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Relativistic Winds from Compact Gamma-ray Sources:

I. Radiative Acceleration in the Klein-Nishina Regime

Piero Madau1,2 and Christopher Thompson3

ABSTRACT

We consider the radiative acceleration to relativistic bulk velocities of a cold, optically

thin plasma which is exposed to an external source of γ-rays. The flow is driven by

radiative momentum input to the gas, the accelerating force being due to Compton

scattering in the relativistic Klein-Nishina limit. The bulk Lorentz factor of the plasma,

Γ, derived as a function of distance from the radiating source, is compared with the

corresponding result in the Thomson limit. Depending on the geometry and spectrum

of the radiation field, we find that particles are accelerated to the asymptotic Lorentz

factor at infinity much more rapidly in the relativistic regime; and the radiation drag

is reduced as blueshifted, aberrated photons experience a decreased relativistic cross

section and scatter preferentially in the forward direction. The random energy imparted

to the plasma by γ-rays can be converted into bulk motion if the hot particles execute

many Larmor orbits before cooling. This ‘Compton afterburn’ may be a supplementary

source of momentum if energetic leptons are injected by pair creation, but can be

neglected in the case of pure Klein-Nishina scattering. Compton drag by side-scattered

radiation is shown to be more important in limiting the bulk Lorentz factor than the

finite inertia of the accelerating medium. The processes discussed here may be relevant

to a variety of astrophysical situations where luminous compact sources of hard X-

and γ-ray photons are observed, including active galactic nuclei, galactic black hole

candidates, and gamma-ray bursts.

Subject headings: gamma-rays: bursts – theory – radiation mechanisms

1. Introduction

The ejection of particles by radiation pressure has been considered many times as a possible

mechanism for producing relativistic outflows from very luminous radiation sources, such as active

galactic nuclei (AGNs) or galactic compact objects. In the case of an optically thin plasma, the
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particle dynamics is dominated by the intense photon field and a flow results from the work done

by the radiation force on the material.

In most previous studies it was assumed that the particles scatter photons with a cross section

independent of frequency and front-to-back symmetric along the incident photon direction, such

as true in the Thomson limit (Noerdlinger 1974; O’Dell 1981; Phinney 1982; Kovner 1984). Direct

momentum input to the fluid at rest results when outward-directed photons are removed from

the anisotropic radiation field, and then scattered away. No net momentum is carried off by the

scattered photons and the material is accelerated radially. A particle moving outward near the

source, however, encounters many photons nearly at right angles to its motion, more so as v → c

because of aberration effects, and suffers collisional drag by them. Only mildly relativistic flows

can be produced by an Eddington-limited extended source, the radiation drag actually preventing

acceleration to very high particle energies (Noerdlinger 1974). In the context of AGNs, the role

of Compton drag in the dynamics of relativistic jets has been the subject of many studies (e.g.

Abramowicz & Piran 1980; Sikora & Wilson 1981; Phinney 1987; Melia & Königl 1989; Sikora et

al. 1996).

In the past few years, the Compton Gamma-Ray Observatory mission has revealed the existence

of some classes of objects, such as the EGRET (Fichtel et al. 1994), OSSE (McNaron-Brown et

al. 1995), and COMPTEL (Bloemen et al. 1995) blazars, together with some γ-ray pulsars (Ulmer

1994), where the hard X-ray and γ-ray fluxes are a significant fraction or completely dominate

the overall radiation energy budget. This is similar to what sometimes observed by the SIGMA

experiment onboard of Granat in the case of galactic black hole candidates (Mandrou et al. 1994).

The large compactnesses inferred from these data naturally lead to theoretical models in which

Compton scattering in the Klein-Nishina (KN) limit (as opposed to Thomson scattering), together

with photon-photon pair production may play a role in determining the thermal state and dynamics

of the source. Such process may also be relevant for studies of the effects of gamma-ray bursts on

their gaseous environment (their “afterglows”).

In this paper we study the dynamics of a cold plasma embedded in the “hard” photon field of an

external source. We adopt a test-particle approach, which is valid only insofar gas pressure gradients

can be neglected compared to the radiative force and the material is optically thin. We consider the

model problem of a fully ionized plasma where gravity is overwhelmed by radiation pressure and the

distribution of particle momenta remains one-dimensional. We ignore stimulated scattering, photon

absorption, and photon-electron pair production. Free-free absorption is unimportant compared

to Thomson scattering if σff = 8 × 10−47ne (hν/10
−3mec

2)−7/2 cm2 < σT (hν ≫ kT ), where ne

is the electron density. Photo-electron pair production, γe− → e+e−e− (threshold hν ′ > 4mec
2,

where hν ′ is the photon energy in the electron rest-frame) is a higher order process in the fine-

structure constant, important only at large energies. (The pair production cross section is ∼ 30%

of the KN scattering cross section at hν ′ = 100mec
2, e.g. Svensson 1982.) In an accompanying

paper (Thompson & Madau 1999, hereafter Paper II) we show, however, how pair creation induced

by collisions between hard photons and soft side-scattered photon may increase the acceleration
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rate by decreasing the inertia per particle, and by increasing the mean momentum deposited per

scattering.

