 and spectral radius ρ(A) = 0.8. Sample size is T = 200. (c-
d) Inference error as a function of the spectral radius ρ(A) using transfer entropy versus oCSE
approaches. Here the networks have fixed number of nodes n = 200 and average degree np = 10.
Sample size is T = 2000. For all three approaches we apply the permutation test using r = 100
permutations and significance level θ = 99%. Each data point is obtained from averaging over 20
independent simulations of the network dynamics, Eq. (3.1).

although inference by both transfer entropy and oCSE give similar false negatives
in the regime of ρ(A) ≈ 0 where the dynamics is dominated by noise and not the
causal dependences, transfer entropy yields increasing false positives when the causal
links dominate, ρ(A) → 1. This is mainly due to the fact that as ρ(A) → 1, indirect
causal nodes become increasingly difficult to distinguish from direct ones without
appropriate conditioning [71]. oCSE, on the other hand, consistently yields nearly
zero false positive ratios in the entire range of ρ(A). Interestingly, the spectral radius
ρ(A) can be interpreted as the information diffusion rate on networks and found to
be very close to criticality (i.e., ρ(A) ≈ 1) in neuronal networks [39, 42].

These numerical experiments highlight that whereas the conditional Granger ap-
proach is inaccurate for T . n and the transfer entropy approach is inaccurate when
ρ(A) . 1, the proposed oCSE approach overcomes both limitations and yields almost
exact network inference even for limited sample size.

4.4. Performance of Optimal Causation Entropy Approach for Causal

Network Inference. Having established the advantages of the oCSE approach, we
now examine its performance under various parameter settings.

First, we examine the effect of the significance level θ on the inference error. As
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shown in Fig. 4.2(a-b), the false negative ratio ǫ− does not seem to depend on θ and
converges to zero as sample size T increases. On the other hand, as T → ∞, the
false positive ratio saturates at the level ǫ+ ∼ (1 − θ), which is consistent with the
implementation of the permutation test which rejects the null hypothesis at θ. This
observation suggests that in order to achieve higher accuracy given sufficient sample
size, one should choose θ as close to one as possible. The tradeoff in practice is that
reliable implementation using larger θ requires an increasing number of permutations
and therefore increases the computational complexity of the inference algorithms.
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Fig. 4.2. Performance of the oCSE approach for causal network inference with different sig-
nificance threshold for networks of various sizes. The time series are generated from the Gaussian
process defined in Eq. (3.1) using signed Erdős-Rényi networks (see Sec 4.2 for details). False neg-
ative ratio (upper row) and false positive ratio (lower row) are defined in Eq. (4.1). (a-b) Inference
error as a function of sample size T for various significance levels θ used in the permutation test.
Here networks have n = 200 nodes with expected average degree np = 10 and information diffusion
rate ρ(A) = 0.8. (c-d) Inference error as a function of sample size T for various network sizes. Here
networks have the same expected average degree np = 10 and information diffusion rate ρ(A) = 0.8,
and we use r = 1000 permutations in the permutation test with θ = 0.999. Note that all three false
negative curves in (c) appear to converge for T ≈ 300. The critical sample size T∗ (defined as the
minimum T for which ε− < 1− θ) as a function of the network size n is shown in the inset of (c),
suggesting the absence of scaling of T∗ in terms of n. Each data point is obtained from averaging
over 20 independent simulations of the network dynamics, Eq. (3.1).

