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Principal Components Analysis (PCA) is a common way to study

the sources of variation in a high-dimensional data set. Typically, the
leading principal components are used to understand the variation
in the data or to reduce the dimension of the data for subsequent
analysis. The remaining principal components are ignored since they
explain little of the variation in the data. However, evolutionary bi-
ologists gain important insights from these low variation directions.

Specifically, they are interested in directions of low genetic variability
that are biologically interpretable. These directions are called genetic
constraints and indicate directions in which a trait cannot evolve
through selection. Here, we propose studying the subspace spanned
by low variance principal components by determining vectors in this

subspace that are simplest. Our method and accompanying graphical
displays enhance the biologist’s ability to visualize the subspace and
identify interpretable directions of low genetic variability that align
with simple directions.

1. Introduction. Evolutionary biologists study how the distribution of
observable characteristics of individuals in a population changes over gener-
ations. These observable characteristics are called traits or phenotypes and
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can be qualitative, such as body color in a specific environment, or quanti-
tative. A quantitative phenotype can be a scalar such as mass at a specified
age, or a vector such as mass at several specified ages, or a function such as
mass at a continuum of ages.

Changes in the distribution of traits can occur via many processes, in-
cluding mutation, selection and genetic drift (the change in the distribution
of genotypes that can occur in a finite population when mating and repro-
duction are modeled as random processes). Here we consider changes caused
by selection. We consider changes within only one generation. We charac-
terize changes by the expected change in phenotype, and we assume that
the population under selection is, in essence, infinite. The selection process
determines which individuals in a population are likely to produce viable off-
spring. Selection can occur naturally, when, for instance, small individuals
are more vulnerable to predation, or artificially, as in the selective breeding
of race horses. Selection causes the trait distribution of the subpopulation
of breeding individuals to differ from that of the original population. This
difference will persist into the offspring population provided the trait has
some genetic component.

To understand the role of selection and genetics in evolution, consider the
following simple example. Suppose that, in a population, individuals taller
than a certain height do not reproduce. Thus, the breeding subpopulation
will have a smaller mean height than the original population. The breeding
parents’ offspring also will have a smaller mean height provided height has
some genetic basis. In this case, we say that selection on height leads to the
evolution of height.

Thus, evolution requires both a selection process and a genetic compo-
nent. The selection process must involve a trait with a genetic component.
That genetic component must differ between breeding and nonbreeding in-
dividuals.

Clearly, genetic variation plays an important role in evolution. As we will
see, the amount of genetic variation actually determines the speed at which
selection causes evolutionary change. In nature, traits with substantial ge-
netic variation will respond rapidly, allowing the species to adapt rapidly
to changing conditions. Genetic variation is likewise a critical variable for
plants and animals that are used in agriculture. Artificial selection (or selec-
tive breeding) has been used for millennia to improve domesticated species,
and it continues to be one of the most important tools for increasing agricul-
tural yield. The amount of genetic variation present is one of the key criteria
used by animal and plant breeders to choose the traits for artificial selec-
tion. In both natural and domesticated populations, traits with little or no
genetic variation are not able to respond much or at all to selection. These
traits are said to be genetically constrained, and these constraints play an
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important role in determining how populations adapt [see Kirkpatrick and
Lofsvold (1992)].

In this paper we propose methods to explore genetic constraints in vector-
valued traits. The next section contains biology background, including a
model for selection and a characterization of genetic constraints as eigen-
vectors of the genetic covariance matrix corresponding to zero eigenvalues.
Sections 3 and 4 describe our proposed methodology for studying genetic
constraints. Data analyses appear in Section 5 and a simulation study in
Section 6.

2. Biology background. Biologists model an individual’s quantitative
trait in terms of components, the simplest model involving two components:
a genetic component, g, inherited from parents, and an environmental com-
ponent, e, such as availability of food. In this simple model, the true phe-
notype is g+ e and the observed phenotype, y, is

y = g+ e+ ε,

where ε is additional sampling variation. We denote the expected value
of g by µ and its variance/covariance by G. If g is scalar, then G is its
variance. If g is a vector of length K, then G is the K by K covariance
matrix with ijth entry equal to the covariance between the jth and kth
component of g. If g is a function, say, if g(t) is mass at age t, then G is
a bivariate function, with G(s, t) being the covariance between mass at age
s and mass at age t. The environmental effect e is a mean zero random
component with variance/covariance E , with E defined in an analogous way
as G. The random components g, e and ε are defined so as to be uncorrelated,
so the covariance of the true phenotype is G + E and the covariance of the
observed phenotype is G+E plus the variance/covariance of ε. The marginal
distributions of g and e are population and generation dependent, while
the marginal distribution of ε depends on the method of measuring the
phenotypes.