The plan of this paper is as follows. In § 2 we discuss the basic theory of radiative acceleration.

In § 3 we present sample solutions for extended and impulsive radiation sources in the Thomson

regime. Compton drag by side-scattered radiation is shown to be more effective in limiting the

bulk motion than is the finite inertia of the accelerating medium. The random energy imparted to

the plasma by γ-rays can be converted into bulk motion if the hot particles execute many Larmor

orbits before cooling. The equation of motion in the KN limit is derived and numerically integrated

in § 4 for a monoenergetic spectrum, under the assumption that the outflowing particles maintain a

one-dimensional distribution of momenta, i.e. that the plasma remains ‘cold’ even in the presence

of recoil. Blumenthal (1974) used the KN cross section to calculate the mean force due to Compton

scattering on electrons with arbitrary velocity. An approximate solution to the problem of the

radiative deceleration of a relativistic jet in the KN regime has been recently given by Luo &

Protheroe (1999).

2. General formalism

Consider an optically thin plasma exposed to a photon source. The incident and scattered

photon momenta (in units of mec) are denoted by xk and xsks in the (unprimed) lab frame. Let

Ix(k) be the specific intensity of the incident radiation in the direction k, I(k) =
∫
Ix(k)dx. In the

simplest case of a leptonic plasma composed entirely of electrons and positrons, the bulk momentum

is obtained directly from the normalized phase-space density f(p),

〈Γβ〉 =

∫
p

mec
f(p)d3p. (1)

Here, Γ = (1−β2)−1/2 as usual. This equation is easily generalized to include a hadronic component.

The mean rate of momentum transfer per particle is then given by

Frad = µc
d

dt
〈Γβ〉 = −

σT
c

∫ [
xsks − xk

x
(1− β · k)Ix(k)dxdσdΩ

]
f(p)d3p. (2)

Here, µ is the mean mass per scattering charge, the angular integral is over the solid angle subtended

by the source, and dσ is the invariant differential cross section.

When the number of scattering charges is dominated by pairs, we have assumed implicitly a

magnetic field strong enough to couple the pairs with the hadronic component of the plasma. The

minimum flux density needed to enforce that coupling is estimated in §3.5. One must then describe

the accelerating particles as a fluid, with

dΓβ

dt
→

∂Γβ

∂t
+ cβ · ∇(Γβ). (3)
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In a cold plasma composed of hydrogen (of density np) and e± pairs (of density ne+),

µ ≈ me +mp

(
1 + 2

ne+

np

)−1

. (4)

This expression neglects the inertia of the neutralizing electron component, but not of the pairs.

The Klein-Nishina cross section for scattering of unpolarized radiation is most simply expressed

in the (primed) electron rest-frame as

dσ =
3

16π
σT

(
x′s
x′

)2 [ x′

x′s
+

x′s
x′

− sin2 χ′
]
sinχ′dχ′dφ′, (5)

e.g. Rybicki & Lightman (1979). The energy of the scattered photon is

x′s =
x′

1 + x′(1− cosχ′)
; (6)

in this notation, the scattering takes place through a polar angle χ′ and an azimuthal angle φ′.

Measuring the angles θ and θs of the incident and scattered photon with respect to the electron

velocity β, we can write the following kinematic relations

xs = x′sΓ(1 + β cos θ′s)

x = x′Γ(1 + β cos θ′)

cos θ′ =
(cos θ − β)

(1− β cos θ)
(7)

cos θ′s = cos θ′ cosχ′ + sin θ′ sinχ′ cosφ′.

Since the scattering cross section is independent of the azimuth φ′, we must integrate equation

(2) over two angles, χ′ and θ′. The evaluation of the integral in equation (2) will be made by

assuming that the radiation field is symmetric around the r-axis, and the electrons (and positrons)

will maintain a one-dimensional distribution of momenta along r, f(pn) = f(p)δ(n − r̂). Note

that multiple scatterings can be safely neglected, as the singly scattered photons are beamed into

a cone of half-angle ∼ 1/Γ along the electron direction of motion. Further scatterings are therefore

suppressed by the (1 − β · k) ∼ (2Γ2)−1 factor in the momentum transfer equation. Single side-

scattered photons will, however, be absorbed via γ + γ → e+e− if the compactness of the γ-ray

source is high at x ∼> 1. We defer a detailed discussion of the effects of pair creation to Paper II.

