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Summary
Growth and regeneration of blood vessels are crucial processes during embryonic development and in adult disease. Members of
the bone morphogenetic protein (BMP) family are growth factors known to play a key role in vascular development. The BMP
pathway is controlled by extracellular BMP modulators such as BMP endothelial cell precursor derived regulator (BMPER),
which we reported previously acts proangiogenically on endothelial cells in a concentration-dependent manner. Here, we explore

the function of other BMP modulators, especially Tsg, on endothelial cell behaviour and compare them to BMPER. In Matrigel
assays, BMP modulators chordin and noggin had no stimulatory effect; however, gremlin and Tsg enhanced human umbilical
vein endothelial cell (HUVEC) sprouting. As the activation dynamics of Tsg were similar to those of BMPER, we further

investigated the proangiogenic effect of Tsg on endothelial cells. Tsg enhanced endothelial cell ingrowth in the mouse Matrigel
plug assay as well as HUVEC sprouting, migration and proliferation in vitro, dependent on Akt, Erk and Smad signalling
pathway activation in a concentration-dependent manner. Surprisingly, silencing of Tsg also increased HUVEC sprouting,

migration and proliferation, which is again associated with Akt, Erk and Smad signalling pathway activation. Furthermore, we
reveal that Tsg and BMPER interfere with each other to enhance proangiogenic events. However, in vivo the presence of Tsg as
well as of BMPER is mandatory for regular development of the zebrafish vasculature. Taken together, our results suggest that
BMPER and Tsg maintain a fine-tuned equilibrium that controls BMP pathway activity and is necessary for vascular cell

homeostasis.
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Introduction
During embryonic development the process of angiogenesis, i.e.

the formation of new blood vessels from pre-existing ones, is

highly important and tightly regulated by a multitude of

signalling pathways (Heinke et al., 2012b; Herbert and Stainier,

2011). Many of the embryonic regulatory pathways have been

found to be recapitulated during adult disease (Martin and

Parkhurst, 2004; Sonnemann and Bement, 2011). Therefore,

understanding embryonic molecular mechanism in angiogenesis

provides further insight for therapeutic approaches under

pathological conditions in the adult such as cancer, retinopathy,

ischemic heart disease, stroke or pre-eclampsia (Carmeliet and

Jain, 2011; Potente et al., 2011).

To generate a complex, intensively branched vasculature,

endothelial cell behaviour has to be fine-tuned by a plethora of

growth factors and signalling cascades to enable several cellular

mechanisms including migration, proliferation and differentiation

(Heinke et al., 2012b; Herbert and Stainier, 2011). For example,

the well-known vascular endothelial growth factor (VEGF)

activates the phosphoinositide 3-kinase (PI3K)/Akt signalling

axis and the mitogen-activated protein kinase (MAPK)/

extracellular signal-regulated kinase (Erk) signalling cascades

that in the following facilitate endothelial cell sprouting and

survival (Muñoz-Chápuli et al., 2004; Olsson et al., 2006;

Shiojima and Walsh, 2002). Besides VEGF, a lot of other

different signalling mediators, such as bone morphogenetic

proteins (BMPs), appear to cooperate in the many steps of

angiogenesis (Adams and Alitalo, 2007; David et al., 2009; ten

Dijke and Arthur, 2007).

BMPs belong to the transforming growth factor-b (TGF-b)

superfamily that have been extensively studied during embryonic

development, in which they control axis formation and

organogenesis (Wagner et al., 2010). BMPs are extracellular

proteins that signal through cell surface complexes of

heterodimeric transmembrane serine/threonine kinase receptors.

Upon intracellular activation of the receptor, Smad 1/5

transcription factors become phosphorylated and therefore

obtain the ability to translocate to the nucleus where they

modulate gene expression (Schmierer and Hill, 2007; Sieber et al.,

2009). Besides this Smad-dependent pathway, we and others

have shown that BMPs phosphorylate other Smad-independent

signalling cascades such as MAPK/Erk and PI3K/Akt pathways
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(Bragdon et al., 2011; Sieber et al., 2009; Zhou et al., 2007).
Accordingly, a growing body of evidence suggests that BMPs

influence endothelial cell behaviour through activation of Smad-
dependent and Smad-independent pathways and along this line
angiogenesis (David et al., 2009; Moreno-Miralles et al., 2009;

Moya et al., 2012).

BMP signalling is highly regulated at the extracellular space
by BMP modulators such as chordin (Piccolo et al., 1996),

noggin (Smith and Harland, 1992), Drm/gremlin (Stabile et al.,
2007), twisted gastrulation (Tsg) (Oelgeschläger et al., 2000) and
BMP endothelial cell precursor derived regulator (BMPER)

(Moser et al., 2003) (reviewed by Balemans and Van Hul, 2002;
Umulis et al., 2009). BMPER, the vertebrate homologue of
Drosophila crossveinless 2, is a secreted glycoprotein that
contains five cysteine-rich domains followed by a von

Willebrand D domain and a trypsin inhibitor domain and was
originally identified in a screen for differentially expressed
proteins in embryonic endothelial precursor cells (Moser et al.,

2003). Previously, we and others have shown that BMPER may
enhance BMP signalling in a concentration-dependent fashion
(Heinke et al., 2008; Serpe et al., 2008). Lately, BMPER has been

the subject of intensive research in the area of endothelial cell
biology including inflammation (Helbing et al., 2010; Helbing
et al., 2011), atherosclerosis (Pi et al., 2012a), tumour progression
(Heinke et al., 2012a) and angiogenesis (Heinke et al., 2008;

Moreno-Miralles et al., 2011). However, little is known about the
role of BMP modulators chordin, noggin or Tsg in angiogenesis
(David et al., 2009). As member of the BMP family Tsg contains

the characteristic cysteine-rich domains that enable interaction
between Tsg, BMPs and chordin (Yamamoto and Oelgeschläger,
2004). Similar to BMPER Tsg is reported to exert either pro- or

anti-BMP effects depending on the examined model organism,
developmental stage, organ or tissue (Chang et al., 2001; Little
and Mullins, 2004; Nosaka et al., 2003; Oelgeschläger et al.,

2000; Ross et al., 2001; Scott et al., 2001; Xie and Fisher, 2005;
Zakin and De Robertis, 2004). Interestingly, recent studies in
mice showed a genetic interaction between BMPER and Tsg in
skeletal and nephron development indicating that they cooperate

in fine-tuning BMP signalling (Ikeya et al., 2010; Ikeya et al.,
2008; Zakin et al., 2008).