The heritability of a scalar phenotype is the proportion of its variance that
is attributable to genetics, that is, the heritability is simply h2 = G/(G+ E).
Throughout, we assume that [G + E ]−1 exists. To understand the role of
heritability in evolution, consider our simple example where the selection
mechanism prevents tall individuals from producing offspring. First suppose
that height has zero heritability in the population, that is, all variability in
height is simply due to environmental effects. Then, intuitively, the distri-
bution of heights in the next generation will be the same as the distribution
in the original population, provided both generations are raised in similar
environments. However, if height has nonzero heritability, that is, if the ge-
netic component of height varies across individuals, then the distribution of
heights in the next generation will be different from the distribution in the
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original population. One would expect that the larger the heritability in the
original population, the bigger the change in the distribution of heights in
the next generation.

The mathematical theory that supports this reasoning, that links heri-
tability and evolution of a trait from one generation to the next, is contained
in the Breeder’s equation. To define this equation, let µp be the expected
phenotype in the original population, µp∗ the expected phenotype of the
reproducing adults, and µo the expected phenotype of their offspring. The
Breeder’s equation gives µo − µp, the expected response to selection:

µo − µp = G[G + E ]−1 × (µp∗ − µp).(2.1)

In our height example, µp∗ is less than µp and so the Breeder’s equation tells
us that the mean height in the offspring population is less than or equal to
that in the original population. How much less depends on the value of the

heritability (h2 = G[G + E ]−1) and the strength of selection. The strength
of selection determines if particular individuals will reproduce. In our sim-
ple height example, the strength of selection is determined by the height
cutoff for reproducing. Thus, the strength of selection determines µp∗ − µp.
Biologists define the selection differential as s = µp∗ − µp. The Breeder’s
equation also holds for multivariate phenotypes, where, if the phenotype is
a vector of K values, then µo, µp and µp∗ are K-vectors and G and E are
K ×K covariance matrices. For a generalization of the Breeder’s equation
to function-valued traits, see Kirkpatrick and Heckman (1989).

Biologists rewrite the Breeder’s equation in terms of the selection gradi-

ent, denoted β. The selection gradient is defined in terms of a population’s
expected fitness, that is, its ability to reproduce, under the specified selection
mechanism. We can think of the selection gradient as the change in µp that
selection appears to be making when “choosing” the breeding individuals in
the original population. This is not, in general, equal to s = µp∗ − µp, the
change that actually occurs. To see the distinction between β and s, consider
once again our simple height example, but suppose that the phenotype is a
vector in ℜ2 with components height and weight. Selection is only acting on
height, not on weight, so the selection gradient’s second component is zero.
However, the second component in s is not 0 since height and weight are
positively correlated: the selection on height means that both the heights
and weights of the reproducing individuals will, on average, be smaller than
those in the original population. One can show that the selection gradient
β and the selection differential s are related via the equation s= [G + E ]β.
This yields an alternative expression for the expected response to selection
in the Breeder’s equation in (2.1):

µo − µp = Gβ.(2.2)
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We consider the amount of genetic variation explained by the direction of
a unit vector v. This amount of variation is the magnitude of Gv, that is,
the magnitude of the expected response to selection when v is the selection
gradient.

For more details on the Breeder’s equation, the selection gradient and
the selection differential, see Lande (1976, 1979), Lande and Arnold (1983)
or, for a statistician-friendly exposition, Heckman (2003). For an extension
of (2.2) to function-valued traits, see Gomulkiewicz and Beder (1996) and
Beder and Gomulkiewicz (1998).

From (2.2), we can see the importance of an eigenanalysis of G in under-
standing a population’s ability to evolve under selection. The magnitude of
µo − µp will be largest when the selection gradient, β, points in the same
direction as the leading eigenvector of G. The value of µo−µp will be zero if
selection acts in the direction corresponding to a zero eigenvalue of G. That
is, the population’s mean phenotype will not evolve if selection acts in the
direction of an eigenvector of G corresponding to a zero eigenvalue. These
directions are called genetic constraints. Eigenvectors corresponding to small
but nonzero eigenvalues are also of interest. Gomulkiewicz and Houle (2009)
provide tools to determine what eigenvalues are considered small: they model
demography and evolution in a population experiencing selection due to
changing environmental conditions. They identify critical levels of genetic
variability, levels low enough to effectively prevent the adaptive evolution
that might result from selection.

3. Analysis of genetic variability. To better understand the directions of
genetic variability, we partition the sample space of g into two subspaces, the
model space and the nearly null space. The model space is a “high genetic
variance” subspace spanned by eigenvectors of G with large eigenvalues. The
nearly null space is the orthogonal complementary “low genetic variance”
subspace. Visualizing the nearly null space provides information about the
existence and interpretation of genetic constraints. This partitioning and the
associated visualization tools were introduced in Gaydos (2008).

