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ABSTRACT: Thermal performance curves are an example of contin-
uous reaction norm curves of common shape. Three modes of var-
iation in these curves—vertical shift, horizontal shift, and generalist-
specialist trade-offs—are of special interest to evolutionary biologists.
Since two of these modes are nonlinear, traditional methods such as
principal components analysis fail to decompose the variation into
biological modes and to quantify the variation associated with each
mode. Here we present the results of a new method, template mode
of variation (TMV), that decomposes the variation into predeter-
mined modes of variation for a particular set of thermal performance
curves. We illustrate the method using data on thermal sensitivity
of growth rate in Pieris rapae caterpillars. The TMV model explains
67% of the variation in thermal performance curves among families;
generalist-specialist trade-offs account for 38% of the total between-
family variation. The TMV method implemented here is applicable
to both differences in mean and patterns of variation, and it can be
used with either phenotypic or quantitative genetic data for thermal
performance curves or other continuous reaction norms that have
a template shape with a single maximum. The TMV approach may
also apply to growth trajectories, age-specific life-history traits, and
other function-valued traits.

Keywords: generalist-specialist trade-offs, genetic variation, Pieris
rapae, reaction norms, thermal performance curves.

The patterns of phenotypic and genetic variation in re-
action norms are important because they determine se-
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lection and evolutionary response for a population. Phe-
notypic and genetic variation for quantitative traits,
including reaction norms, is typically characterized in
terms of the phenotypic and genetic variance-covariance
matrices or functions, P and G (Kirkpatrick and Heckman
1989; Phillips and Arnold 1999). The structure of P or G
can be explored using principal components analysis
(PCA) and similar methods to decompose into underlying
components. However, interpreting principal components
is often difficult, and understanding how the structure of
P or G emerges from underlying biological mechanisms
is a major challenge.

Thermal performance curves (TPCs) are an important
class of continuous reaction norms, in which the trait value
(performance) varies as a function of environment (tem-
perature; Huey and Stevenson 1979). For many aspects of
organismal performance, TPCs have a common general
shape (fig. 1, left panels), in which performance increases
with increasing temperature, reaches a maximum at some
intermediate temperature, and then declines rapidly with
further increases in temperature (Huey and Kingsolver
1989). Variation in TPCs can thus be considered as var-
iation around a common shape (template) curve.

Ecological and evolutionary physiologists have identi-
fied three directions or modes of special biological interest
for TPCs: vertical shift (faster-slower), horizontal shift
(hotter-colder), and generalist-specialist (Huey and King-
solver 1989). Imagine a set of phenotypes or genotypes
within a population whose TPCs vary in each of these
modes (fig. 1, left panels). Vertical shift represents variation
in the height of the TPCs, or variation in overall perfor-
mances across all temperatures; horizontal shift represents
variation in the position of the curve along the temperature
axis, or variation in the location of the thermal maximum;
generalist-specialist represents variation in the width of
the TPCs and the trade-off between width and maximal
performance. In our analysis, each one of these directions
of variation will be called a mode. Previous studies have
used PCA and related methods to identify these modes of
variation in TPCs in several systems, with partial success
(Gilchrist 1996; Kingsolver et al. 2001).
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In this article, we develop a new approach for analyzing
variation in continuous reaction norms, which decom-
poses and quantifies the contributions of predicted modes
of variation. First, we show how standard linear methods
can be inadequate for estimating mean and variation and
for interpreting patterns of variation in nonlinear reaction
norms. Second, we describe a new method, template mode
of variation (TMV), which can decompose variation in
reaction norms into predetermined modes of variation.
The method can be used to analyze either phenotypic or
genetic variation; here we illustrate the approach using
data on genetic (between-family) variation in thermal per-
formance curves for short-term growth rate in Pieris rapae
caterpillars (Kingsolver et al. 2004).

