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Summary
Despite evidence for the impact of insulin on intestinal epithelial physiology and pathophysiology, the expression patterns, roles, and

regulation of insulin receptor (IR) and IR isoforms in the intestinal epithelium are not well characterized. IR-A is thought to mediate the
proliferative effects of insulin or insulin growth factors (IGFs) in fetal or cancer cells. IR-B is considered to be the metabolic receptor for
insulin in specialized tissues. This study used a novel Sox9-EGFP reporter mouse that permits isolation of intestinal epithelial stem cells

(IESCs), progenitors, enteroendocrine cells and differentiated lineages, the ApcMin/+ mouse model of precancerous adenoma and normal
human intestinal and colorectal cancer (CRC) cell lines. We tested the hypothesis that there is differential expression of IR-A or IR-B in
stem and tumor cells versus differentiated intestinal epithelial cells (IECs) and that IR-B impacts cell proliferation. Our findings provide

evidence that IR-B expression is significantly lower in highly proliferative IESCs and progenitor cells versus post-mitotic, differentiated
IECs and in subconfluent and undifferentiated versus differentiated Caco-2 cells. IR-B is also reduced in ApcMin/+ tumors and highly
tumorigenic CRC cells. These differences in IR-B were accompanied by altered levels of mRNAs encoding muscleblind-like 2
(MBNL2), a known regulator of IR alternative splicing. Forced IR-B expression in subconfluent and undifferentiated Caco-2 cells

reduced proliferation and increased biomarkers of differentiation. Our findings indicate that the impact of insulin on different cell types
in the intestinal epithelium might differ depending on relative IR-B: IR-A expression levels and provide new evidence for the roles of
IR-B to limit proliferation of CRC cells.
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Introduction
Insulin acts through the insulin receptor (IR) to regulate nutrient
uptake and storage in its major ‘metabolic’ target tissues: liver,
muscle and adipose tissue. IR exists as two structurally distinct

isoforms, IR-A and IR-B. These isoforms differ by the exclusion
(IR-A) or inclusion (IR-B) of exon 11, which encodes a 12 amino
acid region located in the C-terminus of the ligand-binding a-

subunit of the IR (Belfiore et al., 2009). Previous work suggests
that exon 11 splicing is regulated by RNA binding proteins. The
muscleblind-like (MBNL) proteins and serine arginine rich
splicing factor 3 (SRSF3) are splicing enhancers that promote

exon 11 inclusion and favor IR-B expression. The CUG-triplet
repeat RNA binding protein 1 (CUGBP1) is a splicing silencer
that facilitates exon 11 exclusion, favoring IR-A expression (Sen

et al., 2010; Sen et al., 2009). Downregulation or inactivation of
MBNL1 and upregulation of CUGBP1 is associated with reduced
IR-B levels and insulin resistance of skeletal muscle in patients

with myotonic dystrophy (Cruz Guzmán et al., 2012; Dansithong
et al., 2005; Paul et al., 2006), demonstrating a crucial role for
these RNA-binding proteins in both IR-B expression and insulin

sensitivity.

IR-B has high affinity for insulin and much lower affinity for
the structurally related ligands, insulin-like growth factors 1 and

2 (IGF1 and IGF2). IR-A binds insulin and IGF2 with high

affinity, whereas it binds IGF1 with an ,tenfold lower affinity

(Belfiore et al., 2009; Frasca et al., 1999). Previous studies

demonstrated that IR-B is highly expressed and predominates

over IR-A in specialized adult tissues, such as liver, skeletal

muscle, adipose tissue, pancreas and kidney, where it mediates

metabolic effects of insulin on nutrient uptake, handling or

storage (Lin et al., 2013; Moller et al., 1989; Mosthaf et al.,

1990). IR-A is thought to play a role in fetal growth because it is

highly expressed during embryogenesis and can mediate the

growth-promoting effects of IGF2 (Belfiore et al., 2009).

Upregulation of IR-A has been reported in breast, ovarian,

colon and thyroid cancer cell lines and/or human tumors

(Belfiore et al., 2009; Frasca et al., 1999; Jones et al., 2006;

Kalla Singh et al., 2011; Kalli et al., 2002; Sciacca et al., 1999;

Vella et al., 2002). Because IR-A can bind both insulin and the
IGFs, which are typically linked to cell proliferation and survival,

these findings support current views that IR-A may mediate

cancer cell proliferation or survival in response to insulin or the

IGFs (Belfiore et al., 2009; Belfiore and Malaguarnera, 2011;

Cohen and LeRoith, 2012; Frasca et al., 1999; Jones et al., 2006;

Kalla Singh et al., 2011; Kalli et al., 2002; Sciacca et al., 1999;

Vella et al., 2002). Increasing attention is being focused on IR-A
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as a potential mediator of anti-IGF1R therapy evasion in cancer
cells (Buck et al., 2010; Ulanet et al., 2010). Less is known about

expression profiles and physiological roles of IR-B versus IR-A
in normal, highly proliferative adult tissues, such as the intestinal
epithelium.