To explicitly define the model space and the nearly null space of a co-
variance matrix G, let λ1 ≥ λ2 ≥ λ3 ≥ · · · be the eigenvalues of G, and
v1, v2, v3, . . . the corresponding orthonormal eigenvectors. We decide which
λk’s to consider as large values, say, λ1, . . . , λJ , and assume that λJ is strictly
greater than λJ+1. We define the model space as the space spanned by
v1, v2, . . . , vJ and the nearly null space as the space spanned by the remain-
ing eigenvectors. From the Breeder’s equation (2.2), we see that µo − µp

is large if β lies in the model space. Specifically, for β in the model space,
‖µo−µp‖/‖β‖ ≥ λJ and is largest when β is a constant times v1. Conversely,
if β lies in the nearly null space, then ‖µo −µp‖ will never exceed λJ+1‖β‖.
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Interpreting the nearly null space is challenging since, typically, eigenvec-
tors corresponding to small eigenvalues are “rough” and may simply repre-
sent noise. To study the nearly null space, we construct a new basis for this
space, ordered by simplicity. If the simplest basis vectors are interpretable,
biologists can then study the possibility of genetic constraints. If the sim-
plest basis vectors are not interpretable, then biologists might consider the
nearly null space to represent noise.

Clearly, the choice of J is important in the definition of the model space
and nearly null space. One might carry out a sequence of hypothesis tests
to choose J , using the procedures of Amemiya, Anderson and Lewis (1990),
Anderson and Amemiya (1991) or Hine and Blows (2006). These authors
consider testing for the dimension of G when data come from a half-sibling
design, that is, where data are from independent families and each family
consists of half-siblings. Such data can be modeled as an easy-to-analyze
multivariate one-way classification with random effects [Lynch and Walsh
(1998)]. Hypothesis testing to determine J in more complicated designs
might be challenging. However, we do not recommend this hypothesis test-
ing approach, preferring instead an exploratory approach grounded in the
biology. We recommend the usual techniques of calculating the proportion
of genetic variance explained, studying scree plots and considering the in-
terpretability of the associated eigenvectors, combined with the calculations
of critical levels as defined in Gomulkiewicz and Houle (2009). We also rec-
ommend that subject area specialists examine results for a range of values
of J , to examine the interplay between proportion of variance explained and
biological interpretability of the resulting model space and nearly null space.
These subject area opinions can provide a more biologically meaningful and
thus more compelling explanation of a choice of reasonable values of J than
any test of significance or other algorithmic approach. In addition, studying
a range of values of J allows the user to consider small-scale and large-scale
genetic variabilities.

In summary, we use principal components analysis and simplicity mea-
sures to define biologically interpretable directions of low genetic variation,
allowing biologists to explore the possibility of the existence of genetic con-
straints. We apply our method to two data sets, one of the heights of jewel-
weed plants (Impatiens capensis) measured at six ages, the other of growth
rate measurements of the caterpillar Pieris rapae at six temperatures. The
jewelweed data are described in Stinchcombe et al. (2010) and the caterpil-
lar data in Kingsolver, Ragland and Shlichta (2004). The two data sets are
displayed in Figures 1 and 2. Descriptions of the data and the purpose of the
experiments, along with data analysis and discussion, are given in Section 5.

4. Simplicity basis. A simplicity basis for a linear subspace V of ℜK is
an orthonormal basis {w1, . . . ,wL}, where the wk’s are ordered according to
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Fig. 1. Heights of 49 jewelweed plants raised in sun in a dense environment. The heights
are measured at six times and linearly interpolated. See Stinchcombe et al. (2010) for
details of the experiment.

Fig. 2. Relative growth rates of the caterpillar Pieris rapae as a function of temperature.
The growth rates, in milligrams per hour, are measured at six temperatures and linearly
interpolated. See Kingsolver, Ragland and Shlichta (2004) for details of the experiment.
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some simplicity measure: w1 is the “simplest” element of unit length in V ,
w2 is the “simplest” unit-length element of V that is orthonormal to w1, w3

is the “simplest” unit-length element of V that is orthonormal to w1 and
w2, and so forth. Such a basis may help us to understand V since simple
vectors are usually the most interpretable.

We consider quadratic simplicity measures, that is, measures equal to
v′Λv. We assume throughout that Λ is a nonnegative definite symmetric
matrix and, for interpretability, that Λ is defined so that the simpler the
vector the higher the simplicity score. If this is not the case, that is, if v′Λv is
small when v is simple, we can instead use the simplicity measure v′(λI−Λ)v,
where I is the identity matrix and λ is some number greater than or equal to
the largest eigenvalue of Λ. Examples of quadratic simplicity measures can
be found in smoothing and penalized regression. See, for instance, Eilers and
Marx (1996) or Green and Silverman (1994). In the examples that follow,
we think of the elements of a vector v as evaluations of a function f : v =
(v1, . . . ,vK)′ = (f(t1), . . . , f(tK))′. In these examples, we used a simplicity
measure based on first divided differences:

∑

j

(vj − vj−1)
2

(tj − tj−1)
,

which is a good approximation of
∫
(f ′)2. To transform this to a measure

that is large for simple v’s, we use the result of Schatzman (2002) that∑
(vj − vj−1)

2 ≤ 4
∑

v2j for all v’s. Our simplicity measure is equal to

4v′v−min
j

{tj − tj−1} ×
∑ (vj − vj−1)

2

(tj − tj−1)
,(4.1)

which lies between 0 and 4 inclusive. The simplicity measure (4.1) is just
one of many possible smoothing-based measures. Another good choice might
be the measure used in cubic smoothing spline regression, where a function
f ’s simplicity is defined as

∫
(f ′′)2, with a low value signifying simplicity.