The Limits of Linear Methods

As an example, figure 2 presents mean thermal perfor-
mance curves (TPCs) for 32 full-sib families of Pieris rapae
caterpillars. In this study, the growth rate of each fourth
instar caterpillar was measured at six temperatures be-
tween 11° and 40°C during a 48-h period within a single
larval instar (for details, see Kingsolver et al. 2004). As
with many TPCs, the curves have a common shape in
which performance (growth rate) increases slowly, reaches
a maximum, and decreases rapidly.

One standard method for analyzing variation in TPCs
(and other sets of quantitative traits) is to apply PCA,
treating performance at each temperature as a distinct but
correlated trait (Via and Lande 1985; Gomulkiewicz and
Kirkpatrick 1992; fig. 3). The loadings on each principal
component (eigenvector) represent the contribution of
performance at that temperature to the variation along the
direction of the principal component; the eigenvalues in-
dicate the amount of variation explained by each principal
component. Principal components analysis for the TPC
data in figure 1 results in a complex pattern of loadings
on each principal component that cannot be easily inter-
preted biologically (fig. 3), a common problem with PCA.

Suppose we apply PCA to our proposed biological
modes of variation: vertical shift, horizontal shift, and
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generalist-specialist (fig. 1). Here we have generated sim-
ulated data for TPCs that represent variation in each of
these modes. For the vertical shift, the pointwise (arith-
metic) mean curve is a good estimate of the common shape
or template shape, and the variation is completely iden-
tified by the first principal component direction PC1 (fig.
1, top row). Principal components analysis successfully
identifies vertical shift variation because this mode rep-
resents a simple linear translation around the mean curve
(Fry 1992; Kingsolver et al. 2001).

Applying PCA to the other two modes of variation yields
a very different pattern, because these modes involve non-
linear “directions.” For the horizontal shift (fig. 1, middle
row), the pointwise mean curve (dashed line) does not
describe the common shape of any of the individual
curves, and PCA results in a complex pattern of com-
ponents and loadings that are difficult to interpret.
Similarly, generalist-specialist variation does not simply
correspond to the loadings on a particular principal com-
ponent (fig. 1, bottom row). Both the horizontal shift and
generalist-specialist modes generate complex patterns of
negative and positive loadings on multiple principal com-
ponents; PCA cannot readily distinguish between these two
different types of variation. Moreover, when there is more
than one mode of variation of interest, for example, si-
multaneous vertical shift and horizontal shift, PCA also
fails to decompose the variation into these two modes of
interest.

These considerations suggest that for nonlinear reaction
norms, standard linear methods of characterizing the mean
or variation may be inadequate or difficult to interpret.
Izem (2004) has recently developed a new statistical
method, TMV, to characterize and quantify nonlinear
modes of variation. The approach introduces new mea-
sures to estimate the “average” curve and variation among
curves, which take into account the nonlinear geometry
of the space of variation. The TMV method allows for the
decomposition and quantification of the variation in the
data along linear and nonlinear modes of interest.

Figure 1: Three biological modes of variation in thermal performance curves (performance as a function of temperature), using toy simulated and
discretized data. Top row, vertical shift mode. Left, simulated data (solid lines) and pointwise mean (dashed line). Right, principal component direction.
Because vertical shift variation is linear and one dimensional, the pointwise mean curve falls in the middle of the variation, and all of the variation
in the toy data (100%) is explained by one principal component. Middle row, horizontal shift mode. Left, simulated data (solid lines), pointwise
mean (dashed line), and Fréchet mean (dashed and dotted line). Because this variation is nonlinear, the pointwise mean curve differs in shape from
any of the individual curves and does not lie at the center of the variation in the curves, whereas the Fréchet mean has the same shape as the
individual curves and lies at the center of the variation in the curves. Right, principal component directions. Because horizontal shift variation is
nonlinear, it is not simply explained by one principal component. The first three principal component directions explain only about 61% of the
total variation. Bottom row, generalist-specialist mode. Left, simulated data (solid lines) and pointwise mean (dashed line). Right, first three principal
component directions. This case is less extreme than the horizontal shift case. However, because this mode is nonlinear, the variation is totally

explained by three, rather than one, principal component directions.
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Figure 2: Mean relative growth rate (in 100 x g/g/h) of fourth instar Pieris rapae caterpillars as a function of temperature for 32 full-sib families; data from Kingsolver et al. (2004)
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Figure 3: Principal components analysis of the caterpillar data. Top, weighted population mean relative growth rate. Bottom, first four principal
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Template Modes of Variation
The Model