In this study we aimed to analyse and compare BMP
modulators noggin, chordin, gremlin and Tsg in their ability to
influence endothelial cell function in angiogenesis. We observed
that BMP modulators chordin and noggin had no stimulatory

effect, but gremlin and Tsg enhanced endothelial cell sprouting.
Since gremlin has been investigated recently (Mitola et al., 2010;
Stabile et al., 2007), we focused our interest on Tsg, which had

the same activation dynamics of endothelial cell function as
BMPER. Furthermore, we revealed interference between Tsg and
BMPER to enhance proangiogenic events. However, in vivo the

presence of Tsg as well as BMPER is mandatory for normal
development of the zebrafish (Danio rerio) vasculature.

Results
Extracellular BMP modulators differently affect endothelial
cell sprouting

In our previous work we reported BMPER to act
proangiogenically on endothelial cells in a concentration-

dependent manner (Heinke et al., 2008). In the present study,
we aimed to investigate whether other known BMP modulators
have similar effects on endothelial cell function. Therefore, we

performed tube formation assays, and analysed different

concentrations of BMP modulators chordin, noggin, gremlin
and Tsg (Fig. 1). BMP modulators chordin and noggin had no
stimulatory effect on HUVEC sprouting (Fig. 1A,C), formation

of branch points (Fig. 1B,D), or transmigration through a
modified Boyden chamber system (supplementary material Fig.
S1). In contrast, high concentrations of chordin decreased
HUVEC tube formation and transmigration to 79% compared

to control conditions. Similar to the described concentration-
dependent effect of BMPER gremlin and Tsg enhanced HUVEC
sprouting by up to 57.4% (Fig. 1E) and 85.4% (Fig. 1G),

respectively. Consistently, similar results are obtained by
quantifying the number of branch points (Fig. 1F,H). Very
recently, the angiogenic effect of gremlin has been investigated

in detail by Presta’s group (Mitola et al., 2010; Stabile et al.,
2007). For this reason we focused our further research interest on
the impact of Tsg on endothelial cell function.

Tsg stimulates endothelial cell migration, proliferation
and sprouting

The in vitro Matrigel assay is a quick and easy method to
investigate angiogenic endothelial cell behaviour such as

reorganization of cytoskeleton and to search for cell–cell contact
and cell fusion (Khoo et al., 2011; Ponce, 2009). Since we wanted
to strengthen our basic findings on the Matrigel tube formation

assay as a readout for angiogenic activity, we performed other in

vitro angiogenesis assays such as transmigration, proliferation and
spheroid sprouting assays. The effect of Tsg on endothelial cell

migration was investigated by using a modified Boyden chamber
system (Fig. 2A). To examine HUVEC proliferation a BrdU-based
ELISA was used (Fig. 2B). In both assays Tsg increased

endothelial cell migration and proliferation in a concentration-
dependent manner. Similar to the results obtained from the tube
formation assay (Fig. 1G,H) stimulation of HUVECs with Tsg in
migration and proliferation assays resulted in a graph with a bell-

shaped curve. For 3D spheroid sprouting into a collagen matrix
stimulation of HUVECs with low concentrations of Tsg had no
effect, however at concentrations above 50 ng/ml sprout formation

was significantly enhanced (Fig. 2C–E). Altogether, in vitro

application of Tsg in several functional endothelial cell culture
assays displayed a concentration-dependent proangiogenic effect.

Tsg stimulates in vivo endothelial cell ingrowth in the
mouse Matrigel plug assay

To confirm our in vitro results that Tsg enhances endothelial cell

sprouting, proliferation and migration in vivo we performed
the mouse Matrigel plug assay (Fig. 3). Mice were injected
subcutaneously with Matrigel alone or different concentrations of
Tsg, sacrificed after 10 days and Matrigel plugs were embedded

in paraffin. Application of Tsg increased the amount of
ingrowing endothelial cells compared to unstimulated control
plugs (Fig. 3A). To verify endothelial cell specificity a CD31–

Cy3 staining was performed that shows that the cellular ingrowth
into the Matrigel plug consists mainly of endothelial cells as the
majority of cells (nuclei stained blue) express the endothelial cell

marker CD31 (stained in red) (supplementary material Fig. S2).
Interestingly, quantification of mouse Matrigel plugs again
revealed a bell-shaped curve of endothelial cell ingrowth in

response to increasing concentrations of Tsg, indicating a
complex mechanism by which Tsg regulates angiogenic
processes (Fig. 3B). Taken together, these findings are

Tsg along with BMPER regulates angiogenesis 3083
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consistent with our in vitro experiments and support the notion

that Tsg has proangiogenic capacity and modulates endothelial

cell function in a concentration-dependent manner.

Tsg induces intracellular signalling pathways necessary
for endothelial cell sprouting

To investigate Tsg signalling pathways in endothelial cells we

analysed Akt, Erk and Smad signalling cascades (Fig. 4A,B),

because they have been implicated in angiogenic processes

(Moya et al., 2012; Muñoz-Chápuli et al., 2004; Shiojima and

Walsh, 2002). Indeed, stimulation of HUVECs with 10 to 20 ng/

ml Tsg protein increased Akt 1/2, Erk 1/2 and Smad 1/5 pathway

activation (Fig. 4A and supplementary material Fig. S3A–C).

Time course experiments revealed that after 5 minutes of Tsg

exposure all three signalling cascades are activated, however only

Akt 1/2 and Erk 1/2 phosphorylation persisted over time in

different intensities (Fig. 4B and supplementary material Fig.

S3D–F). To determine the impact of each signalling pathway on

Tsg-induced endothelial cell sprouting, tube formation assays

with pathway-specific inhibition were performed (Fig. 4C,E,G

and supplementary material Fig. S4). First of all we ascertained

concentrations for Erk inhibitors PD98059, U0126 and Akt

inhibitor Akti VIII, which have a weak to none inhibitory effect

compared to control conditions (data not shown). However,

addition of inhibitors to Tsg-treated HUVECs prevented

enhanced sprouting (Fig. 4C,E) and formation of branch points

(supplementary material Fig. S4A,B). Western blot analysis of

Tsg stimulated HUVECs with Erk 1/2 and Akt 1/2 pathway

inhibitors confirmed specific pathway inhibition (Fig. 4D,F).

Furthermore, we observed that inhibition of Erk with PD98059 or

U0126 increased Akt and Smad1/5 phosphorylation in parts

conferred by total Smad protein stabilization (Fig. 4D).

Fig. 1. Extracellular BMP modulators have

different effects on endothelial cell sprouting in the

tube formation assay. Serum-starved HUVECs were

untreated or treated with bFGF (50 ng/ml) as a

positive control, or with extracellular BMP modulators

at the indicated concentrations, for 16–18 hours before

they were seeded onto Matrigel with 2% FBS medium.