The intestinal epithelium is not traditionally considered to be a

major target of the metabolic actions of insulin, although it is the
first organ exposed to digested nutrients. A need for a better
understanding of the role of insulin and IRs in the intestinal

epithelium is highlighted by recent studies linking obesity,
hyperinsulinemia and insulin resistance, or insulin therapies used
in diabetes mellitus, to risk of gastrointestinal cancers (Gough

et al., 2011; Kant and Hull, 2011; Keku et al., 2005; Wong et al.,
2012; Yuhara et al., 2011). Epidemiological studies have linked
elevated plasma insulin and reduced spontaneous apoptosis in
normal colonic epithelium to risk of precancerous colorectal

adenomas (Keku et al., 2005). A small but mounting body of
evidence suggests that obesity and type-2 diabetes are associated
with insulin resistance at the level of the enterocyte, which might

promote aberrant lipid handling and exacerbate dyslipidemia,
(Federico et al., 2006; Haidari et al., 2002; Hayashi et al., 2011).
Despite this evidence for potential roles of insulin in aberrant cell

growth, survival or dysfunction of differentiated enterocytes,
little is known about the expression or specific functions of the
IR, and particularly IR-A and IR-B isoforms in the intestinal

epithelium.

The small intestinal epithelium is the most proliferative tissue
in the body, with constant renewal of the epithelium every three
to ten days, depending on the species, region and cell type

(Cheng and Leblond, 1974; Williamson, 1982). Renewal depends
on proliferating, intestinal epithelial stem cells (IESCs) at the
base of the crypt (Barker et al., 2008; Garrison et al., 2009; Zeki

et al., 2011). These IESCs divide to self-renew and generate more
rapidly proliferating, transit-amplifying progenitor cells that
undergo cell cycle arrest and differentiate as they migrate along

the crypt axis (Barker et al., 2008; Simons and Clevers, 2011; van
der Flier and Clevers, 2009). The differentiated intestinal
epithelial cells (IECs) include secretory enteroendocrine, goblet
cells or Paneth cells (small intestine), and absorptive enterocytes.

In the small intestine, enterocytes represent the majority of
terminally differentiated cells, which are marked by expression of
sucrase isomaltase (SI).

In this study, we tested the hypothesis that IR-A and IR-B
show distinct expression patterns in small IESCs, progenitors and
differentiated lineages, and that elevated relative levels of IR-B

versus IR-A limit proliferation or enhance differentiation
biomarker expression. Our studies used a novel Sox9-EGFP
BAC transgenic reporter mouse that allows isolation and analyses
of IESCs, progenitors and differentiated IECs based on distinct

levels of Sox9-EGFP (Formeister et al., 2009; Gracz et al., 2010;
Van Landeghem et al., 2012). Sox9-EGFPLow cells are highly
enriched for Lgr5 and other biomarkers of what have been termed

‘actively cycling crypt base columnar IESCs’ and exhibit
functional properties of IESCs, including survival in Matrigel
culture systems and multipotency for all IEC lineages (Muñoz

et al., 2012; Van Landeghem et al., 2012). Sox9-EGFPSublow cells
lie in the region of highly proliferative, transit-amplifying
progenitor cells and are enriched for genes associated with active

proliferation. Sox9-EGFPHigh cells are dramatically enriched for
enteroendocrine cell (EEC) biomarkers, but also enriched for
reported biomarkers of a quiescent IESC population (Gracz et al.,

2010; Van Landeghem et al., 2012). Sox9-EGFPNegative cells on the
villi are enriched for markers of post-mitotic, differentiated cells,

including biomarkers of enterocytes, goblet and Paneth cells
(Van Landeghem et al., 2012). The ability to FACS isolate these
distinct cell populations that have been validated by functional
studies and gene-expression profiling, provides a useful system

to analyze Ir isoform expression in different IEC subtypes. The
ApcMin/+ model of precancerous intestinal adenomas was used to
examine the association between relative expression of IR-A

and IR-B isoforms, and the levels of mRNAs encoding
regulators of Ir isoform splicing, during early tumorigenesis.
Non-transformed IECs and colorectal cancer (CRC) cell lines

were used to examine the association between relative IR-B and
IR-A expression levels, isoform splicing regulators, and
proliferation or expression of differentiation biomarkers. A
stable CRC cell line with enhanced IR-B expression was

generated to directly test the functional impact of IR-B on
proliferation and differentiation biomarkers. Although a large
majority of studies in other organs have emphasized functional

consequences of IR-A overexpression in promoting proliferation
and survival (Frasca et al., 1999; Harrington et al., 2012;
Heidegger et al., 2012; Malaguarnera et al., 2011; Sciacca et al.,

2002), we, for the first time, report the impact of enhanced IR-B
expression on CRC cells. Our studies provide novel evidence for
gradients of IR-A and IR-B expression in normal, highly

proliferative IESCs versus post-mitotic, differentiated lineages,
tumor versus normal tissue and functional effects of IR-B to
limit CRC cell proliferation. These findings indicate that relative
levels of IR-B and IR-A in distinct cell populations within a

heterogeneous tissue, such as the intestinal epithelium, will
dictate cell-specific outcomes of insulin signaling.