3. Thomson scattering

To provide some physical insight and a framework to interpret our numerical results in the

relativistic limit, we shall first discuss the acceleration of a test charge in the Thomson scattering

approximation, x′ ≪ 1. In this regime, x′s ≈ x′ by equation (6). Thus, in the electron rest-frame,
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photons of unchanged energies are scattered into an angular distribution that is forward-backward

symmetric along the incident photon direction.

A particle accelerated by an external photon source will, in general, follow a curved trajectory.

The problem simplifies when the source is cylindrically symmetric. From equation (2), a parcel of

matter moving along the axis of symmetry with speed β = c−1dr/dt is accelerated at the rate

d〈Γβ〉

dt
=

σTΓ
2

µc2

[
(1− β)2

∫
I(θ) cos θdΩ− β

∫
I(θ)(1− cos θ)2dΩ

]
. (8)

The first term in brackets represents the collimated flux of redshifted photons which accelerate

particles radially, while the second term represents the dragging effect of the isotropic component

of the radiation field.4 The right-hand side of equation (8) vanishes for Γ = Γeq. Particles are

accelerated away from the source as long as Γ < Γeq. If Γ > Γeq, the force reverses, being now

directed inward. This saturation of the Lorentz factor is due to the aberration into the forward

hemisphere of blueshifted photons, as seen in the electron rest-frame. A particle will follow the

Γ = Γeq equilibrium trajectory (zero-inertia limit) until, as it gets farther from the source, its

acceleration is effectively limited by the large Doppler shift to the red and by the r−2 decline of

the radiation flux.

3.1. Uniformly radiating sphere

Consider a sphere of radius R and uniform brightness I. Close to the extended source, the

equilibrium Lorentz factor is

Γeq ∼ 31/4
r

R
, (9)

no matter how high the intensity I, or whether the inertia is dominated by hadrons or leptons. In

the point-source limit (R → 0) the photons stream radially. For a steady flow, equation (8) reduces

to
dΓ

dr
= Γ2(1− β)2ℓ̃

R

r2
. (10)

The parameter ℓ̃ is the dimensionless compactness, rescaled by the inertia per scattering charge,

ℓ̃ ≡ ℓ(me/µ) = LσT /(4πµc
3R). It may be expressed as ℓ̃ = 0.5(mp/µ)(L/LE)(RS/R) for a source

of mass M , where LE = 4πcGMmp/σT is the Eddington luminosity and RS = 2GM/c2 the

Schwarzschild radius. For a motion starting at radius r, the Lorentz factor attained at infinity can

be obtained by solving the algebraic equation

2Γ3
ps(1 + β3)− 3Γps + 1 = 3ℓ̃

R

r
, (11)

4This term vanishes in the case of a point-like source, I(k) = F (r)δ(k − r), where F (r) is the radiative flux at

radius r.
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which, in the limit Γps ≫ 1, yields Γps ∼ [3ℓ̃R/(4r)]1/3 = [3LmpRS/(8LEµr)]
1/3. Effective accel-

eration of an e−p plasma requires a compactness that is larger by a factor mp/me than for a pure

pair plasma, as a conseguence of the greater inertia per unit cross section.

Matching this solution with expression (9) yields the asymptotic bulk Lorentz factor Γ∞ ∼ ℓ̃1/4

(Noerdlinger 1974). The cross-over radius beyond which the non-radial component of the radiation

field causes negligible drag is rc ∼ 0.8ℓ̃1/4R. Larger values of Γ∞ can only be obtained if the particles

are injected with relativistic bulk velocities at r > rc. Bulk motion starting with Γ(r) ≫ Γeq(r) at

a distance r < rc from the source is quickly decelerated to Γ ≈ Γeq, and the excess kinetic energy

converted into a collimated beam of upscattered photons.

3.2. Non-uniformly radiating disk

Infinite, Keplerian accretion disks around black holes provide an example of non-uniform ra-

diating sources where Compton drag is most severe. The surface flux distribution as a function of

equatorial radius R is given by (Shakura and Sunyaev 1973)

F (R) =
3GMṀ

8πR3

[
1− (3RS/R)1/2

]
, (12)

where M is now the black hole mass, and Ṁ is the accretion rate. The peak flux, Fmax = 3GMṀ/

(56πR3
max), is reached at Rmax = (49/12)RS . One can understand the essential features of the

accretion disk model by approximating the flux distribution as

F (R) =

{
FmaxR

3
max/R

3 if R ≥ Rmax,

0 if R < Rmax.
(13)