Cumulative sprout length of capillary-like structures

was measured after 3 hours. (A) Chordin, (C) noggin,

(E) gremlin and (G) Tsg. In addition, the number of

branch points was quantified for (B) chordin,

(D) noggin, (F) gremlin and (H) Tsg. Values are

means 6 s.e.m.; n53; *P,0.05 versus control.

Journal of Cell Science 126 (14)3084
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To ascertain if the observed Tsg effects are BMP dependent,

BMP receptor II (BMPRII) expression was targeted with specific

siRNAs. BMPRII knockdown efficacy was quantified by real-

time PCR (supplementary material Fig. S4C). Indeed, deletion

of BMPRII prevented Tsg-treated HUVECs from

enhanced sprouting (Fig. 4G) and formation of branch points

(supplementary material Fig. S4D). Of interest, in BMPRII

siRNA treated cells Akt phosphorylation is increased, whereas

Smad and Erk phosphorylation are unchanged (Fig. 4H).

Stimulation with Tsg had no effect on BMPRII deficient cells,

indicating a BMP pathway dependent effect of Tsg to stimulate

intracellular signalling cascades. Together these data demonstrate

that Tsg activates the Akt, Erk and Smad 1/5 signalling cascades,

which have to act in concert to facilitate endothelial cell

sprouting.

Simultaneous application of Tsg and BMPER abolishes

proangiogenic effects

Recently, mouse genetic experiments revealed interactions of Tsg

and BMPER during bone and kidney development (Ikeya et al.,

2010; Ikeya et al., 2008; Zakin et al., 2008). Moreover,

immunoprecipitation experiments showed a direct physical

interaction between Tsg and BMPER (Ambrosio et al., 2008).

Since Tsg displayed a similar concentration-dependent effect on

endothelial cell sprouting as BMPER (Heinke et al., 2008) we

next aimed to investigate combinatory effects of both in the tube

Fig. 2. Tsg protein stimulates endothelial cell

migration, proliferation and collagen gel spheroid

sprouting. (A) For transmigration experiments

HUVECs were serum-starved overnight and assayed

with Tsg at the indicated concentrations or VEGF

(100 ng/ml final concentration) as positive control, in

migration medium containing 0.5% FBS. Triplicate

samples were fixed after 4 hours and measurements

were made on five random microscopic fields. Values

are means 6 s.e.m.; n53; *P,0.05 versus control. Hpf,

high power field. (B) Proliferation was determined by a

BrdU assay. Triplicate samples of HUVECs were

incubated for 24 hours with BrdU and increasing

concentrations of Tsg, or VEGF (100 ng/ml final

concentration) as positive control, in medium containing

1% FBS. Cells in medium with BrdU only served as a

negative control. Values are means 6 s.e.m.; n54;

*P,0.01 versus control. (C–E) HUVEC spheroids were

embedded in collagen gel containing 10% FBS and

stimulated for 24 hours with or without Tsg at the

indicated concentrations, or with VEGF (50 ng/ml final

concentration) as positive control. Representative

spheroids incubated without (C) or with Tsg (D) are

shown. Scale bars: 200 mm. (E) Quantitative analysis of

cumulative sprout length of spheroids. Values are means

6 s.e.m.; n53; *5P,0.01 versus control.

Fig. 3. Recombinant Tsg protein stimulates endothelial cell

ingrowth in the mouse Matrigel plug assay. Matrigel containing

recombinant Tsg protein was injected subcutaneously into C57BL/6

mice. Matrigel plugs were harvested 10 days after implantation, fixed,

sectioned and stained. (A) Representative micrographs of Matrigel

plugs stained with H&E. Scale bars: 200 mm. (B) Quantification of

endothelial cells in Matrigel plugs with the indicated concentrations of

recombinant Tsg protein. Values are means 6 s.e.m.; n53;

*5P,0.05 versus control.

Tsg along with BMPER regulates angiogenesis 3085
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formation assay in vitro and in the mouse Matrigel plug assay in

vivo (Fig. 5). First we used the optimal concentration of Tsg to

stimulate HUVEC sprout formation in the tube formation assay

in vitro and added BMPER in equimolar amounts (Fig. 5A–C).

Application of BMPER and Tsg together prevented enhanced

endothelial cell sprouting and branch point formation compared

to Tsg alone, whereas at this high BMPER concentration

endothelial cell sprouting was not affected. We confirmed these

findings by analysis of intracellular signalling cascades

(Fig. 5G). Vice versa, optimal concentrations of BMPER

stimulated HUVEC sprouting and branch point formation and

addition of equimolar amounts of Tsg, which at this

concentration is below a stimulatory effect, inhibited the

proangiogenic BMPER effect (Fig. 5D,E). We confirmed our in

vitro findings in vivo with the mouse Matrigel plug assay

(Fig. 5F). Again, co-stimulation with Tsg and BMPER abolished

increased endothelial cell ingrowth compared to single protein

application. Thus, Tsg and BMPER interfere with each other to

enhance proangiogenic events in endothelial cells.

Tsg and BMPER expression in endothelial cells of

different origin

As we have shown that Tsg and BMPER interact with each other,

we asked if – besides BMPER – Tsg is expressed in endothelial

cells. Indeed, Tsg and BMPER were detectable in human coronary

arterial endothelial cells (HCAECs), venous endothelial cells

(HUVECs) as well as in microvascular endothelial cells (HMECs)

obtained from heart and lung (Fig. 6A–C). Furthermore,

Fig. 4. Recombinant Tsg protein induces

concentration- and time-dependent intracellular

signalling necessary for endothelial cell

sprouting. (A,B) Dose and time dependence of

intracellular signalling by Tsg in HUVECs. Western

blot analyses were performed with the indicated

antibodies. (C,E) Cumulative sprout length of

HUVEC capillary-like structures from tube

formation assays. (C) Tsg-stimulated sprouting was

inhibited when Erk was blocked with signalling

pathway inhibitors PD98059 (20 mM) and U0126

(10 mM) or (E) when Akt signalling was blocked

with Akti VIII (2 mM). Values are means 6 s.e.m.;

n53; *P,0.01 versus control. (D,F) Western blot

analysis of Tsg-stimulated HUVECs with Erk

inhibitors PD98059 (20 mM) and U0126 (10 mM) or

Akt inhibitor Akti VIII (2 mM) were performed with

the indicated antibodies to determine the effects of

inhibition of (D) Erk or (F) Akt phosphorylation on

the other signalling pathways. (G,H) HUVECs were

transfected with either of two BMPRII-specific

siRNAs or scrambled siRNA control. (G) A tube

formation assay was performed 48 hours post-

transfection and cumulative sprout length was

measured. Values are means 6 s.e.m.; n54;

*P,0.01 versus siRNA control. (H) 48 hours post-

transfection cells were lysed and subjected to

western blot analysis performed with the indicated

antibodies. Representative western blots of one of

three independent experiments are shown.