An important feature of TPCs, and of continuous reaction
norms in general, is continuity: while in practice perfor-
mance is measured at a finite number of temperatures J,
the underlying relationship between the performance and
temperature is considered continuous. We model this
mathematically as follows. Let z;; be the mean perfor-
mance for individuals of family (or genotype) i measured
at temperature j. Since the reaction norm is continuous,
the growth rate of a family i could be represented by a
continuous function, z, such that

SJhiefl, ...

z.. = Zi(tj) + € ] € {1, .. > I}) (1)

L]
where ¢ is the jth temperature ¢, I'is the number of families
or genotypes, and &, ; either are errors from the mea-
surements or reflect environmental factors other than
temperature.

A second assumption is the existence of a common
shape for the TPCs of all genotypes in the population or
sample of interest. The common shape can be modeled
using a shape invariant model (Lawton et al. 1972). Since
there are three modes of variations of interest—vertical
shift, horizontal shift, and generalist-specialist—around a
template shape function, we model the simultaneous three
modes of variation with the following three-parameter
shape invariant model:

thyiefl, .., I. ()

In this model, z represents the common template shape
of the curves, which is the same for all families. The curve
for each family i is described by three parameters (height
h;, location of the maximum 1, and width w;,) that char-
acterize the variation of the curve of family i from the
common shape z along the modes of interest. The height
h; parameterizes the vertical shift mode of variation, the
location m; parameterizes the horizontal shift mode of
variation, and the width w; parameterizes the generalist-
specialist mode of variation. Note that h; has the same
dimensions as performance, #m; has dimensions of tem-
perature, and width w;is dimensionless. Since the common
shape in reaction norm curves is not, in general, a straight
line, z in equation (2) is not a straight line. As a result,
the vertical shift is a linear mode, but the horizontal shift
and generalist specialist are nonlinear modes; that is, z
varies linearly with h; but does not vary linearly with m;
and w.

To model the trade-off between generalists and spe-

cialists, we assume that for m; and h; fixed, the positive
area under the TPC curve is constant for change in the
width parameter w, Thus, the width parameter incorpo-
rates both variation in width and maximum performance
at the optimal temperature. Note that height 4, as defined
here indicates the overall or “average” performance across
all temperatures, not just the maximum performance at
the optimal temperature.

In addition to continuity and a common shape for z(1),
there are three other assumptions of the model. First, the
function z(¢) has a positive maximum at t = 0; that is,
max (z) = z(0) and z(0) > 0. This ensures that the param-
eter m, is the maximum for each curve z and that there
is a positive area under the curve. Second, z(f) = 0 for at
least two values in the neighborhood of + = 0. This con-
dition ensures that the positive area under the curve is
finite. Third, ¥ ,.I:I h; = 0. This ensures that there is only
one possible function fit z with parameters A,

Note that the maximum performance at the optimal
temperature for family i, z,, ,, can also be obtained from
equation (2):

(3a)

By the assumptions above, z(0) represents the maximum
value for the template function z(f). Rearranging this re-
lationship, we see that

. z(0)
W= (3b)

This provides a useful interpretation of the width param-
eter w. The denominator in equation (3b) represents the
difference between maximum performance (at the opti-
mum temperature) and the average performance (over all
temperatures) for family 3 thus, for any given h,, decreas-
ing maximum performance increases width w, Because
this difference is standardized relative to the maximum
value of z for the template function (z(0)), w, is
dimensionless.