Results
Insulin receptor isoform expression exists in a gradient
from proliferative stem and progenitor cells (IR-A
predominant) to post-mitotic, differentiated lineages
(IR-B predominant)

Single-cell suspensions were prepared from the jejunal
epithelium of Sox9-EGFP reporter mice (Formeister et al.,

2009; Gracz et al., 2010; Van Landeghem et al., 2012) and the
four IEC populations were isolated by FACS based on distinct
expression levels of Sox9-EGFP (Fig. 1A). These correspond to

Sox9-EGFPLow cells with a validated IESC phenotype, Sox9-
EGFPSublow progenitors, Sox9-EGFPHigh cells enriched for EEC,
but also containing cells with a facultative/quiescent stem cell

phenotype and Sox9-EGFPNegative cells enriched for biomarkers
of terminally differentiated enterocytes, goblet and Paneth cells
(Formeister et al., 2009; Gracz et al., 2010; Van Landeghem et al.,
2012). Evaluation of total Ir mRNA by qRT-PCR revealed

approximately equal levels of total Ir expression in each cell
population with a modest, but significant enrichment of Ir mRNA
in Sox9-EGFPHigh cells versus other cell populations (Fig. 1B).

RT-PCR with primers spanning exon 11 was performed and yielded
two products corresponding in size to IR-A (210 bp) and IR-B
(246 bp) isoforms, which were verified by DNA sequencing. As

illustrated in Fig. 1C, there were clear differences in Ir isoform
expression across the Sox9-EGFP populations, with IR-B
predominating in Sox9-EGFPNegative differentiated IEC (a greater

than twofold increase in IR-B: IR-A ratio versus Sox9-EGFPLow

IESC and Sox9-EGFPSublow progenitors) and IR-A predominating
in Sox9-EGFPLow active IESCs and Sox9-EGFPSublow progenitors.
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Interestingly, Sox9-EGFPHigh cells, which encompass EEC and

facultative and quiescent IESCs, expressed about equal amounts of

the two isoforms. Because IR-B is linked to metabolic or

differentiated function in other organs and IR-A mediates

proliferative responses to insulin or IGF2, these differences

between Ir isoform expression in stem or progenitor cells versus

post-mitotic differentiated lineages, provide evidence that the

outcome of insulin signaling might differ in highly proliferative

IESCs or progenitors versus post-mitotic differentiated IECs.

Decreased total Ir expression in tumors from ApcMin/+ mice
is associated with reduced IR-B expression and
predominance of IR-A

Total Ir levels and relative IR-B: IR-A mRNA expression were
compared in small intestine and colonic tumors dissected from
ApcMin/+ mice and size-matched mucosal punch biopsies of

normal small intestine and colon tissue from wild-type mice. Total
Ir mRNA levels were significantly lower in jejunal and colon
tumors of ApcMin/+ mice relative to normal tissue (Fig. 2A).

As shown in Fig. 2B, the Ir isoform profile differed in tumor
versus normal tissue such that IR-B predominates in normal

tissue and IR-A predominates in tumors. Quantitative
densitometry confirmed a significant decrease in the IR-B: IR-
A ratio in ApcMin/+ tumors from small intestine or colon
compared with normal tissue. Thus, even though total Ir

mRNA is decreased in ApcMin/+ tumors, IR-A expression is
preserved or enhanced whereas IR-B expression is reduced.
Because IR-A is known to mediate proliferation in response to

insulin or IGF2 (Frasca et al., 1999), this switching to a
predominance of IR-A in ApcMin/+ tumors might favor
proliferative responses to insulin or IGFs.

Evaluation of other components of the insulin–IGF axis in
ApcMin/+ tumors versus normal intestine or colon revealed that

the predominance of IR-A in tumors is accompanied by
significant upregulation of Igf1 mRNA, downregulation of
Igf1r and Irs2 mRNAs, but maintained Irs1 mRNA levels
(Fig. 2C–F). These findings, together with our data showing loss

of IR-B in ApcMin/+ tumors, led us to consider whether IR-B
is downregulated in human CRC cells, if IR-B can limit
proliferation, or if IR-B is associated with altered expression of

differentiation biomarkers.