In this case the equilibrium Lorentz factor increases only as Γeq ∼ (r/Rmax)
1/4 (compared to a linear

increase for a spherical source). In the point-source limit, one derives Γps ∼ (0.75ℓ̃Rmax/r)
1/3, where

ℓ̃ is now the nominal disk compactness, ℓ̃ = 3GMṀσT / (28πµc3R2
max). Again, by matching the

two limiting solutions, the asymptotic bulk Lorentz factor is found to scale as Γ∞ ∼ ℓ̃1/7 (Kovner

1984; Phinney 1987). The exact solutions for a spherical uniform source and a Keplerian accretion

disk are shown in Figure 1. The latter is a much less efficient accelerator than the former because

of the large photon drag associated with a radiation source extending to infinity.

3.3. Compression of the accelerating medium

The radiative force acting on an external medium induces a flow that is strongly time-dependent.

One important effect of acceleration to bulk Lorentz factor Γ is the bunching of the accelerated

material into a shell of thickness ∆r ∼ r/Γ2. Let us now solve for the density of the accelerated
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material. The equation of continuity of the hadronic component is

d(Γn′
p)

dt
+ Γn′

pc
∂β

∂r
= 0. (14)

Material initially at radius r0 reaches a radius

r = r0 + c

∫ t

r0/c
β(t′)dt′ = r0 + c

∫ β

0
β′ dβ′

f(β′)
, (15)

at time t (speed β). Here, dβ/dt = f(β). The total duration of the acceleration is

t−
r0
c

=

∫ β

0

dβ′

f(β′)
. (16)

Eliminating r0 from these two equations and taking ∂/∂r at constant time t, one derives ∂β/∂r =

f(β)/c(1 − β), and we have
1

Γn′
p

d

dt
(Γn′

p) =
1

1− β

dβ

dt
. (17)

This integrates to
Γn′

p

np 0
=

1

1− β
∼ 2Γ2 (Γ ≫ 1), (18)

where np 0 is the proton density in the undisturbed ambient medium.

There is a corresponding amplification of the non-radial component of a magnetic field en-

trained in the flow,
B

B0

=
Γn′

p

np0
=

1

1− β
. (19)

3.4. Thin photon shell

Gamma-ray sources such as blazars and gamma-ray bursts are impulsive. It is instructive,

therefore, to consider a photon source that maintains a constant luminosity for a time ∆t ≪ r/c.

This source can be visualized as a uniform shell of radius r = ct, thickness c∆t, and total flux

F =
∫
Fxdx. We focus here on the effects of a radiation pulse and take the photons to move

radially before scattering.

The compactness within the shell can be expressed directly in terms of the flux of γ-rays,

ℓ

(
R

r

)
→ rσT

F

mec3
, (20)

and thence in terms of a characteristic photon optical depth,5

τc ≡ σT∆t
F

mec2
, (21)

5This quantity is in fact the optical depth σTnγ(xbr)c∆t multiplied by the frequency xbr at which the spectrum

peaks.
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such that ℓ(R/r) → τc(r/c∆t). Material overtaken by the photon shell at radius r, and accelerated

from rest, develops a large bulk Lorentz factor when τc(me/µ) ≫ 1. Integrating equation (10) in

this limit yields

Γ3 =
3

4
ℓ̃
R∆r

r2
=

3

4
τc

(
me

µ

) (
∆r

c∆t

)
(22)

at a radius r + ∆r. As the difference between the particle speed and the speed of light decreases

as (∆r)−2/3, the accelerated matter will surf the photon shell over an extended range of radius,

∆r = 2
3
Γ2c∆t. The maximum Lorentz factor is therefore

Γmax =
τc
2

(
me

µ

)
(23)

when the shell is thin enough that the acceleration length is much less than the radius, 2
3
Γ2
maxc∆t ≪

r (see Figure 2). Only a limited amount of material can be accelerated to this value. Equating the

kinetic energy within a volume (4π/3)r3 with the energy of the photon shell implies a very high

pre-existing optical depth to Compton scattering, τT = σTρr/mp ∼ 6. Since our calculation of

Γmax is valid only for small τT , the ambient density at radius r is bounded above by

ρ <
µ

σT r
= 2× 10−9

(
τc
300

)−2 ( ∆t

10 s

)−1
(

µ

mp

)3 (
3r

2Γ2
maxc∆t

)−1

g cm−3. (24)

Note the strong dependence on µ. We will show is Paper II that, even if the ambient medium

is composed of a hadronic plasma initially (as is expected in most cosmological gamma-ray burst

models), the mean mass per scattering charge will be rapidly reduced to µ ∼ me by pair creation.