Next, we investigate the effect of sample size T on the inference error for networks
of different sizes. The results are shown in Fig. 4.2(c-d). As expected, when T
increases, the false negative ratio decreases towards zero. Somewhat unexpectedly,
the false positive ratio stays close to zero (in fact, close to the significance level θ)
even for relatively small sample size (T as small as 50 for networks of up to 500
nodes). Furthermore, it appears that for networks of different sizes but the same
average degree and information diffusion rate, the false negative ratios drop close
to zero almost at the same sample size. To better quantify these effects, we define
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Fig. 4.3. Performance of the oCSE approach for causal network inference for networks with
different average degree and spectral radius. The time series are generated from the Gaussian process
defined in Eq. (3.1) using signed Erdős-Rényi networks (see Sec 4.2 for details). False negative ratio
(upper row) and false positive ratio (lower row) are defined in Eq. (4.1). (a-b) Inference error as
a function of sample size for networks with various average degree np. Here the networks have the
same size n = 200 and spectral radius ρ(A) = 0.8 The inset shows the critical sample size T∗ (see
text) as a function of np. (c-d) Inference error as a function of sample size for networks with various
special radii ρ(A). Here the networks have the same size n = 200 and average degree n = 10. The
permutation test used for the data in all panels involve r = 1000 permutations with the significance
threshold θ = 0.999. Each data point is obtained from averaging over 20 independent simulations of
the network dynamics, Eq. (3.1).

the critical sample size T∗ as the smallest number of samples for which the false
negative ratio falls below 1 − θ. As shown in the inset of Fig. 4.2(c), for networks
with the same average degree and information diffusion rate, the critical sample size
T∗ remains mostly constant despite the increase of the network size. This result is
unexpected. Traditionally, the network size n represents a lower bound on sample
size T as any covariance matrix (e.g., application of the conditional Granger requires
that T > n for the invertibility of the covariance matrices). Our result surprisingly
indicates that sample size T does not need to scale with network size n for accurate
network inference, and highlights the fact that the oCSE approach is scalable and data
efficient, with accuracy depending not on the size of the network, but rather on other
network characteristics such as the density of links and spectral radius.

To strengthen our claim that for Erdős-Rényi networks, performance of the causal
inference by the oCSE approach depends on the density of links as measured by
average degree and information diffusion rate as measured by the spectral radius
rather than network size, we further investigate the dependence of inference error on
these two additional parameters, np and ρ(A). As shown in Fig. 4.3(a), for networks
of the same size n = 200 with fixed ρ(A) = 0.8, the larger the average degree np,
the larger the number of samples required to reduce the false negative ratio to zero.
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In fact, as shown in the inset of Fig. 4.3(a), the critical sample T∗ to reach ε− <
1 − θ appears to scale linearly as a function of the average degree np, but not the
network size (see the inset of Fig. 4.2(c)). On the other hand, Fig. 4.3(c-d) shows that
the information diffusion rate, ρ(A), seems to pose a harder constraint on accurate
network inference: the smaller it is, the more samples that are needed for accuracy.
In particular, as shown in the inset of Fig. 4.3(c), the critical sample size appears
to increase exponentially as ρ(A) decreases towards zero. Interestingly, as shown in
Fig. 4.3(b,d), the false positive ratios in both cases remain close to its saturation level
around 1− θ = 10−3 even for very small sample size (T ∼ 50), and this holds across
networks with different average degree and different size (also see Fig. 4.2(d)).

To briefly summarize these numerical experiments, we found that for the Gaussian
process, practical causal network inference by the proposed oCSE overcomes funda-
mental limitations of previous approaches including conditional Granger and transfer
entropy. One important advantage of the oCSE approach as suggested by the numer-
ical results is that it often requires a relatively small number of samples to achieve
high accuracy, making it a data-efficient method to use in practice. In fact, we found
that for Erdős-Rényi networks, the critical number of samples required for the false
negatives to vanish does not depend on the network size, but rather depends on the
density of links (as measured by average degree) and the information diffusion rate (as
measured by the spectral radius of the network adjacency matrix). This is somewhat
surprising because traditionally the network size poses as an absolute lower bound for
the sample size in order for proper inversion of the covariance matrix (recent advances
such as Lasso has partially resolved this issue by making specific assumptions of the
model form and utilizing l1 optimization techniques [22, 73]). On the other hand, our
numerical results also suggest that only a very small number of samples is needed
for the false positives to reach its saturation level. This level is inherently set by the
significance threshold used in the permutation test rather than other network char-
acteristics and can be systematically reduced by increasing the significance threshold
and the number of permutations.