This integral can be approximated using a Rieman sum of second divided
differences, yielding a quadratic form in (f(t1), . . . , f(tn))

′.
The simplicity basis of the subspace V for the simplicity measure associ-

ated with a nonnegative definite symmetric matrix Λ is easy to calculate. Let
v1, . . . , vL be an orthonormal basis of V and let P be the K×L matrix with
kth column equal to vk. So P is a projection matrix onto V . Let α1, . . . , αL be
the eigenvectors of P ′ΛP with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL.
Then it is straightforward to show that {Pα1, . . . , PαL} is a simplicity basis
of V , ordered from most simple to least simple. When the eigenvalues are
distinct, the basis is unique, not dependent on the choice of P . However, if,
for example, λ1 = λ2 > λ3, then the “simplest subspace” of V is the span of
Pα1 and Pα2, and this subspace does not depend on the P that we choose.
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5. Data analysis. For well-designed evolutionary biology studies such as
those presented here, the covariance matrix G is identifiable, estimable and
consistent. Typical methods of estimation are via MANOVA, maximum like-
lihood or restricted maximum likelihood (REML). See, for instance, Searle,
Casella and McCulloch (2006) and Lynch and Walsh (1998). These esti-
mates take into account the dependence in the data caused by individuals’
relatedness.

For each data set, we carry out a principal components analysis of the
estimate of G and, for all possible values of J , we study the model space of
dimension J and the corresponding nearly null space. For our data sets, J
ranges from 0 to 6. The supplementary material for this paper contains all
seven plots of the caterpillar analysis and all seven plots of the jewelweed
analysis. Here, we present just two of the seven plots for each data set.

The details and interpretations of Figures 3 through 6 are in Sections
5.1 and 5.2, but we provide an overview here. Figures 3 and 5 show the
principal component vectors for the two data sets, corresponding to choosing
J = 6, for a six-dimensional model space and a zero-dimensional nearly null
space. These figures are shown so we can contrast insight from a usual PC
analysis with the insight obtained from Figures 4 and 6. Figure 4 shows
the four-dimensional model space and two-dimensional nearly null space for
the caterpillar data. Figure 6 shows the two-dimensional model space and
four-dimensional nearly null space for the jewelweed data.

The six plots in the left sides of Figures 3 through 6 show six orthonormal
basis vectors for ℜ6. The first J , in solid blue lines, are the first J principal
component vectors, labeled with a blue 1 for the first principal component,
a blue 2 for the second principal component, etc. The remaining (6–J) basis
vectors—the dashed red lines which only appear in Figures 4 and 6—form
the simplicity basis for the nearly null space. The simplest basis vector is
labeled with a red 1, the next simplest with a red 2, etc. The simplicity
measure is that in (4.1), with large values of the measure being most sim-
ple. We have arranged the plots of the six basis vectors so that the top row
contains what are arguably the most interesting basis vectors: the eigen-
vector corresponding to the largest eigenvector and the nearly null space’s
simplest vector. Nearly null space vectors are plotted counter-clockwise in
order of simplicity, while eigenvectors are plotted clockwise in order of the
corresponding eigenvalues.

Each of the six basis vectors, when used as a selection gradient, produces
an expected response to selection, as given in equation (2.2). A natural
estimate of the expected response to selection for a selection gradient β is
simply Ĝβ, where Ĝ is the estimate of the genetic covariance matrix. The
captions under Figures 3 through 6 list the six vector norms of Ĝβ, one for
each of the six basis vectors. Note that, if β is a unit-length eigenvector of
Ĝ, then the norm of Ĝβ is simply equal to the associated eigenvalue. The
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Fig. 3. Caterpillar data: PCA basis. The vectors in the left panel are the six principal
components vectors of the estimated genetic covariance matrix. These vectors explain 100%
of the genetic variance, as indicated in the lower right plot. The upper right plot shows
each vector’s simplicity score and the percent of genetic variance it explains. The amounts
of genetic variance explained by vectors 1 through 6 are, respectively, 0.618, 0.200, 0.153,
0.061, 0.008, 0.

norm of Ĝβ is maximal when β is the eigenvector associated with the largest
eigenvalue of Ĝ.