Sidescattered photons will provide additional drag that reduces Γ below the value given in

equation (23). As the photon shell propagates ahead of an accelerating parcel of matter, it generates

an isotropic radiation field of photon density

niso
γ

nγ
∼ nsσT

r2

ℓ̃R
, (25)

where ns ≡ np + 2ne+ is the density of scattering charges in the ambient medium at rest, and

r2/ℓ̃R is the lengthscale over which isotropic scattering occurs (before the scattering medium gets

accelerated to relativistic velocities). The net effect is to introduce a second, negative term into

equation (10), which becomes

dΓ

dr
=

(
1

4Γ2
−

4

3
Γ2nsσT

r2

ℓ̃R

)
ℓ̃R

r2
(26)

at large Γ. Acceleration up to Lorentz factor Γmax is then possible only if the ambient density is

lower than

ρ <
3τc

16Γ4
max

me

σT c∆t
. (27)

This bound is stronger by a factor ∼ Γ−1 than equation (24): in the Thomson scattering regime,

the bulk Lorentz factor is actually limited by side-scattered radiation. This conclusion changes when
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the photon source is very hard, because side-scattered photons are immediately consumed by pair

creation (Paper II). A compact source of γ-rays always tends, in this sense, to maintain a radial

photon distribution.

3.5. Compton afterburn

It is well known that a hot (relativistic) plasma in an anisotropic radiation field feels a much

larger radiation pressure than a cold (non-relativistic) gas of the same inertial mass (O’Dell 1981),

and tends to drive itself away from the radiation source with momentum derived largely from

the anisotropic loss of its own internal energy. This “Compton rocket” is, however, ineffective at

generating bulk relativistic motion from internal random kinetic energy, as it is always accompanied

by catastrophic Compton cooling (Phinney 1982). Nonetheless, by integrating the momentum

equation in the limiting case of a cold plasma we are actually underestimating its bulk Lorentz

factor: the gas will be continuously heated by the hard radiation field itself, hot particles will

radiate most of their energy in the direction of the radiation source, and part of the energy of

relativistic random motion will be converted into bulk motion. We term this supplementary source

of momentum the ‘Compton afterburn’. The afterburn can be largely neglected in the case of

pure KN scattering without pair creation (§ 4.1). (In Paper II we will consider a situation in

which relativistic e+e− pairs are injected into an anisotropic photon beam by collisions between

side-scattered photons and the main beam – thereby inducing a net force on the plasma as they

Compton cool.) Nonetheless, we discuss it here for completeness.

The afterburn is strongest when the radiative force on the relativistic, cooling particles is cou-

pled to the rest of the fluid through a background magnetic field. Above a critical flux density which

we estimate, this allows the colder particles to dominate the inertia of the flow, and the momentum

gained by Compton scattering to be more effectively absorbed rather than being radiated away.

The afterburn is easiest to analyze when the period of a cyclotron orbit is much shorter than the

Compton cooling time. Then the linear momentum imparted to one charge is effectively shared

with the others before the charge loses its excess energy in the bulk frame. We also assume that

the acceleration time is long compared with the Compton cooling time, so that the proportion of

energetic particles is small. This is the case when the energetic charges are continually regenerated,

e.g., by pair creation. Finally, we assume that the magnetic field is non-radial (as is appropriate to

the rest frame of a plasma that has been accelerated to relativistic speed). We divide the velocity

of the charge into components βe⊥ and βe ‖ perpendicular and parallel to B, and denote by η the

angle between the cyclotron motion and the radial direction.

The charge is immersed in a collimated photon beam of energy flux

FΓ =
1

2Γ2
F =

1

2Γ2

∫
Fxdx (Γ ≫ 1) (28)
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in the boosted frame of the bulk flow. It feels a radial force (O’Dell 1981)

d

dt

(
pr
mec

)
=

σTFΓ

mec2
(1− βe⊥ cos η)

[
γ2e (1− βe⊥ cos η)(−βe⊥ cos η) + 1

]
. (29)

The net radial momentum imparted to the cooling charge is obtained by averaging over a cyclotron

orbit, η → η + 2π, 〈
d

dt

(
pr
mec

)〉
=

σTFΓ

mec2

(
γ2eβ

2
e⊥ + 1

)
. (30)

At the same time, the net energy lost to Compton cooling is

〈
dγe
dt

〉
= −

σTFΓ

mec2
γ2e

(
1

2
β2
e⊥ + β2

e

)
. (31)

When the energetic charges are created with βe ‖ = 0 (e.g., pair creation between a hard radial

photon and a soft side-scattered photon), the cooling rate is dγe/dt = −(3σTFΓ/2mec
2) γ2eβ

2
e and

the radial momentum gained as the particle cools is

d(pr/mec)

dγe
= −

2γ2e
3(γ2e − 1)

. (32)

To leading order in γe,
pr
mec

≃
2

3
γe. (33)

In this case, the source of energy for the charge is external to the accelerating medium. The charge

carries an excess lab-frame momentum (2Γ)γemec, which is supplemented by (33) to yield a total
5
3
(2Γ)γemec (in the limit γe ≫ 1).