IR-B expression is enhanced in cell lines with normal IEC
phenotype or ability to differentiate vs tumorigenic CRC
cell lines

IR isoform expression was examined in a panel of human cell
lines with differing capacity for tumorigenicity or differentiation.
A non-transformed human intestinal epithelial cell line (HIECs),

derived from fetal small intestine (Perreault and Beaulieu, 1996)
and Caco-2 cells, a CRC cell line capable of spontaneous
differentiation to an enterocyte phenotype, exhibited expression

of IR-B and IR-A at approximately equal levels. By contrast,
HT-29, HCT116 and SW480 CRC cell lines, which have high
tumorigenicity in xenograft models and limited capacity for

differentiation, showed significantly lower IR-B: IR-A mRNA
levels, such that IR-A was the predominant isoform and IR-B was
barely detectable (Fig. 3).

Post-confluent differentiation of Caco-2 cells is associated
with increased IR-B expression and enhanced IR signaling

Caco-2 cells were grown on Transwell filters and studied either at
2 days when they were subconfluent, highly proliferative and

undifferentiated or at 21 days post confluence, a time when
proliferation is reduced and cells differentiate (Chantret et al.,
1988; Miller et al., 2004; Pinto et al., 1983), as verified here by

enhanced expression of the differentiation marker and brush
border enzyme SI (21-fold increase in SI mRNA and 180-fold
increase in SI protein) (Fig. 4A). Post-confluent, differentiated

Caco-2 cells showed dramatic increases in total IR at the protein
and mRNA levels (Fig. 4B). This was associated with an IR

isoform switch to predominantly IR-B at the mRNA and

Fig. 1. Insulin receptor isoform expression in intestinal epithelial cells

exhibits a gradient from proliferative stem cells (IR-A predominant) to

post-mitotic differentiated lineages (IR-B predominant).

(A) Immunofluorescence image of jejunal crypt and FACS histogram with

representative gates generated from Sox9-EGFP reporter mouse illustrating

distinct Sox9-EGFP expression levels in intestinal epithelium. Prior studies

(Van Landeghem et al., 2012) validated the Sox9-EGFPLow as IESCs, Sox9-

EGFPSublow as progenitors, Sox9-EGFPHigh as EECs, and Sox9-EGFPNegative

as enterocytes and other differentiated lineages. Labels indicate representative

cells. Scale bar: 20 mm. (B) Levels of total Ir mRNA assayed by qRT-PCR on

different Sox9-EGFP populations isolated from jejunum by FACS as

previously reported (Van Landeghem et al., 2012). n§3 animals.

(C) Representative gel from RT-PCR assesses the ratio of IR-B: IR-A mRNAs

(top) using primers spanning exon 11 of the Ir (present only in IR-B) and

quantitative data across independent animals (n56). Data in B and C

represent mean 6 s.e.m. *P,0.05 compared with Sox9-EGFPNegative cells;

ANOVA, Sidak’s Test.

IR-B limits proliferation 5647



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

protein levels (Fig. 4C) and enhanced, insulin-stimulated

phosphorylation of IR-B and AKT (Fig. 4D,E).

IR isoform switching in post-confluent differentiated Caco-

2 cells and in ApcMin/+ tumors is associated with altered

expression of IR splicing enhancers and silencer

Levels of mRNAs encoding the pre-mRNA splicing regulators

MBNL2, SRSF3 and CUGBP1 were examined in subconfluent,

undifferentiated and post-confluent, differentiated Caco-2 cells or

in ApcMin/+ tumors versus normal tissue. In skeletal muscle or in

vitro settings, MBNL2 and SRSF3 have previously been shown

to enhance the inclusion of exon 11 and generation of IR-B

mRNA, whereas CUGBP1 silences exon 11 splicing to favor IR-

A mRNA expression (Fig. 5A) (Cruz Guzmán et al., 2012;