The norms of the expected responses to selection can also be reported as
proportions of genetic variance, simply by reporting each norm divided by
the sum of the norms. These proportions of genetic variance are plotted on
the horizontal axes in the upper right panels of Figures 3 through 6, with
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Fig. 4. Caterpillar data: two-dimensional nearly null space. The structure of the plot is
as in Figure 3 except that the left-hand side shows the PC basis for the four-dimensional
model space (blue) and the simplicity basis for the two-dimensional nearly null space (red
dashed). The simplest nearly null space vector is labeled with a red 1. The amount of
genetic variance explained by the simplest nearly null vector is 0.007 and by the second
simplest 0.001.

simplicity scores on the vertical axes. The numbering and color-coding cor-
respond to the plots on the left. The panel in the lower right shows the total
genetic variance explained by the model space and by the nearly null space.

5.1. Caterpillar data analysis. Kingsolver, Ragland and Shlichta (2004)
estimated genetic variation in short-term growth rates of caterpillars at sev-
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Fig. 5. Jewelweed data for height as a function of time in the sun/high density group:
PCA basis. The structure of the plot is as in Figure 3. The amounts of genetic variance
explained by vectors 1 through 6 are, respectively, 48.98, 0.82, 0.33, 0.08, 0 and 0.

eral temperatures ranging from 11◦C to 40◦C. The type of caterpillar was
Pieris rapae, which develops into the Small Cabbage White Butterfly. The
caterpillars cause extensive damage to crops such as cabbage and broccoli,
so understanding their growth is important for commercial agriculture. The
goal of the study was to quantify patterns of genetic variation in growth rate
across temperatures, and explore how these patterns might affect evolution-
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Fig. 6. Jewelweed data for height as a function of time in the sun/high density group:
four-dimensional nearly null space. The structure of the plot is the same as that of Fig-
ure 4. The amounts of genetic variance explained by simplicity vectors 1 through 4 are,
respectively, 0.02, 0.22, 0.15 and 0.02.

ary responses to selection in changing temperature conditions in nature.
For instance, if there was little genetic variability in growth rates at high
temperatures, rising temperatures could cause extinction of Small Cabbage
White Butterflies. Alternatively, if growth rate at high temperatures is neg-
atively genetically correlated with growth rate at low temperatures, then
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rising temperatures could lead to reductions in growth rate at low temper-
atures.

Caterpillars were reared individually from hatching on artificial diet in di-
urnally fluctuating conditions of temperature (11–35◦C) and light (15 hours
of light, 9 hours of dark) until the start of the developmental stage known
as the 4th larval instar. The studies focused on the 4th instar because more
than 85% of all growth occurs during the 4th and 5th instars; measurements
were concentrated within a single instar to quantify effects of temperature
on larval growth (mass increase) as distinct from development (molting, or
the developmental processes involved in the transitions between instars). See
Kingsolver, Ragland and Shlichta (2004) for details of the measurements and
methods. Briefly, the short-term growth rate of each caterpillar was mea-
sured at six different temperatures between 11◦C and 40◦C (11, 17, 23, 29,
35 and 40◦C), during the first two days of the 4th instar (Figure 2). To re-
flect the natural diurnal cycle typically experienced by caterpillars in nature,
measurements at higher temperatures were done during the day (light phase)
and at lower temperatures during the night (dark phase); growth rate was
calculated as the net change in mass over the measurement period. Because
exposure to 40◦C is potentially stressful and could affect subsequent feed-
ing and growth, measurements at this temperature were done last for each
caterpillar. Measurements of 1088 individuals from 90 independent families
of full siblings were completed. These data were used to estimate the genetic
variance–covariance matrix G for growth rate at the six temperatures, using
the REML software dfreml described by Meyer and Smith (1996).

To study the nearly null space, we define simplicity via (4.1) with tj −
tj−1 = 6 for j = 2, . . . ,5 and t6 − t5 = 5.

Figure 3 shows the principal components decomposition (six-dimensional
model space, 0-dimensional null space) of the matrix G. The first PC, ex-
plaining 59.5% of the variation, is dominated by strong loadings of opposite
sign for growth rate at 35◦C and 40◦C, reflecting the strong negative genetic
covariance between growth at these two temperatures. This first PC has a
low simplicity score. In contrast, the second PC has a much higher simplic-
ity score and reflects loadings of the same sign and similar magnitude for
growth across most temperatures (17–40◦C). Note that the first three PCs,
totaling over 93% of the variation, have small loadings for growth rate at
11◦C, reflecting the low genetic variation at the lowest temperature.

Figures 1 to 7 in the supplementary material [Gaydos et al. (2013a)]
illustrate results for these data for model and null spaces of different dimen-
sionality (from 0 to 6 dimensions). For purposes of discussion we focus on
results for the four-dimensional model space and two-dimensional null space
(Figure 4): here the null space includes less than 1% (0.7%) of the total ge-
netic variance, sufficiently small to strongly constrain rates of evolutionary
responses. The simplest vector in the null space is a contrast between large
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loadings at lower temperatures (11–23◦C) and smaller loadings of opposite
sign at higher temperatures (35–40◦C). We can interpret this direction in
the genetic null space in terms of lack of evolutionary response to selection:
simultaneous selection for increased growth rate at lower temperatures and
for decreased growth rate at high temperatures would result in very little
evolutionary change, because of the lack of genetic variation in this direction.