These expressions change slightly when the energetic charges are distributed isotropically, and

reduce to those found by O’Dell (1981). The rate of Compton cooling is dγe/dt = −(4σTFΓ/3mec
2)

γ2eβ
2
e , as usual, and

d(pr/mec)

dγe
= −

γ2e +
1
2

2(γ2e − 1)
. (34)

The net radial momentum acquired is
pr
mec

≃
1

2
γe, (35)

only 3/10 of the value obtained for charges that are created moving parallel to the photon beam.

These calculations assume that a high energy particle will execute many cyclotron orbits before

Compton cooling. Let us check when this assumption is valid. The rest frame magnetic flux density

is related to the initial (non-radial) field before acceleration by

B′ =
B0

Γ(1− β)
≃ 2ΓB0 (36)
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(eq. 19). Each fresh (radially-moving) particle has a rest-frame energy γemec
2 ≃ E/2Γ, and so it

takes a time

t′cyc =
γemec

eB′
≃

1

4Γ2

E

eB0c
(37)

to complete one radian of a Larmor orbit. The Compton cooling time is

t′cool =
2mec

2

3γeσTFΓ

. (38)

The energy flux in a thin photon shell is related to the characteristic optical depth τc (eq. 21)

through σTF/mec
2 = τc/∆t, and so the ratio of these two timescales is

t′cyc
t′cool

∼
3

32Γ5
τc

(
E

mec2

)2 ( mec

eB0∆t

)
= 2× 10−4 τc

Γ5

(
E

mec2

)2 ( B0

3× 10−6 G

)−1 ( ∆t

10 s

)−1

. (39)

The compression of the accelerating medium has a related consequence: the mean energy

〈γe〉 of the scattering charges in the bulk frame increases due to adiabatic heating, at a rate

〈γe〉
−1(d〈γe〉/dt) = 1

3
n′−1(dn′/dt) = 1

3
Γ−1(dΓ/dt) in the lab frame. A balance between compres-

sional heating and Compton cooling results in an equilibrium energy 〈γe〉 that is only mildly rela-

tivistic. As a result, we will assume that the heating process has isotropized the momenta of the

pairs in the bulk frame:
1

〈γe〉

d〈γe〉

dt
=

1

3Γ

dΓ

dt
−

4

3

〈γe〉

t0cool
. (40)

The reference (lab-frame) cooling time is t0cool = mec
2/σTΓFΓ ≃ (Γxbr/2τc)∆t. The acceleration

rate is decreased by a factor ∼ 〈γe〉
−1 from the value calculated above for a cold plasma:

taccel =
Γ

dΓ/dt
≃ 〈γe〉 t

0
accel. (41)

¿From equation (10), we have
t0cool
t0accel

=
1

2Γ2

me

µ
(42)

at Γ ≫ 1. Even in the case of a pair-loaded plasma (µ ≃ me), one sees that energetic particles cool

faster than the bulk flow accelerates. The same conclusion holds for scattering in the Klein-Nishina

regime (§ 4), but not when pair creation drives the acceleration (Paper II).

4. Klein-Nishina regime: monoenergetic spectrum

When x′ ∼> 1 recoil can no longer be neglected. In the general case, the integral over the

scattering angle χ′ of the Compton force on particles moving along the r-axis,

d

dt
〈Γβ〉 = −

1

µc2

∫
xs cos θs − x cos θ

x
(1− β cos θ)IxdxdσdΩ, (43)
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can be performed analitically by making the variable change χ′ → x′s, and integrating the resulting

polynomial in x′s. The mean rate of momentum transfer can then be written as

d

dt
〈Γβ〉 =

σT
µc2

∫
(1− β cos θ)K(x′)

[
cos θ +

Γ(cos θ − β)

x(1− β cos θ)

]
IxdxdΩ, (44)

where K(x′) ≡
∫
x′s(1− cosχ′)dσ/σT can be evaluated in closed form,

K(x′) =
3

4x′2

[
x′2 − 2x′ − 3

2x′
ln(1 + 2x′) +

−10x′4 + 51x′3 + 93x′2 + 51x′ + 9

3(1 + 2x′)3

]
(45)

(cf. Blumenthal 1974). This function has limiting behavior

K(x′) ≈
3

8x′
[ln(2x′)− 5/6 + ....] (46)

for x′ ≫ 1, and

K(x′) ≈ x′(1− 21x′/5 + .....) (47)

for x′ ≪ 1. The first term in the last expansion, when substituted back into equation (44) in the

limit x′ ≪ 1, reproduces the standard Thomson results of equation (8) (for µ = me).
6

Figure 3 shows the integrand function in equation (44), P ≡ (1−β cos θ)K(x′){cos θ+Γ(cos θ−

β)/[x(1−β cos θ)]}, versus incident photon angle for different photon energies and particle valocities.