Dansithong et al., 2005; Paul et al., 2006; Sen et al., 2010; Sen

et al., 2009). Consistent with the increased IR-B:IR-A ratio in

post-confluent differentiated Caco-2 cells (Fig. 4C), these cells

exhibited increased MBNL2 mRNA, decreased CUGBP1 mRNA

and resultant increases in the MBNL2:CUGBP1 mRNA ratio

(Fig. 5B). Conversely, jejunal and colon tumors from ApcMin/+

mice showed significant reductions in Mbnl2 mRNA with a

significantly decreased Mbnl2:Cugbp1 ratio in the colon tumor

tissue (Fig. 5C,D). Srsf3 was also significantly downregulated in

jejunal tumors versus wild-type (WT) tissue (tumor, 1.1060.12

versus WT, 1.8960.3; mean 6 s.e.m.; P,0.05), but not in colon

Fig. 2. Decreased total Ir expression in tumors

from ApcMin/+ mice is associated with reduced IR-B

expression and altered levels of other insulin–IGF

axis mRNAs. qRT-PCR measured (A) total Ir,

(C) Igf1, (D) Igf1r, (E) Irs2 and (F) Irs1 mRNA in

small intestine and colonic tumors from ApcMin/+ mice

compared with normal small intestine and colon tissue

from wild-type animals (WT). (B) RT-PCR was

carried out to measure the ratio of IR-B:IR-A mRNA

expression using primers spanning exon 11 of the Ir in

small intestine and colon tumor tissue compared with

normal tissue. All qRT-PCR data are normalized to

ribosomal protein S6, invariant control. Data represent

mean 6 s.e.m. (n§5); *P#0.05 in ApcMin/+ tumor

versus WT normal tissue; unpaired t-test.

Fig. 3. IR-B expression is enhanced in a non-transformed human

intestinal epithelial cell line (HIECs) and Caco-2 cells with the capacity to

spontaneously differentiate versus tumorigenic colorectal cancer (CRC)

cell lines. RT-PCR using primers spanning exon 11 evaluated ratio of IR-B:IR-A

mRNA expression in subconfluent, actively dividing non-transformed HIEC,

Caco-2 CRC cells capable of spontaneous differentiation, and HT-29, HCT116,

and SW480 CRC lines. Note the low expression of IR-B in HT-29, HCT116, and

SW480 in representative blot and after quantification of band intensity.

Histogram represents mean 6 s.e.m. (n§2).
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tumors. Thus, altered relative expression of IR-B:IR-A in post-

confluent Caco-2 cells or in tumors is associated with altered

expression of IR splicing enhancers or silencer.

Stable overexpression of IR-B enhances IR signaling

Because our data indicated a possible correlation between

elevated IR-B or IR-B:IR-A ratio and reduced proliferation or

differentiation of CRC cells, we used lentiviral particles (Fig. 6A)

to generate subconfluent Caco-2 cells stably expressing high levels

of IR-B mRNA and protein (IR-B-Caco-2; Fig. 6B). Enhanced IR-

B levels in subconfluent IR-B-Caco-2 cells approximated, but did

not achieve the elevated levels of IR-B found in post-confluent

spontaneously differentiated Caco-2 cells (Fig. 6C). Compared

with the vector control, subconfluent IR-B-Caco-2 cells exhibited

increases in total and tyrosine-phosphorylated IR-B, as well as

significantly increased, insulin-induced phosphorylation of AKT,

demonstrating that overexpressed IR-B is functional (Fig. 6D,E).

IR-B reduces CRC cell proliferation, DNA synthesis and

nuclear b-catenin

Elevated IR-B expression significantly reduced [3H]thymidine

incorporation and cell number, as well as whole cell and nuclear

b-catenin protein levels in subconfluent IR-B-Caco-2 cells

compared with empty vector controls (Fig. 6F–H), indicating

anti-proliferative effects of IR-B. To further confirm effects of

IR-B expression on proliferation, we generated SW480 cells with

enhanced IR-B expression (Fig. 6B). IR-B expression resulted

in a significant 23.0760.08% reduction in [3H]thymidine

incorporation, versus empty vector control (Fig. 6F).

IR-B accelerates/enhances epithelial barrier function

We next investigated whether IR-B impacts differentiation

biomarkers and intestinal epithelial barrier functions by assessing

IR-B effects on: (1) the brush border enzyme SI; (2) the tight

junction protein zonula occludens-1 (TJP1); and (3) intestinal

epithelial barrier paracellular permeability. Subconfluent IR-B-

expressing Caco-2 cells exhibited a significant, fourfold increase

in SI mRNA versus empty vector controls, which expressed little

to no SI mRNA. SI mRNA was also modestly, but non-

significantly, enriched in post-confluent, differentiated IR-B-

expressing cells (at 20-days post-plating) compared with controls

(Fig. 7A). Consistent with IR-B accelerating expression of the

differentiation marker SI, TJP1 protein was also enriched in IR-B-

expressing Caco-2 cells versus controls (Fig. 7B). Importantly,

Fig. 4. Spontaneous, post-confluent

differentiation is associated with

increased IR-B mRNA and protein

expression, and signaling. Caco-2 cells

were grown on Transwell filters or plastic

for 2 days (subconfluent) or Transwell

filters for 21 days post confluence

(differentiated). qRT-PCR and western blot

to measure (A) differentiation biomarker

and brush border enzyme sucrase

isomaltase (SI) mRNA and protein, (B) total

insulin receptor (IR) mRNA and protein.

(C) RT-PCR evaluated the ratio of

IR-B:IR-A mRNA and IR-B protein levels

were measured by western blot. All qRT-

PCR data were normalized to invariant

control, ribosomal phosphoprotein P0. Data

represent mean 6 s.e.m. (n55).