Journal of Cell Science 126 (14)3086
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we confirmed expression and localization of Tsg by

immunocytochemistry in the cytoplasm and at the surface of

HUVECs (Fig. 6D). Taken together, Tsg and BMPER are co-

expressed by primary endothelial cells indicating that they per se

play a role in endothelial cell biology.

Inhibition of Tsg in endothelial cells enhanced sprouting
and signalling

Given that Tsg is expressed in endothelial cells we next aimed to

investigate if loss of Tsg affects endothelial cell function.

Therefore, knockdown efficiencies of two Tsg-specific siRNAs

in HUVECS on mRNA and protein level were validated

(supplementary material Fig. S5A–D). Based on the fact that

stimulation with Tsg increased the angiogenic response we

hypothesized that silencing Tsg would decrease sprouting,

migration and proliferation of endothelial cells. However, the

exact opposite was true: 3D collagen gel spheroid sprouting of

Tsg-depleted HUVECs was increased compared to siRNA

control transfected HUVECs (Fig. 7A,B). Along the same line,

we detected enhanced migration (Fig. 7C) and proliferation

capacity (Fig. 7D) of Tsg-silenced HUVECs. In the mosaic EC

spheroid sprouting assay Tsg-depleted HUVECs (green

fluorescent) formed most of the sprouts compared to equally

mixed numbers of control siRNA-transfected cells (red

fluorescent; Fig. 7E,F). Consistent with a proangiogenic effect,

Tsg-silenced endothelial cells showed enhanced phosphorylation

of Akt, Erk and Smad 1/5 signalling pathways (Fig. 7G). In

summary, both stimulation with Tsg and depletion of Tsg

increased angiogenic function. These data suggest that the

concentration of Tsg is tightly balanced and controlled in

endothelial cells.

Balance of Tsg and BMPER in endothelial cell sprouting

We have shown that Tsg and BMPER block each other in

increasing endothelial cells sprouting in the tube formation assay

(Fig. 5). Here, we asked if stimulation with BMPER affects

HUVEC sprouting when Tsg is silenced (Fig. 8A and

supplementary material Fig. S5E) and vice versa, if stimulation

with Tsg affects HUVEC sprouting when BMPER is silenced

(Fig. 8B and supplementary material Fig. S5F). When Tsg was

silenced HUVEC sprouting and branch point formation was

increased compared to control, however, after additional

Fig. 5. Simultaneous application of Tsg and

BMPER in functional in vitro and in vivo

angiogenesis assays abolishes induction of

proangiogenic effects. (A–C) Tsg-stimulated

HUVEC sprouting was inhibited when

recombinant BMPER protein was added in

equal amounts. (A) HUVECs were incubated

with the indicated proteins and subjected to a

tube formation assay. Representative

micrographs of control, Tsg, BMPER and Tsg

+ BMPER simultaneous application are shown.

Scale bars: 200 mm. (B) Quantification of

cumulative sprout length of capillary-like

structures. (C) Number of branch points.

(D,E) BMPER-stimulated HUVEC sprouting

was inhibited when recombinant Tsg protein

was added in equal amounts. (D) Quantification

of cumulative sprout length of capillary-like

structures. (E) Number of branch points. Values

are means 6 s.e.m.; n53; *P,0.001 versus

control. (F) Quantification of mouse Matrigel

plug assay with the indicated concentrations of

recombinant Tsg and BMPER protein. Values

are means 6 s.e.m.; n53. (G) Western blot

analysis of HUVECs stimulated with BMPER,

Tsg and the combination of BMPER + Tsg

(concentration50.9 nM) performed with the

indicated antibodies. Representative western

blots of one of three independent experiments

are shown.

Tsg along with BMPER regulates angiogenesis 3087
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stimulation of Tsg-silenced HUVECs with BMPER no change

occurred. On the other hand siRNA control-transfected HUVECs

responded with increased sprouting to BMPER stimulation.

BMPER-silenced HUVECs displayed decreased sprouting on

Matrigel and after additional stimulation of BMPER-silenced

HUVECs with Tsg again no change occurred. Together, these

data indicate that Tsg and BMPER control each other to exert

their angiogenic activity.

BMPER and Tsg are necessary for proper angiogenesis in

zebrafish development

Next we investigated the in vivo relevance of Tsg and BMPER

during development of the vasculature and therefore used the

transgenic fli1:eGFP zebrafish model. In this zebrafish line the

whole vasculature is fluorescent green because of the endothelial-

specific activation of the ETS transcription factor Fli promoter

sequences. We analysed the effect of morpholinos targeted

against Tsg and BMPER on the formation of the intersomitic

vessels (ISV) and caudal vein plexus (CVP) (Fig. 8C–E).

Silencing of Tsg expression by morpholinos caused a large

venous malformation (tail vein ectasia) with blood accumulation

and some ISV defects (Fig. 8C,D). As already published before,

silencing of BMPER resulted in several defects in ISV and

disturbed formation of CVP (Moser et al., 2007) (Fig. 8D).
Of interest, co-injection of Tsg morpholinos and BMPER

morpholinos reduced the number of embryos that develop a tail
vein ectasia (Tsg phenotype) but the number of embryos with
ISV malformations was the same (BMPER phenotype; Fig. 8E).
This observation might indicate that BMPER is epistatic to Tsg.

Taken together the data suggest that the presence of Tsg as well
as BMPER is mandatory for correct development of the vascular
system in zebrafish.

Discussion
Only in recent years have BMPs been recognized to play an

important role in the vasculature. In particular, how the different
members of the BMP family influence endothelial cell function
during processes of angiogenesis is of major interest (David et al.,
2009; Moreno-Miralles et al., 2009; Pi et al., 2012b;

Scharpfenecker et al., 2007; Zhou et al., 2007). Previously, we
reported BMPER to act proangiogenic on endothelial cells in a
concentration-dependent manner (Heinke et al., 2008). Here, we

explore the function of BMP modulators noggin, chordin, gremlin
and Tsg on endothelial cell behaviour and compare them to
BMPER (Fig. 1). BMP modulators chordin and noggin had no

stimulatory effect; however, gremlin and Tsg enhanced endothelial
cell sprouting. As Tsg displayed the same activation dynamics as
BMPER, we further investigated the proangiogenic effect of Tsg
on endothelial cells in detail (Figs 2–4). Tsg enhanced endothelial

cell ingrowth in the mouse Matrigel plug assay as well as HUVEC
sprouting, migration and proliferation in vitro dependent on
Akt, Erk and Smad signalling pathway activation in a strict

concentration-dependent manner. Surprisingly, silencing of Tsg
also increased HUVEC sprouting, migration and proliferation,
which is again consistent with Akt, Erk and Smad signalling

pathway activation (Fig. 7). Furthermore, we reveal that Tsg and
BMPER interfere with each other to enhance proangiogenic events
(Figs 5,6; Fig. 8A,B). However, in vivo the presence of Tsg as well

as BMPER is mandatory for regular development of the zebrafish
vasculature (Fig. 8).