It is also informative to consider the simplicity decomposition of the G-
matrix, in this case when the null-space is six-dimensional (Supplementary
Figure 7). For example, about 18% of the variance is associated with the
simplest possible direction, for which loadings are equal across all temper-
atures. This direction represents variation in overall growth rate indepen-
dent of temperature [Kingsolver, Gomulkiewicz and Carter (2001), Izem and
Kingsolver (2005)]. Because overall growth rate may be positively related to
fitness in a variety of situations, selection in this direction may occur fre-
quently in nature; the simplicity analysis quantifies the genetic variation and
the predicted evolutionary response to such selection.

5.2. Jewelweed data analysis. In a study of the genetic variability of
height in different environments, Stinchcombe et al. (2010) measured the
heights of individuals of the North American annual plant Impatiens capen-

sis (jewelweed) in ten different greenhouse environments gotten from all
combinations of two light treatments (sun and shade) and five density envi-
ronments ranging from 64 plants per square meter to 1225 plants per square
meter. Individuals’ heights were measured to the nearest millimeter at six
time points: 18, 26, 33, 39, 47 and 57 days.

Here we analyze just one portion of the data: height as a function of
time for plants grown in sun at density 1225 plants per square meter. The
analysis appears in more detail in Gaydos (2008). Our purpose is to study the
genetic variability in growth curves in this environment. Genetic variability
will allow the plants to adapt to a range of conditions, such as sunlight (taller
than average plants are typically favored) or the presence of high winds.

The estimate of G, the genetic covariance matrix, was produced using
SAS PROC MIXED. Although the estimate is called a REML estimate, no
restrictions were placed on the estimate to ensure it would be nonnegative
definite. The resulting estimate of G had two eigenvalues that were negative
but close to 0 (values of −0.21 and −0.55), very small compared to the value
of the largest eigenvalue (value of 183.7). We set the two negative eigenvalues
equal to 0 and calculated our final estimate of G, using the eigen-expansion
based on the remaining four eigenvalues and eigenvectors. Figures 8 through
14 in the supplementary material [Gaydos et al. (2013a)] illustrate our results
for null spaces of dimension 0 through 6.

The first principal component explains 97.5% of the variance and the first
and second principal components explain 99.2% of the variance. Based on the
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interpretability of the first two PCs and the proportion of variance explained,
we recommend using a two-dimensional model space and four-dimensional
nearly null space, displayed in Figure 6. To find the simplicity basis of the
nearly null space, we define simplicity via (4.1) with the tj − tj−1’s equal to
8, 7, 6, 8 and 10, the differences in the time points.

The first principal component (see Figure 5) has a very small loading
on early ages with loadings increasing as the plant ages. Thus, using just
the first principal component, we see that, in a sunny dense environment,
the population will be able to evolve and adapt to a wide range of forces
of selection that act on late-age heights. Such genetic variation would be
important if late season height is under natural selection—for example, if
plants that are larger late in the season are able to acquire more light and
more successfully mature their seeds.

The second principal component indicates that there is some genetic vari-
ability at young ages.

The simplest direction in the nearly null space, labeled with a red 1 in Fig-
ure 6, shows that there is little genetic variation in the contrast of late/early
life heights to mid-life heights. With this lack of genetic variation, the species
will not be able to adapt when the variability of environmental conditions
is in the form of a contrast between early/late season and mid-season. For
instance, if a typical season begins and ends with little sunshine, but has
high winds in mid-season, selection might favor plants that are taller than
average at the beginning and end of the season, but shorter than average
mid-season; that this combination of traits is in the null space, however, sug-
gests that there would be little to no evolutionary response to such seasonal
conditions.

Note the additional insight gained by considering the simplicity basis
over simply considering PC analysis, shown in Figure 5. Interpreting PCs
3 through 6 is much harder than interpreting the simplest element of their
span, that is, the simplest element of the nearly null space. While one might
infer from PCs 1 and 2 that the simplest vector in the nearly null space
is close to a parabola, our more rigorous approach confirms that ad hoc
insight. In addition, the graphical plot in Figure 6 gives equal importance to
the structure of the first few PCs and the structure of the nearly null space.

6. Simulation study. We carried out a simulation study to get insight
about the effects of sampling variation, in particular, how it affects the
shape of the simplest vector and predictions about selection response.

To reduce computational burden, our design and our estimate of the ge-
netic covariance were very simple. We used a balanced design with Nf = 100
independent families and n = 20 half-siblings within each family. We esti-
mated the genetic covariance matrix via the classic ANOVA/method of mo-
ments. See Chapter 18 of Lynch and Walsh (1998). This method leads to a
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closed form estimate of the genetic covariance matrix, but can only be used
in simple designs.