Defining Mean and Variation

In linear methods such as PCA, the key to decomposing
the variation in the data is, first, to define the center of
the variation as the mean in the data; second, to quantify
the spread in a direction by the sums of squares of Eu-
clidean distances from the data to the center; and finally,
to decompose the variation by using a Pythagorean the-
orem in the space of variation. When some of the varia-
tions of interest are nonlinear, the arithmetic mean is no
longer at the center of the variation, and the Euclidean



distance is not appropriate (Izem et al. 2003; Izem 2004).
For example, note that in figure 1 (middle left panel), the
arithmetic mean curve (dashed line) for horizontal shift
variation does not reflect the shape of any individual curve.
As described in Izem (2004), we do not use the pointwise
(arithmetic) mean curve as a measure of center of vari-
ation, but rather we use a curve that falls in the middle
of the variation, defined as the Fréchet mean (cf. fig. 1,
middle left panel, dashed and dotted line; Izem 2004). Sim-
ilarly, we do not use the sums of squares of Euclidean
distances to quantify the spread along each mode, but
rather we construct a metric in the space of variation that
depends on arc distances along each mode. We define a
new ratio of sum of squares RSS, which generalizes the
linear ratio of sum of squares that quantifies linear modes,
to the quantification of nonlinear modes. This new ratio
takes into account the curved geometry of the space of
variation (Izem et al. 2003; Izem 2004; details available at
http://www.fas.harvard.edu/~rizem).

Also note that since the three modes of variation are
not all linear, they are not orthogonal in the usual sense.
For instance, the space of variation is a manifold. This
manifold is spanned by curves of variation rather than
linear principal components. Decomposing the variation
in this manifold was possible by linearizing this space (i.e.,
transforming the space into a linear space). So, the distance
we constructed in the manifold relies on Euclidean dis-
tances in the transformed spaces. Since the Pythagorean
theorem holds in a linear space with Euclidean metric, by
equivalence, it holds also on the manifold of variation with
the new metric (Izem 2004; details available at http://
www.fas.harvard.edu/~rizem).

Fitting Criterion

In model equation (1), the common template shape z is
unknown, and the I triplets (h, m, w,) are unknowns. For
simplicity, for TPCs we assume that z was a polynomial
of degree 4. We fit the model (eq. [1]) by optimizing for
the five coefficients of this polynomial as well as the pa-
rameters (h, m, w;) for each curve. Because families may
not all have the same sample size, it is useful to take the
sample size within each family into account in our fitting.
The criterion for optimization is to minimize the weighted
sum of squared errors (SSE; weighted by sample size within
each family) such that

I 7

SSE = I x EZ%HZW— 2% @)

i=1j=1

where #; is the sample size of family i and N is the total
number of individuals in the study. Note that equation
(4) represents a weighted sum of the squared deviations
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of the data (z;;) from the model z(?) as given by equation

).

Applying the Model
Fitted Curves

Here we apply the model to data on TPCs for growth rate
of fourth instar Pieris rapae caterpillars summarized (see
fig. 2). There are 32 full-sib families, with two to 22 in-
dividuals measured per family (median sample size =
17/family), and relative growth rate (mass increase) was
measured at six different temperatures (11°, 17°, 23°, 29°,
35°, and 40°C) during a 48-h period with a single larval
instar for each individual (Kingsolver et al. 2004). Here
relative growth rate is the proportional mass increase of
an individual per unit time and has dimensions of time™".
The result of the fit of the common template curve z for
these data is

256 + 545t — 5.77t% — 0.61t> — 0.02¢*
100 ’

z(t) = 5)

Figure 4 (top) shows the results of fitted polynomials
for each family; figure 4 (bottom) presents both the data
(solid lines) and the fitted curves (dashed line) that have
been discretized at the six measurement temperatures.
Since the plots in figure 4 are on the same scale, we see
that the fits are close to the data and that our model
explains most of the variation in the data. Fits for each
individual family curve (figs. Al, A2 in the online edition
of the American Naturalist) indicate that the model fits
very closely for most families. One family with maximum
growth rate at 29°C (see fig. 4, top) is poorly fit by the
model; this family has a sample size of 2 and thus does
not contribute strongly to the model fit or decomposition.
More generally, those families with rapid increases and/or
decreases in growth rate at adjacent measurement tem-
peratures had poorer fits, as expected for a polynomial
model.