5. Discussion and Conclusion. Although time series analysis is broadly uti-
lized for scientific research, the inference of large networks from relatively short times
series data, and in particular causal networks describing “cause-and-effect” relation-
ships, has largely remained unresolved. The main contribution of this paper includes
the theoretical development of causation entropy, an information-theoretic statistic
designed for causality inference. Causation entropy can be regarded as a type of con-
ditional mutual information which generalizes the traditional, unconditioned version
of transfer entropy. When applied to Gaussian variables, causation entropy also gen-
eralizes Granger causality and conditional Granger causality. We proved that for a
general network stochastic process, the causal parents of a given node is exactly the
minimal set of nodes that maximizes causation entropy, a key result which we refer
to as the optimal causation entropy principle. Based on this principle, we introduced
an algorithm for causal network inference called oCSE, which utilizes two algorithms
to jointly infer the set of causal parents of each node.

The effectiveness and data efficiency of the proposed oCSE approach were il-
lustrated through numerical simulation of a Gaussian process on large-scale random
networks. In particular, our numerical results show that the proposed oCSE ap-
proach consistently outperforms previous conditional Granger (with full condition-
ing) and transfer entropy approaches. Furthermore, inference accuracy using the
oCSE approach generally requires fewer samples and fewer computations due to its
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aggregative nature: the conditioning set encountered in entropy estimation remains
low-dimensional for sparse networks. The number of samples required for the de-
sired accuracy does not appear to depend on network size, but rather, the density
of links (or equivalently, the average degree of the nodes) and spectral radius (which
measures the average rate at which information transfers through links). This makes
oCSE a promising tool for the inference of networks, in particular large-scale sparse
causal networks, as found in a wide range of real-world applications [6, 19, 48, 49].
Therefore we wish to emphasize that among all the details we presented herein, our
oCSE-based algorithmic development (aggregative discovery jointly with progressive
removal) is the most central contribution, serving as a method to systematically in-
fer casual relationships from data generated by a complex interrelated process. In
principle, we expect our two-step process given by Algorithms 2.1 and 2.2 to also be
effective for network inference when the statistic is not necessarily causation entropy.

Several problems remain to be tackled. First, for general stochastic processes,
exact expression of entropy is rarely obtainable. Practical application of the oCSE
therefore requires the development of non-parametric statistics for estimating cau-
sation entropy for general multi-dimensional random variables. An ideal estimation
method should rely on as few assumptions about the form of the underlying variable
as possible and be able to achieve the desired accuracy even for relatively small sample
size. Several existing methods, including various binning techniques [62] and k-nearest
neighbor estimates [40], seem promising, but further exploration is necessary to ex-
amine their effectiveness [33]. Secondly, temporal stationarity assumptions are often
violated in real-world applications. It is therefore of critical importance to divide the
observed time series data into stationary segments [77], allowing for the inference of
causal networks that are time-dependent [45]. Finally, information causality suggests
physical causality, but they are not necessarily equivalent [33, 53]. It is our goal to
put this notion onto a more rigorous footing and further explore their relationships.
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Appendix A. Causal Inference of Finite-Order Markov Processes. The
main body of the paper deals with causal inference of a first-order stationary Markov
process. Such framework can in fact be extended to any finite-order stationary Markov
processes. The idea is to convert a finite-order process to a first-order one and define
nodes in the causal network to be variables at different time layers.

Consider a stationary Markov process {Zt} of order τ , which satisfies

(A.1) p(Zt|Zt−) = p(Zt|Zt−1, . . . , Zt−τ )

where Zt− = [Zt−1, Zt−2, . . . ] denotes the infinite past of Zt. Define a delay vector

(A.2) Xt = [Zt, . . . , Zt−τ+1].