We generated data for individual i of family j according to yij = µ +
gij + eij + εij , where gij , eij and εij were independent normal vectors of
length K = 6, with means equal to the zero vector and with covariance
matrices denoted G, E and σ2I, respectively. We set all parameters equal to
the estimates from the caterpillar study of Kingsolver, Ragland and Shlichta
(2004), as described in Section 5.1.

We simulated 200 data sets and studied three-dimensional nearly null
spaces. Each simulated data set yielded an estimated genetic covariance
matrix with its eigenvalues and eigenvectors, an estimated nearly null space,
the simplest vector in that estimated nearly null space and the expected
response to selection under a selection gradient equal to the simplest vector.

The ANOVA method can lead to a negative definite genetic covariance
matrix estimate. For our estimated 6 by 6 genetic covariance matrices, all
200 had the first five eigenvalues positive but for 170 of the 200, the smallest
eigenvalue was negative. We adjusted these 170 estimates of G by setting the
170 smallest eigenvalues to 0. As the magnitudes of the negative eigenval-
ues were small (the smallest eigenvalue was −0.068), this adjustment had
little impact. Note that resetting the eigenvalues leaves the eigenvectors un-
changed.

Figure 7 provides information from one of the 200 simulated data sets.
The upper left plot shows the simulated data from three of the one hundred
families, color-coded by family. The upper right plot shows four vectors in
the estimated nearly null space: the black line is the simplest vector and the
remaining lines are the fourth, fifth and sixth principal components of the
estimated genetic covariance matrix. The lower left plot shows the expected
response to selection when using the four depicted vectors in the nearly null
space as selection gradients. The expected response to selection is calculated
using the “true genetic covariance matrix,” that is, the genetic covariance
matrix used to generate the simulated data. The magnitudes of the vectors of
expected responses to selection are 0.012 for the simplest vector and 0.067,
0.022 and 0.021 for the three principal components. The largest possible
magnitude of the expected response to selection is the largest eigenvalue of
the true genetic covariance matrix, that is, 0.618.

Figures 8 and 9 contain the results of our simulation study. In Figure 8
the upper left plot shows the 200 simplest vectors in the estimated nearly
null space. The other three plots in that figure show the eigenvectors that
span the estimated nearly null space. The upper right plot contains the
200 “fourth eigenvectors,” that is, those corresponding to the fourth largest
eigenvalues of the estimated genetic covariance matrices. The lower left plot
contains the 200 “fifth eigenvectors” and the lower right plot contains the
200 “sixth eigenvectors.”
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Fig. 7. Results from the first simulated data set. The upper left plot shows data from
three of the 100 families. The upper right plot shows vectors in the estimated nearly null
space (the simplest vector in black and three PCs—PC4, PC5 and PC6). The lower left
plot shows the expected responses to selection when the selection gradient is equal to each
of the vectors in the upper right plot.

In Figure 9, the upper right plot contains the 200 expected responses to
selection calculated using the 200 simplest vectors of Figure 8 as selection
gradients and the “true” genetic covariance matrix. The remaining plots
contain the expected responses to selection calculated using the eigenvectors
shown in Figure 8 as selection gradients.

From Figures 7 to 9, we can see that the simplest vectors in the estimated
nearly null spaces are always interpretable and send the same clear message.
In contrast, the fourth principal components (the “dominant” component in
the estimated nearly null spaces) are difficult to interpret, as we expected.
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Fig. 8. Simulation results from 200 data sets: the 200 simplest vectors in the estimated
three-dimensional nearly null space and the eigenvectors corresponding to the three smallest
eigenvalues of the estimated genetic covariance matrix along with the true eigenvectors
(remaining three plots). In each plot, a true vector appears as a dark thick line. Recall that
an eigenvector or simplicity vector is only defined up to a multiple of +/−1. Multipliers
have been chosen so that the vectors in the above plots are similar.

The simplest vectors vary little from data set to data set and, when used as
selection gradients, the simplest vectors yield expected responses to selection
that are close to 0, with little variability (mean length of the response vectors
is 0.032 with standard deviation 0.001). In contrast, when the fourth eigen-
vector is the selection gradient, the magnitudes of the expected response
vectors are larger and more variable, with mean length 0.091 and standard
deviation 0.007.