The bottom of figure 4 gives an important visual as-
sessment of the residuals in the model and how well the
template shape fits the data. In this figure, each data curve
i was rescaled with respect to the three estimates of the
parameters (height &, location of the maximum m, and
width w,), and all the rescaled discrete data are compared
with the continuous common shape z the remaining var-
iation thus represents the residual variation not explained
by the model. The fitted common shape is a good ap-
proximation of the common shape of the curves, and there
is no apparent systematic variation that remains after fit-
ting the model.
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Decomposition of the Variation

The decomposition of the variation into the modes of
interest by our TMV method (table 1) confirms our visual
assessment of the fit. The model explains more than two-
thirds (66.9%) of the total variation in the data. This high
percentage shows the importance of these biologically in-
terpretable modes of variation. A major biological result
is that the generalist-specialist mode accounts for the larg-
est component of variation (38.0%). Horizontal shift
(16.2%) and vertical shift (12.6%) explain smaller fractions
of the total variation in the data. Importantly, the model
clearly distinguishes horizontal shift from generalist-
specialist variation, both of which can generate complex
patterns of positive and negative covariances across tem-
peratures (see fig. 1 and “Discussion”).

In equation (2), each parameter represents a mode of
variation; that is, h; represents the vertical shift, m, rep-
resents the horizontal shift, and w; represents the change
in width and the specialist-generalist trade-off. The dis-
tribution of the parameters and the relationship between
the parameters of variation are indicators of how much
variation there is along each mode and how they co-vary
(fig. 5). Recall that for our example data, height h; rep-
resents the relative growth rate (g/g/h) averaged across all
temperatures for family i (note that mean h; over all fam-
ilies for the sample is by definition 0), m;, represents the
optimal temperature (°C) at which relative growth rate is
maximum for family i, and w, represents the (dimension-
less) width and generalist-specialist trade-off for family i.
From these estimated parameters, we can also compute
the maximal performance z,,, , the performance (here
relative growth rate) at the estimated optimal temperature
for family i. Several interesting patterns emerge from in-
spection of the parameter estimates (fig. 5). Estimated op-
timal temperature () varies between 29° and 46°C among
families, although most families cluster between 32° and
38°C, with a second cluster of three families at 45°—46°C
(see “Discussion”). Height (k) varies from —0.3 to 0.5 g/
g/h, with most families between —0.2 and 0.2 g/g/h. In
contrast, maximum performance (z,,,,) varies over a much
wider range among families (1.0-2.4 g/g/h). This pattern
supports the conclusion that vertical shift (variation in h)
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Table 1: Decomposition of the total between-
family variation in relative growth rate for
fourth instar Pieris rapae caterpillars, using
template mode of variation

Ratio of sum of

Mode of variation squares (%)

Generalist specialist 38.04
Horizontal shift 16.23
Vertical shift 12.63
Model total 66.90

makes only minor contributions to overall between-family
variation. There is no clear correlation between optimal
temperature m and either maximum performance z,,, or
average height h.

Discussion
Biological Insights

In this article, we have described some of the limitations
of applying standard linear methods to the analysis of
nonlinear reaction norms and proposed a new nonlinear
method that allows the decomposition and quantification
of biological modes of variation for a set of continuous
reaction norms. It is useful to compare our present results
with more traditional quantitative genetic analyses of these
same data. Kingsolver et al. (2004) estimated broad-sense
genetic variances and covariances for growth rate across
temperatures and applied PCA to the estimated G matrix
and G function. Those analyses revealed significant genetic
variation in growth rate at each temperature and that ge-
netic variance increased with increasing temperature. They
also demonstrated a significant negative genetic covariance
between growth rate at 35° and at 40°C, suggesting a ge-
netic trade-off in growth rate between these temperatures.
However, neither G nor the principal components could
be readily interpreted in terms of the biological hypotheses
discussed here (fig. 2). Moreover, those analyses could not
resolve whether the negative genetic covariance between
35° and 40°C represented a generalist-specialist trade-off