Then, for every xt = [zt, zt−1, . . . , zt−τ+1] and xt− ,

p(Xt = x|Xt− = xt−) = p(Xt = xt|Zt−1 = zt−1, Zt−2 = zt−2, . . . )

= p(Xt = xt|Zt−1 = zt−1, Zt−2 = zt−2, . . . , Zt−τ = zt−τ )

= p(Xt = xt|Xt−1 = xt−1)(A.3)

where the last step follows from Eq. (A.1) and the definition of Xt. See Fig. A.1
for an example with τ = 2. This shows that the process {Xt} is indeed a first-order
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Markov process. The inference of the causal network is therefore converted into the
identification of the causal parents of the nodes corresponding to {Zt} in the equivalent
first-order process, for which the results in the main body of the paper apply so long
as the conditions in Eq. (2.8) are met.

tt -1t -2t -3

Z 
(1)

Z 
(2)

X 
(1)

X 
(4)

X 
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past
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tt -1t -2t -3

past present

X 
(3)

X 
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(a) (b) (c)
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lag = 2

1

2

3

Fig. A.1. Converting a high-order Markov process into a first-order Markov process by
making multiple instances of nodes. (a) A second-order Markov process on n = 3 nodes, where

causal relationships are across time lags of either 1 or 2 time time steps. We denote by Z
(i)
t the

state of node i at time t. (b) The flow of information for the second-order Markov process. Each
row corresponds to a given node i ∈ {1, 2, 3}, and each column corresponds to the nodes’ states

{Z
(i)
t } at a particular time t. Solid and dotted lines denote causal relationships across a time lag of

1 and 2 time steps, respectively. (c) The flow of information for the equivalent first-order Markov
process. Each row corresponds to a given node i ∈ {1, 2, . . . , 2n}, and each column corresponds to

the nodes’ states {X
(i)
t } at a particular time t. For i ∈ {1, 2, 3}, the new variables {X

(i)
t } are defined

by X
(i)
t = Z

(i)
t and X

(n+i)
t = Z

(i)
t−1 = X

(i)
t−1. For Markov processes of order τ , one can use the more

general transformation X
((s−1)n+i)
t = Z

(i)
t−s+1 for nodes i ∈ {1, . . . , n} and s ∈ {1, 2, . . . , τ}.

In practice, if the order of the underlying Markov process is unknown, then one
needs to estimate it before being able to turn the process into a first-order one. The
determination of Markov order has been a long-standing problem and is traditionally
addressed by performing hypothesis tests based on computing a χ2 statistic [4]. The
main disadvantage is that the χ2 distribution is only valid in the infinite-sample limit.
A breakthrough was made recently by Pethel and Hahs [54], who developed a relatively
efficient procedure for surrogate data generation which yields an exact test statistic
valid for arbitrary sample size at the expense of increased computational burden.

Appendix B. Necessity of the Faithfulness Assumption. The faithfulness
assumption is necessary for the “true positive” statement in Theorem 2.2(c) to be
valid. As an example, consider a network of three nodes X , Y , and Z, and let

(B.1) Xt+1 = Yt ⊕ Zt,

where ⊕ denotes the “exclusive or” (xor) operation and Yt and Zt are Bernoulli
random variables with probabilities

(B.2) P (Yt = 0) = P (Yt = 1) = P (Zt = 0) = P (Zt = 1) = 0.5.

It follows that

(B.3) CY→X = CZ→X = 0.



CAUSAL NETWORK INFERENCE BY OPTIMAL CAUSATION ENTROPY 29

However,

(B.4) C(Y,Z)→X = log 2 > 0.

This results from the fact that multiple random variables can be mutually independent
but not jointly independent. Expressed in terms of causal inference, it is possible that
several variables jointly cause another variable, and this causal relationship cannot be
decomposed. Such occurrences are believed to be rare and often explicitly excluded by
making the faithfulness/stability assumption [48]. For example, in our above example
it occurs only when all the discrete probabilities are exactly uniform, p = 0.5, a
situation that is unstable to perturbation. We exclude this situation from our study
by imposing condition (3) in Eq. (2.8).
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