The aberration effect of outward-directed photons into the forward hemisphere (as observed in the

electron rest-frame) is clearly seen, together with the reduced radiative force as γ-ray photons are

preferentially scattered in the forward direction. In the Thomson limit, photons at angles cos θ < β

with respect to the direction of motion are seen in the rest-frame of the electron as blueshifted and

inward directed, and work to decelerate the flow (P < 0). The same criterion does not apply in

Klein-Nishina, as blueshifted, aberrated photons experience a decreased relativistic cross section

and are scattered less efficiently. When β = 0.8, for example, the rate of momentum transfer

becomes negative at angles cos θ < 0.71, 0.35, and 0.13 for photons with energy x = 0.5, 3, and 10,

respectively.

The complexity of the KN cross section foils analytic calculations of the particle trajectories.

We have numerically integrated equation (44) with the Runge-Kutta method assuming a monoen-

ergetic photon spectrum. The equilibrium Lorentz factor as a function of distance from a radiating

6The force on a e−p plasma at rest relative to a point-source of mass M and monoenergetic flux F (r) is, from

equation (44), d〈Γβ〉/dt = (σT /mpc
2)F (r)K(x)(1+x)/x. The Eddington luminosity for which this force just balances

the gravitational attraction at all radii r is then given by

LE =
4πcGMmp

σT

[
x

K(x)(1 + x)

]
,

where the term in parenthesis (equal to 2.4, 5.9, and 11.8 for x = 0.5, 3, and 10, respectively) is the relativistic

correction factor to the classical expression in the Thomson limit (Blumenthal 1974).
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sphere and a disk is shown in Figure 4 for different energies of the incoming photons. While in

the Thomson limit the radiation drag imposes a linear relation between Γeq and distance r from a

spherical source, in Klein-Nishina the importance of this braking force is reduced: the zero-inertia

limit is reached then at higher particle velocities. The net momentum transfer in each interaction

with a γ-ray photon is significantly lower, however, and it is actually more difficult (i.e. larger com-

pactnesses are needed) for an electron to approach the zero-inertia limit (Figure 4). In Figure 5 the

asymptotic Lorentz factor at infinity is depicted as a function of source compactness for different

incoming photon energies. A comparison with the Thomson limit shows that γ-ray photons with

x = 10 (say) are significantly more efficient at accelerating particles only for compactness ℓ̃ ∼> 200,

and more so in the extended disk case (i.e. when the isotropic radiation field is larger) than for a

spherical source. In the general case, the detailed dynamics of an the plasma will depend on the

energy spectrum of the incoming radiation (Paper II).

The KN reduction of the photon drag can be easily quantified in the extreme case of a jet

moving with relativistic speed towards a point-source of γ-rays. From equation (44) we derive

d

dt
〈Γβ〉 = −

σTF (r)

µc2
(1 + β2)Γ2

[
K(x′)

Γ2(1 + β)

(
1 +

Γ

x

)]
, (48)

where x′ = xΓ(1 + β). The term in parenthesis, equal to 0.094, 0.016, and 0.006 for Γ = 2 and

x = 0.5, 3, and 10, respectively, is the relativistic correction to the braking force in scattering

Thomson.

4.1. Compton heating

Together with momentum, energy will be transferred from the radiation field to the gas at a

rate 〈
dE

dt

〉
= −

1

µc2

∫
xs − x

x
(1− β cos θ)IxdxdσdΩ

=
σT
µc2

∫
(1− β cos θ)K(x′)

[
1 +

Γβ(cos θ − β)

x(1− β cos θ)

]
IxdxdΩ. (49)

Equations (44) and (49) assume that all the particles in a small volume element of gas (that moves

with bulk Lorentz factor Γ) are at rest with respect to that volume element. Because of recoil in

each collision, however, the plasma will be Compton heated (hence 〈dE/dt〉 6= dΓ/dt in eq. 49) to

relativistic temperatures, and in general these equations should be integrated over the appropriate

distribution function. 7 The integral can can solved numerically for a momentum distribution that

is isotropic in the electron rest-frame (e.g. a relativistic Maxwellian) provided the relaxation time

of the plasma is short compared with the dynamical time.