Figure 4: Top, caterpillar TPCs and fitted curves on the same scale. Solid lines, caterpillar’s TPCs. Dashed and dotted lines, polynomial fits discretized
at six temperatures. We can see that the range of variation in the polynomial fits closely matches the range of variation in the data, and the model
explains most of the variability in the data. Bottom, rescaled caterpillar TPCs compared with the fitted common template shape z(t). Solid lines,
rescaled TPCs. Each TPC was standardized with respect to the estimates of height, location, and width parameters from the fit to model (eq. [2]).
Dashed line, fitted common shape, polynomial of degree 4 (eq. [5]). This figure gives first an important visual assessment of the convergence of
our fitting algorithm, because if our algorithm had converged to a local solution, the polynomial fit would not be in the middle of the data or the
data would not be in the same scale in this representation. This figure also gives an important visual assessment of the residuals in the model and
how well the template shape fits the data. We see in this figure that the fitted common shape is a good approximation of the common shape of
the curves and that not very much of the variation remains after fitting the model.
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Figure 5: Values and relationships between the fitted parameters from the model. Top left, width parameter w versus location of the maximum
parameter m (in °C). Top right, location parameter m (in °C) versus height parameter h (in g/g/h). Bottom left, fitted maximum growth rate z,,,,
(in g/g/h) versus location m (in °C). Bottom right, width parameter w versus height h (in g/g/h).

or variation in the location of the thermal maximum, since
both modes can generate negative covariances (fig. 1).

The new TMV method described here resolves these
issues. The analyses decompose the variation into the three
modes of interest and indicate that generalist-specialist
variation makes the single largest contribution (38.0%) to
the overall variation in TPCs for these data (table 1). Sev-
eral previous studies have documented generalist-specialist
trade-offs in performance across temperatures (Gilchrist
1996; Herron 1996); to our knowledge, this study is the
first to quantify the contributions of this trade-off to the
total genetic variation in TPCs or other continuous re-
action norms.

The results indicate that horizontal shift—variation in
the optimal temperature at which performance is maxi-
mized, m—contributes modestly (16.2%) to variation in

TPCs in this population (table 1). Estimated values of m;
for the families ranged from 29° to 46°C, although the
majority of values fall between 32° and 38°C (fig. 5). Three
families had estimated m; of 44°—45°C, outside the range
of measurement temperatures, because mean relative
growth rate (RGR) for these families was greatest at the
highest measurement temperature (40°C). The estimates
of m; for these families are necessarily imprecise because
of this extrapolation. However, the alternative of using
40°C as an estimate of m;, in this situation is also
problematic.

One surprising result of the analyses is the modest con-
tribution (12.6%) of vertical shift—variation in overall
performance across temperatures—to the total genetic var-
iation in TPCs (table 1; fig. 5). Variation in overall “vigor”
or performance has been shown to be a major component
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variation exceeds the between-family variation.

of total genetic variation in many study systems and can
obscure the contribution of genetic trade-offs to variation
(Fry 1992). One interpretation of our results is that past
directional selection for rapid growth rate at all temper-
atures in Pieris rapae has eliminated most of the genetic
variation in vertical shift (Kingsolver and Gomulkiewicz
2003). As in many agricultural insect pests, P. rapae has
the potential to grow very rapidly, completing larval
growth (a mass increase of nearly 10,000-fold) in 3-4
weeks in some conditions (Kingsolver 2000).

There is much greater between-family variation in RGR
at the optimal temperature (z,,) than in overall RGR

ax.