Immunoprecipitation and western blot to

measure tyrosine phosphorylation of

(D) IR-B and (E) downstream mediator

AKT in serum-deprived cells at 5 minutes

after treatment with insulin (Ins; 200 ng/

ml) or serum-free medium (SFM) alone.

Data represent mean 6 s.e.m. (n52 in

duplicate). All western blots use b-actin as

the loading control. b-actin image shown

corresponds to p-AKT blot. Loading was

identical for total AKT. *P,0.05

differentiated versus undifferentiated Caco-

2 cells, unpaired t-test.

IR-B limits proliferation 5649
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paracellular permeability of IR-B-expressing Caco-2 cell

monolayers was significantly reduced compared with

monolayers of Caco-2 cells transduced with empty vector

(Fig. 7C). Together, these results provide new evidence that IR-

B decreases CRC cell proliferation, accelerates expression of

differentiation biomarkers and enhances the barrier function of

differentiated Caco-2 cells.

Discussion
The present study provides novel evidence for cell-type-specific

differences in IR isoform expression and functions in the intestinal

epithelium. Within different cell types of the normal intestinal

epithelium the Ir isoforms were expressed in a gradient, which was

correlated with proliferative capacity. IR-A was the predominant

isoform in the undifferentiated, cycling IESCs and rapidly dividing

progenitors in the crypt, whereas IR-B expression was increased in

Sox9-EGFPHigh cells enriched for post-mitotic EEC and Sox9-

EGFPNegative IECs enriched for other post-mitotic, differentiated

lineages, including enterocytes. Our findings are consistent with

studies in other tissues where IR-A levels were higher in progenitor

cells, including white pre-adipocytes, osteoblast precursors and

neural progenitors compared with differentiated cells (Avnet et al.,

2012; Serrano et al., 2005; Ziegler et al., 2012).

Previous studies have also reported elevation of IR-A

expression in various cancers; therefore, studies on the IR

isoforms in cancer cells have primarily focused on IR-A (Frasca

et al., 1999; Frittitta et al., 1999; Harrington et al., 2012; Heni

et al., 2012; Huang et al., 2011; Malaguarnera et al., 2011;

Sciacca et al., 1999; Vella et al., 2002). Here, we provide novel

evidence for loss of IR-B in spontaneous small intestinal and

colon adenomas in ApcMin/+ mice, and in aggressively growing,

poorly differentiated human CRC cell lines. This is consistent

with recent work showing that IR-B mRNA is also decreased,

without much change in IR-A, in breast cancer tissue (Huang

et al., 2011) and supports an emerging concept that maintaining

IR-B expression or signaling might limit tumor formation or

growth. Selective reductions in IR-B could also explain the

enhanced IR-A: IR-B levels found in other cancer tissues (Frasca

et al., 1999; Harrington et al., 2012; Heni et al., 2012; Huang

et al., 2011; Kalli et al., 2002; Malaguarnera et al., 2011; Sciacca

et al., 1999; Vella et al., 2002). In intestinal tumors from ApcMin/+

mice, which represent precancerous adenomas, we observed that

Fig. 5. IR isoform switching in post-

confluent, differentiated Caco-2 cells and

ApcMin/+ tumors is associated with altered

expression of mRNAs encoding IR splicing

enhancers and silencer. (A) Schematic

summarizing prior in vitro work indicating

RNA binding proteins that regulate IR isoform

splicing from IR pre-mRNA. Splicing

enhancers MBNL1, MBNL2 and SRSF3

promote exon 11 inclusion, favoring IR-B

expression and silencer CUGBP1 promotes

exon 11 exclusion, favoring IR-A (Sen et al.,

2010; Sen et al., 2009). (B) qRT-PCR data

showing levels of CUGBP1, MBNL2 and the

ratio of MBNL2:CUGBP1 expression in Caco-

2 cells grown on Transwell plates for 2 days

(undifferentiated/subconfluent) or 21 days

post-confluence (differentiated). Data

represent mean 6 s.e.m. (n55); *P,0.05

versus subconfluent Caco-2 cells, paired t-test.

(C, D) qRT-PCR measured Cugbp1, Mbnl2

and the ratios of Mbnl2:Cugbp1 mRNA levels

in small intestine (C) and/or colon (D) tumors

from ApcMin/+ mice versus mucosal punch

biopsies from normal small intestine and colon

of wild-type (WT) mice. Data represent mean

6 s.e.m. (n§5); *P#0.05 ApcMin/+ tumor

versus WT tissue, unpaired t-test.
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Fig. 6. Stable overexpression of IR-B in subconfluent Caco-2 cells attenuates cell proliferation. (A) Lentiviral constructs were used to generate Caco-2 and