In the past, extracellular regulation of BMPs has been
described to occur only by antagonising proteins such as

chordin and noggin, which inhibit BMP binding to receptors
(Balemans and Van Hul, 2002). However, emerging evidence
indicates that some BMP modulators, such as BMPER, exert both

pro- and anti-BMP function (Moreno-Miralles et al., 2009). The
situation becomes even more complex because some modulators,
such as connective tissue growth factor (CTGF), have been

shown to inhibit BMP signalling on the one hand and to promote
TGF-b signalling on the other (Abreu et al., 2002). Altogether,
these findings led us to examine how different extracellular BMP
modulators affect angiogenic function of endothelial cells. We

determined three different functional groups of modulators. First,
the classical BMP antagonists chordin and noggin that have no or
at least an inhibitory effect on endothelial cell sprouting

(Fig. 1A–D) and migration (supplementary material Fig. S1).
Our results are consistent with reports from developmental
studies on the notochord in which chordin and noggin, through

BMP4 antagonism, led to reduced numbers of blood vessels
(Nimmagadda et al., 2005; Reese et al., 2004). Secondly, we
found BMP antagonist gremlin to exert proangiogenic effects on

HUVECs (Fig. 1E,F), which recently Presta and co-workers
reported to be independent of BMPs, but mediated by interaction
with VEGFR2 (Chiodelli et al., 2011; Stabile et al., 2007). The

Fig. 6. Tsg and BMPER expression in endothelial cells of different origin.

(A–C) Expression of Tsg and BMPER in human coronary artery ECs

(HCAECs), HUVECs and human microvascular ECs (HMECs) from lung and

heart were analysed by (A) RT-PCR, (B) western blot analysis of cell lysates

and (C) supernatants. (D) Localization of Tsg protein by

immunocytochemistry in HUVECs (upper panel). Rat IgG2a was used as

negative control (lower panel). Nuclei were stained with DAPI. Scale bars:

50 mm.
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third group consisted of BMPER and Tsg that activated

angiogenic events in a concentration-dependent manner, which

reached a peak and thereafter, at higher concentrations,

diminished (Fig. 1G,H) (Heinke et al., 2008).

We and others recently discovered that BMPER acts in a

concentration-dependent manner on BMPs and either activates or

inhibits signalling (Heinke et al., 2008; Kelley et al., 2009; Serpe

et al., 2008). Mechanistically, BMPER was shown to bind to

different BMPs, type I BMP receptors and chordin, which

dependent on stoichiometry and cellular context leads to pro- or

anti-BMP effects (Ambrosio et al., 2008; Kelley et al., 2009;

Serpe et al., 2008; Umulis et al., 2009). Of interest, Tsg is

also found to either activate or inhibit BMP signalling (Little

and Mullins, 2004; Xie and Fisher, 2005; Yamamoto and

Oelgeschläger, 2004). Here, we have shown that in endothelial

cells stimulation with Tsg leads to angiogenesis and activation of

Smad, Erk and Akt signalling pathways (Fig. 4). Consistently,

these signalling cascades are well known to induce angiogenic

responses (Moya et al., 2012; Muñoz-Chápuli et al., 2004;

Shiojima and Walsh, 2002). BMPs are present in serum (Herrera

and Inman, 2009) as well as endothelial cells produce and secrete

endogenous BMPs (Heinke et al., 2008). To investigate the effect

of Tsg on angiogenesis we used different experimental

approaches, which contained different concentrations of serum.

For example 2% serum was used for Matrigel tube formation

assays, 0.5% serum for transmigration assays and serum-free

Opti-MEM for stimulation of intracellular signalling cascades.

Although quite different amounts of serum and along this line

BMPs were present in the different assays, the Tsg effect is quite

constant. However, the strength of the effect in the transmigration

assay and the stimulation of intracellular signalling pathways are

not as prominent as compared to the results of Matrigel tube

Fig. 7. Inhibition of Tsg in endothelial cells enhanced

sprouting and signalling pathway activation. HUVECs

were silenced for Tsg with either of two specific siRNAs or

transfected with scrambled siRNA as control. (A,B) Six

hours after siRNA transfection a collagen gel spheroid

sprouting assay was performed. (A) Representative siRNA-

transfected spheroids. Scale bars: 200 mm. (B) Quantitative

analysis of cumulative sprout length of spheroids. Values are

means 6 s.e.m.; n53; *P,0.001 versus siRNA control.

(C) Migration was quantified 48 hours post-transfection of

HUVECs. Values are means 6 s.e.m.; n53; *P,0.05 versus

siRNA control. (D) Proliferation was determined by a BrdU

assay. HUVECs were transfected in triplicate with the

indicated siRNAs. 48 hours post-transfection BrdU ELISA

was performed. Values are means 6 s.e.m.; n53; *P,0.001

versus siRNA control. (E) Mosaic spheroids were generated

by mixing equal amounts of HUVECs transfected with either

siRNA control and labelled with CMPTX (red) or siRNA

targeted against Tsg (or control) and labelled with CFDA-SE

(green). Confocal laser microscopy revealed equally mixed

green and red sprouts under control conditions, whereas in

partially Tsg-silenced spheroids, Tsg-silenced cells

predominantly formed sprouts. Scale bars: 200 mm.

(F) Quantification of mosaic spheroids. (G) 48 hours after

siRNA transfection cells were lysed and subjected to western

blot analysis, performed with the indicated antibodies.
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formation and spheroid assays, which might be explained by the
different serum concentrations – and thus BMP levels – in the

different assays. Of interest, BMPER and BMP4 have been
shown very recently to associate with low density lipoprotein
receptor-related protein 1 (LRP1) and along this line acted
proangiogenic on endothelial cell behaviour (Pi et al., 2012b).

LRP1 is known to recognize more than 30 distinct ligands,
cytoplasmic adaptor proteins and modulates the activity of other
transmembrane receptors such as PDGFR-b or TGF-bR.