7. Theory. The asymptotic consistency of our method follows directly
from consistency of the estimated genetic covariance matrix. Under condi-
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Fig. 9. Simulation results from 200 data sets: expected response to selection from the
simplest vector in the estimated nearly null space and the three PCs in the estimated
nearly null space.

tions, the REML estimate Ĝ is asymptotically equivalent to the maximum
likelihood estimate, which converges in probability to G, the true genetic co-
variance matrix [Demidenko (2004), page 181]. In this case, the eigenvalues

of Ĝ converge to those of G, since eigenvalues are defined as solutions of the
characteristic polynomial, and the coefficients of the characteristic polyno-
mial of Ĝ converge to those of G. Thus, for many common methods of esti-
mating the dimension J of the model space, the dimension of the estimated
model space converges to J , with, possibly, the requirement that λJ > λJ+1.
For instance, the convergence of estimated eigenvalues implies that the pro-
portion of variance explained by the first J eigenvectors of Ĝ will converge
to the proportion of variance explained by the first J eigenvectors of G.
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Showing convergence of estimated eigenspaces requires more care due to
the complication of defining distances between subspaces and due to the
possibility of multiplicity of the roots of the characteristic polynomial and
the resulting nonuniqueness of eigenvectors. See Gaydos (2008), who shows
that, under conditions, the nearly null space of the usual sample covariance
matrix converges to that of the true covariance matrix. To define conver-
gence, Gaydos defines the squared distance between two subspaces as the
sum of the squared sines of the canonical angles between the two subspaces.
See Stewart and Sun (1990) for a discussion of canonical angles.

8. Discussion. We have proposed simplicity measures and developed ac-
companying graphical tools to explore and visualize directions of low vari-
ability in vector-valued traits. The techniques allow us to more directly study
the space spanned by the lowest variance PCs. When examined individually,
these PCs typically have little structure. Considering them jointly as a sub-
space allows us to find the simplest structure within that subspace. Our
graphical tools allow us to consider subspaces of different dimensions, easily
seeing the simplicity and variance explained by the subspace and individual
vectors.

Here, we have studied the nearly null space by defining a simplicity basis
with the simplicity of a vector v of the form v′Λv, and we have analyzed
data with the simplicity of v defined in terms of first divided differences of
the components of v. Instead of using such a smoothing-based simplicity
measure, one could consider a sparseness measure, deeming a vector to be
simple if it has many zero components. In a modification of principal compo-
nents, Chipman and Gu (2005) define sparseness of a vector in terms of the
number of its nonzero components. Another sparseness measure, used in the
varimax method of factor rotation in factor analysis [Johnson and Wichern
(2008)], defines a quadratic measure of sparseness of the vector v, namely,∑

(vi − v̄)2, with large values indicating greater simplicity. An L1 measure
of sparseness, namely,

∑
|vi|, is used in the Lasso technique for regression

[Tibshirani (1996)], with small values indicating greater simplicity.
Our methodology can, in principle, be extended to function-valued traits.

Genetic constraints can be defined for function-valued traits via the work
of Kirkpatrick and Heckman (1989), Gomulkiewicz and Beder (1996) and
Beder and Gomulkiewicz (1998), who showed the validity of the Breeder’s
equation in (2.1) and (2.2) when the phenotype is a function. The advan-
tages of functional data analysis techniques over multivariate techniques are
well known in the statistical literature. For instance, functional data anal-
ysis does not require that individuals be measured at the same time points
or even at the same number of times. Furthermore, functional data analysis
uses the smoothness underlying the data to avoid high-dimensional analy-
sis problems caused by a large number of observations per individual. The
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advantages of functional data analysis are only just catching hold in the
biological literature. See, for instance, Gomulkiewicz and Kingsolver (2006)
and Griswold, Gomulkiewicz and Heckman (2008).

Defining a simplicity basis for the nearly null space is especially useful in
the analysis of functional data. To see this, suppose that the genetic compo-
nent g is a continuous time random process. Then, under conditions, we can
write g in terms of its Karhunen–Loéve expansion: g(t) =

∑
∞

1 αjφj(t), where
the φj ’s are orthonormal functions and the αj ’s are independent with mean
zero and variances λ1 ≥ λ2 ≥ · · · . See, for instance, Loève (1978) or Adler
and Taylor (2007). If our model for g allows a countably infinite number
of these variances to be positive, then the true model space for g is infinite
dimensional. However, since any particular data set is finite dimensional,
estimates of g always lie in a finite-dimensional space. Hence, the estimated
model space is finite dimensional and its orthogonal complement is infinite
dimensional. A natural way to study this infinite-dimensional subspace is
by finding its simplest directions and seeing if these directions have any
interpretable structure.

Studying the structure of low variance subspaces can provide biologists
with insights into the existence of genetic constraints. But the notion of a
simplicity basis and the associated visualization tools may be useful in other
contexts, in particular, in providing modeling tools in the analysis of smooth
high-dimensional data.

SUPPLEMENTARY MATERIAL

Supplement A: Supplementary plots

(DOI: 10.1214/12-AOAS603SUPPA; .pdf). As previously noted, supplemen-
tary material [Gaydos et al. (2013a)] contains a complete set of plots from
our data analyses, as in Figures 3 through 6.

Supplement B: Nearly null space example

(DOI: 10.1214/12-AOAS603SUPPB; .pdf). An additional supplementary file
[Gaydos et al. (2013b)] contains a simple example that shows the benefits
of the proposed methodology.
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