SW480 cells with stable, predominance of IR-B expression (IR-B) or empty vector control (V). The remaining viral components of the vector were the long

terminal repeats (LTR), virus packaging signal (Y) and the polypurine tract (cPPT). Expression of viral vector components was mediated by the 59 CMV promoter

and polyadenylation signal. The expression cassette contained a CMV promoter, human insulin receptor isoform B (IR-B) gene (in IR-B only), and internal

ribosomal entry site (IRES) mediating expression of green fluorescent protein fused to a blasticidin-resistance gene (GFP-BSDR) and Woodchuck hepatitis

virus post-transcriptional regulatory element (WPRE). The U3-deleted self-inactivating sequence (DU3) was in the 39LTR. Vector backbone was previously

described (Titus et al., 2012). (B) RT-PCR with primers spanning exon 11 confirms stable, predominant IR-B expression at the mRNA level. Western blot for

total IR and IR-B in subconfluent vector and IR-B cells confirm enhanced IR-B protein levels. Similar b-actin levels confirm equal loading. (C) Western

blot confirms lentivirus-induced IR-B expression levels in subconfluent IR-B-Caco-2 cells approximate, but do not exceed, endogenous increases in total IR or IR-

B that occur following differentiation. Samples were all run on the same gel and normalized to b-actin. (D) Immunoprecipitation and western blot to assess

tyrosine phosphorylation of IR-B in serum-deprived, subconfluent Vector-Caco-2 and IR-B-Caco-2 cells following treatment for 5 minutes with 200 ng/ml

insulin or serum-free medium (SFM) alone. Data represent images of two independent blots. (E) Western blot to assess phosphorylation of AKT following a 5-

minute treatment with 200 ng/ml insulin or SFM alone in Vector-Caco-2 and IR-B-Caco-2 cells. b-actin confirmed equal loading and image shown

corresponds to p-AKT blot. Loading was identical for total AKT. Samples were run in triplicate. (F) [3H]thymidine incorporation measured DNA synthesis

at 72 hours post plating in Vector or IR-B (Caco-2 or SW480) cells. Date represent mean 6 s.e.m. of two independent experiments with six replicates each.

*P#0.05 versus Vector, paired t-test. (G) Cell number was assessed at 72 hours post-plating in Vector versus IR-B-Caco-2 cells. Data represent mean 6 s.e.m. for

two independent experiments performed in triplicate. *P#0.05 versus Vector-Caco-2, unpaired t-test. (H) Western blotting with whole cell and nuclear

extracts measured total and nuclear b-catenin levels in subconfluent Vector and IR-B-Caco-2 cells. Data represent at least two independent experiments performed

in duplicate; *P#0.05 versus Vector-Caco-2, unpaired t-test.
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decreases in IR-B were accompanied by decreased Irs2

expression, which was recently implicated in CDX2-dependent

differentiation of IECs (Modica et al., 2009). Increases in Igf1

mRNA and decreases in Igf1r mRNA found here in small

intestine and colon tumors from ApcMin/+ mice are also consistent

with findings in human CRC (Allison et al., 2007; Tricoli et al.,

1986; Wong et al., 2012). Decreased IGF1R expression

has also been associated with cellular dedifferentiation in

human colorectal tumors (Allison et al., 2007). Significant

downregulation of Igf1r mRNA in ApcMin/+ tumors, coincident

with maintained IR-A mRNA expression, increases the potential

for IR-A as a mediator of proliferative effects of insulin or IGF

signaling in tumors.

To further investigate the role of IR-B in IEC proliferation,

differentiation and cancer, we studied Caco-2 cells (Chantret

et al., 1988; Pinto et al., 1983). Although derived from a

colorectal adenocarcinoma, post-confluent Caco-2 cells reduce

proliferation and spontaneously express biomarkers of

differentiated small intestinal enterocytes (Miller et al., 2004),

including sucrase-isomaltase and tight junction proteins such as

TJP1, and show enhanced intestinal barrier function (Chantret

et al., 1988; Pinto et al., 1983). Our findings that post-confluent

differentiated Caco-2 cells exhibit dramatic increases in total IR

mRNA and protein compared with undifferentiated Caco-2 cells,

are in agreement with recent work by Esposito and colleagues

(Esposito et al., 2012). Importantly, our studies provide novel

information that the increase in total IR reflects a significant and

predominant increase in levels of IR-B mRNA and protein.

This is consistent with other studies in breast, bone and adipose

tissue showing that IR-B expression is enhanced following

differentiation of progenitors or progenitor cell lines (Avnet et al.,

2012; Berlato and Doppler, 2009; Entingh et al., 2003; Rowzee

et al., 2009; Serrano et al., 2005). The increased level of IR-B

in post-confluent differentiated Caco-2 cells is functional,

as indicated by enhanced insulin-mediated IR-B tyrosine

phosphorylation.