7In the absence of any other cooling or heating mechanisms, a thermal gas will be driven towards the Compton

temperature TC = mec
2〈x〉/(4k). For a power-law spectrum with energy indices α = 0 and −1.5 below and above

the break frequency xbr = 1 (characteristic of gamma-ray bursts), one derives 〈x〉 = 0.74 and TC = 1.1× 109 K.
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In the case of a cold plasma at rest in an isotropic photon bath, the Compton heating rate per

unit volume can be written, from equation (49) with x′ = x,

H = 4πnsσT

∫ [
K(x)

x

]
xIxdx, (50)

where the term K(x)/x (equal to 0.28, 0.04, and 0.008 for x = 0.5, 3, and 10, respectively) is the KN

reduction factor to the classical Thomson formula. It has been recently pointed out that Compton

heating of electrons by hard X-ray background photons may provide a significant energy source for

the intergalactic medium (Madau & Efstathiou 1999). It is crucial in the cosmological context to

use equation (50) rather the Thomson limit, as relativistic corrections become increasingly more

important at early times when the peak in spectral power of the X-ray background (observed today

at ∼ 30 keV) is blueshifted to higher energies.

It is also worth noting that the efficiency of the Compton afterburn should be further dimin-

ished in the KN regime, as the decreased relativistic cross section reduces the anisotropy (between

highly scattering electrons moving towards the source and those, less scattering, moving away) that

ultimately drives the effect (Phinney 1982; see also Renaud & Henry 1998). The afterburn may be

a supplementary source of momentum if the energetic particles are injected by an external energy

source, and if they execute many Larmor orbits while cooling (§3.5). However, in the present con-

text (in which the particles are assumed cold before scattering) only a small increase in the bulk

momentum will result from the afterburn effect. Even if we suppose that all the energy transferred

from the radiation field to the gas is actually converted into bulk motion, and integrate equation

(49) with 〈dE/dt〉 = dΓ/dt, we get asymptotic Lorentz factors that are at most ten percent higher

than those computed from the momentum equation.
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Fig. 1.— Left: Bulk Lorentz factor of a test particle as a function of distance r from a uniformly

radiating sphere of radius R and compactness ℓ̃. The equation of motion has been integrated in the

Thomson regime assuming the particle is initially at rest. From top to bottom: ℓ̃ = 1000, 100, 10

(solid lines). Dashed line: Zero-inertia limit. Right: Same but for an infinite, Keplerian accretion

disk (see text for details).
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Fig. 2.— Bulk Lorentz factor of a test particle (µ = mp) as a function of distance r (in cm) from

a point-like source of luminosity 1052 ergs s−1. The equation of motion has been integrated in

the Thomson regime assuming the particle to be initially at rest. Solid curves: radiation pulse of

duration 1 sec. The radiative force vanishes when the photon shell moves past the particle. Dashed

curves: steady source.
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Fig. 3.— Specific rate of momentum transfer per unit solid angle (see eq. 44), P ≡ (1 −

β cos θ)K(x′){cos θ+Γ(cos θ−β)/[x(1−β cos θ)]}, versus incident photon angle for different photon

energies x (in units of mec
2) and particle valocities β (in units of c). Solid line: x = 0.5. Dashed

line: x = 3. Dash-dotted line: x = 10. Dotted line: Thomson limit.
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Fig. 4.— Top left: Equilibrium Lorentz factor (zero-inertia limit) of a test particle as a function of

distance r from a uniformly radiating sphere of radius R. The photon spectrum is monoenergetic

and the equation of motion has been integrated in the Klein-Nishina regime. Solid lines: Values

obtained for different energies of the incoming photons: x = 10, 3, 1 (from top to bottom). Dotted

line: Thomson limit. Top right: Bulk Lorentz factor as a function of distance. The equation of

motion has been integrated using the relativistic cross section and assuming the particle to be

initially at rest. The radiation spectrum is monoenergetic with photon energy x = 10. From top to

bottom: ℓ̃ = 1000, 100, 10 (solid lines). Dashed line: Zero-inertia limit. Note how, in the relativistic

limit, the particle velocity saturates to its asymptotic value at infinity much closer to the radiation

source than in the Thomson regime (cf. Fig. 1). Bottom: Same for a Keplerian accretion disk.
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Fig. 5.— Asymptotic Lorentz factor at infinity as a function of compactness for a particle initially

at rest. Solid line: KN cross section, incoming photon energy x = 3. Dashed line: Same for x = 10.

Dotted line: Thomson limit. Left: Uniformly radiating sphere. Right: Keplerian accretion disk.