(height h) in this population (fig. 5). This suggests that
there may be greater scope for evolutionary response to
selection for rapid growth at optimal temperatures than
for overall growth. Interestingly, neither z,, nor h is
strongly correlated with optimal temperature m (fig. A2).
This result does not support the “hotter is better” hy-
pothesis, which posits a positive association between op-
timal temperature and maximum performance (Huey and
Kingsolver 1989).

The analysis presented in this article focuses on the
between-family variation in TPCs for short-term RGR. As
illustrated in figure 6, the within-family variation is higher
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than the between-family variation for most families. This
is because the estimated heritabilities for RGR in this study
were low, ranging from 16% at 35°C to 43% at 23°C (King-
solver et al. 2004). Low heritabilities are not uncommon
for short-term measurements of organismal performance,
which are influenced by environmental variability, behav-
ioral motivation, and measurement error (Gilchrist 1996;
Roff 1997; Kingsolver et al. 2004).

Limitations and Applications of the Model

A key assumption of the TMV method is the existence of
a common or template shape for all curves in the sample
or population (Izem 2004). The choice of template is flex-
ible, and the template shape is estimated from the data in
this method. However, if the template does not adequately
describe the curves for some families or genotypes, the
estimated decomposition may be misleading. Inspection
of the fit of the model for each family (figs. 4, Al, A2) is
important for evaluating the adequacy of the template. For
the P. rapae data, one family of very small sample size
(n; = 2) was poorly fit by the model (fig. 4); because the
model fit is weighted by sample size, this had little impact
on the estimated template or decomposition.

In the P. rapae data, we had six measurements for each
curve, so we chose a polynomial of degree 4 to fit the
data. The main advantage of using a polynomial template
shape is its simplicity, which results in a quickly convergent
fitting algorithm and a unique solution and avoids over-
fitting. However, polynomials of a lower degree do not fit
rapid changes in the curves very well. Since the template
shape is estimated from the data, the larger the number
of temperature measurements, the better our estimate of
the common shape can be. Since a polynomial of higher
degree always fits the data better (i.e., has a lower SSE),
we can base our template shape selection and decompo-
sition on minimizing SSE and penalizing for the total num-
ber of parameters in the fit. If the number of measurements
for each curve is higher, it is possible to fit the model with
a template shape from a larger family than polynomials
by using one of several nonparametric methods developed
to estimate the common shape z(#) in the model (Kneip
and Gasser 1988; Wang and Gasser 1997, 1999; Kneip et
al. 2000).

The TMV method described here can be used to analyze
both phenotypic and genetic patterns of variation for a
sample or population. It may also be used to estimate the
model parameters (h, w, m) for different samples, pop-
ulations, or experimental treatments. The current imple-
mentation of the method is directly applicable to perfor-
mance curves and other continuous reaction norms for
which there is a single, intermediate environmental value
(e.g., temperature, nutrient concentration) at which the

phenotypic trait value (e.g., performance, size) is maxi-
mized (Izem 2004). We have developed an algorithm in
Matlab to implement the model described here. The data
required consist simply of the phenotypic trait values z; ;
(e.g., performance) at a series of index values j (e.g., tem-
perature) for each individual, family, or clone i. The output
of this code includes the coefficients of the polynomial
template shape; the fitted values of the three parameters
of variation (w, m, h) for each individual, family, or clone;
results of the decomposition of the variation along the
three modes using TMV; and several graphics illustrating
the fit. This algorithm has been successfully tested with
several other TPC data sets, with encouraging results. The
code used in the analyses presented here is available in
the appendix in the online edition of the American
Naturalist; the most recent implementation of the model
and additional information about applications are avail-
able at http://www.fas.harvard.edu/~rizem.

With some modification, the general method may be
extended to other types and shapes of function-valued
traits (Kingsolver et al. 2001). For example, the horizontal
and vertical shift modes may be appropriate for a wide
variety of function-valued traits, including physiological
and developmental reaction norms, age-specific life-
history traits (e.g., mortality and fecundity curves), and
growth trajectories. Such extensions would require iden-
tifying an appropriate template shape and defining and
parameterizing modes of variation that are of biological
interest.
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