Furthermore, LRP1 itself is known to activate Akt and Erk
signalling pathways (Lillis et al., 2008; Muratoglu et al., 2010).
Therefore, it is tempting to speculate that also BMP receptors,

ligands and modulators form complexes with high signalling
activity centres such as LRP1, which would localize the
processing of incoming signals on the cell. Tsg might act in a
similar way as – or interfere with – BMPER to enhance the

angiogenic potential of endothelial cells. Taken together, this is
the first report to determine that Tsg has a concentration-
dependent proangiogenic effect on endothelial cells.

During mouse embryonic development, haemangioblasts
develop in the aorto-gonadal-mesonephric (AGM) region,
which subsequently give rise to endothelial capillary plexi

around the whole embryo (Risau and Flamme, 1995). Of
interest, BMP4, BMPER and Tsg are expressed in the AGM
region indicating their role in endothelial cell biology (Marshall
et al., 2000; Moser et al., 2003; Nosaka et al., 2003). To

strengthen these findings, we confirmed expression of BMPER
and Tsg in a variety of adult endothelial cells (Fig. 6).

Recent studies have demonstrated a physical interaction

between Tsg, BMPER, chordin and BMP4 by
immunoprecipitation (Ambrosio et al., 2008). Furthermore,
genetic mouse models have shown interference between

BMPER and Tsg to mediate BMP effects in the context of
bone and nephron development (Ikeya et al., 2010; Ikeya et al.,
2008; Zakin et al., 2008). In mice single homozygous gene

deletions of Tsg or BMPER alone showed a decrease in
ossification of vertebral bodies, but double deficient mice
exhibited very severe reduction in ossification indicating a
synergistic effect between BMPER and Tsg under these

conditions (Ikeya et al., 2008). In the kidney, BMPER
deficiency alone led to defects with lower nephron numbers,
whereas in Tsg-deficient embryos the kidneys overall resembled

the wild type. Of interest, Tsg and BMPER double-deficient mice
displayed a wild-type phenotype indicating Tsg to be epistatic
over BMPER in this context (Ikeya et al., 2010). During

embryonic development, the kidneys develop by branching
morphogenesis of a tubular system, which is a reoccurring
theme during organ development and also found in lung and
vascular development. Therefore, it is not surprising that similar

molecular mechanism are involved to generate analogous
morphological architecture (Herbert and Stainier, 2011;
Horowitz and Simons, 2008). In our work we show that

BMPER as well as Tsg are expressed in endothelial cells and
that single application of recombinant BMPER or Tsg stimulate
proangiogenic behaviour of endothelial cells (Figs 5, 6). This

suggests that addition of certain concentrations of BMPER or Tsg
to existent, endogenous complexes of BMP ligands and
extracellular modulators such as chordin, BMPER and Tsg can

evoke peak BMP signalling (Bier, 2008; Umulis et al., 2009).
However, simultaneous application of equimolar concentrations
of recombinant BMPER and Tsg abrogated the proangiogenic

effect indicating that both proteins predominantly bind and

therefore block each other to interact with endogenous BMP

complexes in the extracellular matrix of endothelial cells. Along

the same line, we hypothesize that after Tsg knockdown in

endothelial cells the observed proangiogenic effect mimics the

application of recombinant BMPER protein, because the balance

between Tsg and BMPER shifted to more BMPER (Fig. 7). Our

hypothesis is underlined by our finding that further addition of

recombinant BMPER protein to Tsg-deficient endothelial cells

led to no further increase in sprouting (Fig. 8A). Taken together,

these data indicate that the concentrations of Tsg and BMPER

have to be tightly balanced to enhance BMP signalling and along

this line endothelial cell sprouting.

Previous in vivo experiments with Xenopus and zebrafish

embryos have revealed the intriguing complexity of Tsg

concentration- and context-dependent effects. High levels of

Tsg overexpression causes ventralization of embryos, indicative

of pro-BMP effects (Oelgeschläger et al., 2000; Ross et al.,

2001), whereas low levels of Tsg overexpression causes

dorsalization and therefore antagonizes BMP signalling (Chang

et al., 2001; Ross et al., 2001; Xie and Fisher, 2005). On the other

hand, injection of high doses of Tsg morpholino oligonucleotides

(MOs) into zebrafish embryos causes dorsalization, indicating a

pro-BMP effect of Tsg (Little and Mullins, 2004; Xie and Fisher,

2005). In contrast, low doses of Tsg MO causes ventralization

and therewith indicate an anti-BMP-effect of Tsg (Ross et al.,

2001; Xie and Fisher, 2005). Thus, the effect of Tsg seems to be

strictly dependent on concentration. In addition, in zebrafish

injected with low doses of Tsg MO all investigators noticed a

ventral tail vein ectasia, where blood accumulates and the

circulation slows (Little and Mullins, 2004; Xie and Fisher,

2005). Furthermore, Xie and Fisher observed an increase in gata2

expression that is consistent with enhanced BMP signalling and

haematopoiesis (Xie and Fisher, 2005). Moreover, BMP4 was

shown to directly increase gata2 expression and along this line

enhanced haemangioblast, haematopoetic and endothelial cells

generation (Lugus et al., 2007). In our study with the transgenic

zebrafish fli1:eGFP line, we again observed blood accumulation

and the formation of an ectasia in the caudal vein plexus (CVP)

after Tsg MO injection (Fig. 8C–E). We noticed a high density of

green fluorescent endothelial cells in the developing CVP, which

recently was shown to be dependent on BMP signalling (Wiley

et al., 2011). Consistently, our Tsg deficiency data from zebrafish

and HUVECs suggest that under these circumstances reduction of

Tsg expression levels enhanced endothelial cell proliferation and

sprouting by enhanced BMP signalling. On the contrary, BMPER

morphants displayed a loss of CVP formation and in addition

disturbed intersomitic vessel (ISV) growth (see also Moser

et al., 2007) indicating loss of BMP signalling in the developing

CVP. Of interest, in Tsg/BMPER double morphant embryos

we observed less cyst formation compared to Tsg single

morphants, suggesting that the cyst formation is caused by

BMPER and enhanced BMP signalling in the absence of Tsg. In

contrast, the ISV sprouting seems to be independent of Tsg, as in

double morphants the phenotype of single BMPER morphants

persist. This is consistent with our BMPER-depleted HUVEC

Matrigel assays, where in the absence of BMPER Tsg is unable to

induce sprouting. Taken together, in angiogenic events Tsg seems

to be dependent on BMPER, whereas loss of BMPER also

displayed Tsg-independent effects.
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In conclusion, extracellular BMP-binding modulators exert
different effects on endothelial cell function and angiogenesis.
While noggin and chordin had no stimulatory effects, gremlin,

BMPER and Tsg enhanced endothelial cell sprouting. For Tsg we
observed stimulatory effects on endothelial cells in gain- or loss-
of-function experiments that appeared to be dependent on the

interaction with BMPER. However, in vivo the effect of Tsg on
the BMP signalling pathway seems to be highly context and
concentration dependent. Altogether, our data indicate that a fine-

tuned equilibrium of Tsg and BMPER controls BMP pathway
activity, which is necessary for endothelial cell function.

Materials and methods
Cell culture and reagents

Isolation of human umbilical vein endothelial cells (HUVECs) was performed as
previously described (Heinke et al., 2008). HUVECs were cultured in enhanced
endothelial cell growth medium (PELOBiotech GmbH, Martinsried, Germany).
Human coronary artery ECs (HCAEC), heart and lung microvascular ECs
(HMECs) were purchased and cultured in EGM2-MV BulletKit medium from Lonza

(Basel, Switzerland). Recombinant mouse Tsg, human BMPER, mouse chordin, human
noggin, mouse gremlin, human VEGF-165 and human FGF basic 146 aa protein were
reconstituted according to the manufacturer’s protocol (R&D Systems GmbH,
Wiesbaden, Germany). MEK1 inhibitor PD98059 and MEK1/2 inhibitor U0126 (also
called Erk inhibitors) were reconstituted according to the manufacturer’s instructions
(Cell Signaling Technology, Danvers, USA). For cell tracking, CFDA-SE (green) and
CellTrackerTM Red CMPTX were used (Life Technologies, Karlsruhe, Germany).

Tube formation assay

Tube formation assay – or Matrigel sprouting assay – was performed as described
previously (Heinke et al., 2008). Briefly, HUVECs were pre-treated with the indicated
concentration of recombinant proteins in 1% FBS/EBM for 16–18 hours. Duplets of
26104 cells per condition were cultured on Matrigel with 2% FBS (BD Biosciences,
Heidelberg, Germany) for 3 hours at 37 C̊, 5% CO2. Cells were fixed with 4%
paraformaldehyde (PFA) and pictures were taken from four random microscopic fields
at 56magnification using a digitized imaging system. The cumulative sprout length
and the number of branch points were measured with AxioVision Rel. 4.8.

Migration assay

Cell migration assay was performed as previously described (Heinke et al., 2008).
In brief, HUVECs were labelled with 10 mM CFDA-SE (Life Technologies),
harvested by centrifugation, resuspended in migration medium (RPMI with 0.5%

Fig. 8. The BMP modulators BMPER

and Tsg are necessary for proper

angiogenesis in vitro and in zebrafish

development. HUVECs were transfected

with either Tsg- or BMPER-specific

siRNAs, or with scrambled siRNA as a

control. Thereafter, Tsg- or BMPER-

silenced HUVECs were stimulated with

BMPER and Tsg, respectively, and

subjected to the tube formation assay.

(A) Cumulative sprout length of Tsg-

silenced HUVECs stimulated with BMPER

and (B) cumulative sprout length of

BMPER-silenced HUVECs stimulated with

Tsg. Values are means 6 s.e.m.; n53;

*P,0.01 versus siRNA control.

(C–E) Silencing of Tsg in zebrafish

embryos causes malformations during

blood vessel development. (C) Vasculature

morphology of uninjected (top) and

0.125 mM Tsg MO-injected (middle)

tg(fli1:eGFP) fish embryos at 48 hpf with

formation of a large venous malformation

(white arrows). (Bottom) Overall

morphology of Tsg MO-injected zebrafish

at 48 hpf with blood accumulation in the

ventral tail vein ectasia (black arrow).

(D) Formation of the trunk vasculature in

48 hpf tg(fli1:eGFP) fish embryos after

injection of 0.125 mM Tsg or 0.25 mM

BMPER MO or a combination of both. Tsg

morphants displayed ventral tail vein

ectasia (white arrows) and some disruption

of ISVs and the DLAV (asterisks). In

BMPER morphants disruption of ISVs and

DLAV was more pronounced and in

addition loss of the CVP (arrowhead) was

observed. Double morphants displayed the

malformations of both single Tsg/BMPER

morphants. (E) Quantification of vascular

defects in 48 hpf tg(fli1:eGFP) Tsg and

BMPER morphants. CVP, caudal vein

plexus; DLAV, dorsal longitudinal

anastomotic vessel; ISV, intersomitic

vessels; hpf, hours post-fertilisation; MO,

morpholino oligonucleotide.
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FBS, 0.1% BSA), counted and placed in the upper chamber of a modified Boyden
chamber (16105 cells per HTS FluoroBlok 24-well chamber; pore size 8 mm; BD
Biosciences). The chambers were placed in 24-well culture dishes containing
migration medium and indicated recombinant proteins. After incubation for
4 hours at 37 C̊, 5% CO2 the cells were fixed with 4% PFA and migrated cells
were counted manually in five random microscopic fields using a fluorescent
microscope.

Proliferation assay

Proliferation was assessed using a colorimetric BrdU-incorporation ELISA
(Roche, Basel, Switzerland) as described recently (Heinke et al., 2012a). In
brief, 24 hours after siRNA transfection, cells were cultured in fresh BrdU-
containing 1% FBS/EBM medium for another 24 hours. For growth factor
stimulation cells were directly cultured with BrdU-containing medium for
24 hours. The colorimetric ELISA for BrdU quantification was performed
following the manufacturer’s instruction.

HUVEC spheroid sprouting assay

HUVEC spheroid sprouting assay was performed as previously described (Heinke
et al., 2008). For mosaic spheroid sprouting experiments siRNA-transfected
HUVECs were labelled with CFDA-SE (green) or CMPTX (red), respectively and
mixed in equal amounts before hanging drops were generated. Collagen embedded
mosaic spheroids were imaged with an inverted ZEISS LSM 5 Live DUO high
speed confocal microscope at the Life Imaging Center, ZBSA, Freiburg, Germany.

Mouse Matrigel plug assay and immunohistochemistry

Experiments were performed according to the Animals Scientific Procedures Act
of 1986 and local ethics protocols. Mouse Matrigel plug assay was performed as
described previously (Heinke et al., 2008). In brief, Matrigel (BD Biosciences) was
mixed with heparin and recombinant proteins and injected subcutaneously into the
abdominal flanks of female C57BL/6N mice (Charles River, Sulzfeld, Germany).
After 10 days, plugs were isolated, fixed in 4% PFA and sectioned. To determine
endothelial cell specificity slides were stained with anti-CD31 (BD Pharmingen)
and goat anti-rat Cy-3 antibodies (Chemicon International). Blood vessel
infiltration was analysed in 10 random Haematoxylin- and Eosin-stained
sections imaged with Zeiss Axioplan2/Axiovision Rel. 4.8.

Western blot analysis

Western blot analysis was performed as previously described (Heinke et al., 2008).
Primary antibodies were incubated overnight at 4 C̊ in 3% non-fat dried milk/
TBST: anti-mouse Tsg (monoclonal rat ab; 1:1000; R&D Systems); anti-human
BMPER (monoclonal rat ab; 1:3000; R&D Systems); anti-human b-tubulin
(monoclonal mouse ab; 1:3000; R&D Systems); anti-P-Akt1/2, P-Erk1/2, P-
Smad1/5, Erk1/2 and Smad5 (polyclonal rabbit abs; 1:1000; Cell Signaling
Technologies); anti-Gapdh (polyclonal rabbit ab; EnoGene, New York, USA).

Secondary antibodies conjugated to horseradish peroxidase were incubated for
1–2 hours at room temperature in 3% non-fat dried milk/TBST: anti-mouse-HRP
(polyclonal ab, 1:5000; R&D Systems); anti-rabbit-HRP (polyclonal ab, 1:10000,
Thermo Fisher Scientific); anti-rat-HRP (polyclonal ab, 1:5000; Dako).

Visualisation was performed using an ECL system (Amersham Bioscience) and
a digital imaging system (chemiDOC XRS and Image Lab 4.0; Bio-Rad).

RNA interference

BMPRII, Tsg and BMPER siRNAs 1 and 2 were purchased from Life
Technologies, respectively. Scrambled negative control Alexa Fluor 488 was
purchased from Qiagen, Hilden, Germany. For transfection a final concentration of
100 nmol/l siRNA together with Lipofectamine RNAiMAX was used according to
the manufacturer’s protocol (Life Technologies). Transfection efficiency was
confirmed by quantitative real-time (q) PCR. Functional cell culture assays were
performed between 8 and 48 hours post transfection.

siRNA sequences: siTsg 1, forward 59-CGCAUGUUUCCUGGGAGUUACU-
GAU-39, reverse 59-AUCAGUAACUCCCAGGAAACAUGCG-39; siTsg 2,
forward 59-CAUCCUGAUGUUCCUGACAUGGCUU-39, reverse 59-AAGCC-
AUGUCAGGAACAUCAGGAUG-39; siBMPRII 1, forward 59-GCUGUUGUAG-
CACAGAUUUAUGUAA-39, reverse 59-UUACAUAAAUCUGUGCUACAACA-
GC-39; siBMPRII 2, forward 59-GCCUUUGAUGGAACAUGACAACAUU-39,
reverse 59-AAUGUUGUCAUGUUCCAUCAAAGGC-39; siBMPER 1, forward
59-GCACCUUAGUCACAUACCCTT-39, reverse 59-GGGUAUGUGACUAAG-
GUGCTG-39; siBMPER 2, forward 59-GCUGCCUCUUUCGAAGUGATT-39,
reverse 59-UCACUUCGAAAGAGGCAGCTC-39.

Immunocytofluorescence

HUVECs grown on glass coverslips were fixed first with 4% PFA and then
blocked with 10% goat serum for 30 minutes at room temperature. Afterwards
cells were incubated over night at 4 C̊ with the monoclonal Tsg antibody (1:100;
R&D Systems) or with control ratIgG2a (BD Pharmingen, Heidelberg, Germany),
respectively. The staining was completed with goat-anti rat-Cy3 (1:500; Chemicon

International). For visualization of nuclei slides were treated with DAPI (1:30000;
Sigma, Deisenhofen, Germany). All photographs were taken with Zeiss Axioplan2
and analysed with Zeiss Axiovision Rel. 4.8.

RNA extraction and reverse transcription
DNA-free total RNA was extracted from HUVEC, HCAEC, HMEC lung and
HMEC heart using the Aurum RNA Mini Kit (Bio-Rad, Munich, Germany).
Reverse transcriptions were performed with iScript cDNA-Kit applying 1 mg RNA
following the manufacturer’s protocol (Bio-Rad).

Semi-quantitative and real-time PCR
Reverse transcription-PCR (RT-PCR) analysis was performed as described
previously (Heinke et al., 2008).

Quantitative real-time PCR analysis following RNA interference was performed
using IQ SybrGreen 2xSupermix and the iCycler real-time PCR detection system
(Bio-Rad). Quantification was performed using MyiQ lightcycler software (Bio-
Rad). Knockdown efficiency was calculated using the DDCT method (Schmittgen
and Livak, 2008; Wong and Medrano, 2005). The housekeeping gene hRP was
used for internal normalization.

Primer sequences: Tsg, forward primer 59-ACTCTAGCCATCCTGATGTTCC-
39, reverse primer 59-CAACACAGTCACAGCACTCG-39; BMPER, forward
primer 59-AGGACAGTGCTGCCCCAAATG-39, reverse primer 59-TACTGACA-
CGTCCCCTGAAAG-39; BMPRII, forward primer 59-ACCAGAAGTGCTA-
GAAGGAG-39, reverse primer 59-GCCGAGCCTCTGCATCCTGGT-39; hRPII,
forward primer 59-GCACCACGTCCAATGACA T-39, reverse primer 59-GTGC-
GGCTGCTTCCATAA-39.

Fish strains, morpholino and RNA injections
Zebrafish embryos of the tg(fli1:eGFP) line (Lawson and Weinstein, 2002) were
raised (Westerfield, 1995) and staged as described (Kimmel et al., 1995). Fertilized
eggs were kept in 0.36 Danieau’s solution at 28 C̊ with addition of 0.003% 1-
phenyl-2-thiourea (Sigma-Aldrich, Taufkirchen, Germany) at 24 hours post-
fertilisation to suppress pigmentation.

For morpholino oligonucleotide (MO) injections one or two cell stage embryos
were injected with 1 nl of the indicated amounts of MOs and raised at 28 C̊ until
analysed. We used previously described MOs targeted against Tsg (Ross et al., 2001)
and zBMPER MO1 (Moser et al., 2007) (Gene Tools, LLC, Philomath, USA).

Statistical analysis and quantification
Statistical analysis was performed using GraphPad Prism 5.0, La Jolla, USA. Data
are presented as means 6 s.e.m. and comparisons were calculated by Student’s t-
test (two-way, unpaired). All experiments were repeated at least three times in
triplicates. Results were considered statistically significant if P,0.05.
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