Our findings that elevated IR-B expression, mediated by

lentiviral transduction in subconfluent undifferentiated Caco-2

cells, as well as in more aggressively growing SW480 cells, is

sufficient to reduce thymidine incorporation into DNA and

reduce cell proliferation provide novel evidence that high IR-B

expression is sufficient to reduce CRC cell proliferation. Forced

IR-B expression in Caco-2 cells also reduced levels of total and

nuclear b-catenin, which normally promotes proliferation and is a

crucial mediator of the oncogenic properties of colon cancer cells

(van de Wetering et al., 2002).

Expression of differentiation markers such as SI typically

occurs in Caco-2 cells only after at least 10–14 days of post-

confluent culture (Jumarie and Malo, 1991), but enhanced IR-B

expression prematurely increased SI expression as early as 3 days

post-plating when cells were still subconfluent. IR-B-transduced

Caco-2 cells also exhibited increased levels of TJP1 protein,

indicating an increased potential to form tight junctions, which is

another biomarker of differentiation. IR-B also enhanced barrier

function in differentiated Caco-2 cells, as demonstrated by our

data showing decreased paracellular permeability in Caco-2 cells

expressing IR-B compared with controls. Overall, these results

suggest that elevated IR-B expression in Caco-2 cells is sufficient

to limit proliferation. IR-B also accelerates differentiation

biomarker expression, but additional studies will be required to

verify whether this is a direct consequence of IR-B or secondary

to reduced proliferation. Future work will more directly assess

the role of IR-B in differentiation using shRNA-mediated

knockdown of IR-B. In other tissues, there is conflicting

evidence about the ability of IR-B to induce differentiation

(Avnet et al., 2012; Berlato and Doppler, 2009; Entingh et al.,

2003). This could be due to differences in the overexpression

systems used or the resulting levels of expression. Our IR-B

expression system led to levels of IR-B in undifferentiated Caco-

2 cells that approximated, but did not exceed, the levels found in

post-confluent differentiated Caco-2 cells.

Recently, there has been interest in the potential for IR-A to

compensate for IGF1R inhibition in tumor cells (Brierley et al.,

2010; Buck et al., 2010; Ulanet et al., 2010). Our finding that IR-

B expression can reduce proliferation of aggressively growing

SW480 CRC cells, as well as Caco-2 cells, indicate that it will be

of considerable interest to test the impact of IR-B overexpression

on in vivo tumorigenicity of CRC cells that normally express

Fig. 7. IR-B-Caco-2 cells exhibit accelerated sucrase isomaltase

expression, enhanced TJP1 protein levels and improved barrier

function. IR-B-Caco-2 and empty vector controls (Vector-Caco-2)

were grown on Transwell filters for 3 days (undifferentiated) or 20

days (differentiated). (A) qRT-PCR was carried out to measure the

differentiation biomarker sucrase isomaltase. Data represent mean

6 s.e.m. of two independent experiments performed in triplicate;

*P#0.05 versus Vector-Caco-2; unpaired t-test. (B) Western blot was

carried out to measure tight junction protein TJP1 in subconfluent

Vector and IR-B-Caco-2 cells. Data represent three independent

experiments; *P#0.05 versus Vector-Caco-2, unpaired t-test.

(C) Basolateral translocation of fluorescein-5-(and-6)-sulfonic acid

was used to assess paracellular permeability, as a measure of junction

function, every 30 minutes for 3 hours in Vector versus IR-B-Caco-2

cells grown on Transwell filters for 20 days. Data represent mean

6 s.e.m. for two independent experiments performed in triplicate;

*P,0.05 versus Vector-Caco-2, two-way ANOVA and Sidak’s

multiple comparisons test.
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primarily IR-A in xenograft assays, as well as their
responsiveness to IGF1R inhibitors. The cell lines generated in

this study provide tools to pursue such experiments. Similarly,
selective and stable knockdown of IR-B or overexpression of IR-
A in Caco-2 cells would complement our current findings and
strengthen the evidence for selective anti-proliferative or pro-

differentiative roles of IR-B. Knockdown of IR-B requires
identification of efficient and specific shRNA constructs against
the small, alternatively spliced exon 11 to stably knockdown IR-

B, which poses a challenge but represents an area of future
emphasis. Overexpression of IR-A in Caco-2 cells is also a future
goal, but our finding that a predominance of IR-A in aggressively

growing poorly-differentiated CRC cells and in normal IESCs
and progenitors provides indirect evidence against anti-
proliferative or pro-differentiation roles of IR-A.

Our observed gradient of low-to-high expression of IR-B

in proliferating IESCs and progenitors versus post-mitotic
differentiated IECs, reduced IR-B in ApcMin/+ tumors and the
anti-proliferative effects of IR-B in CRC cells all support a new

concept whereby maintaining IR-B expression and signaling in
small intestinal and colonic epithelium could be crucial for
normal homeostasis between proliferative cells and post-mitotic

differentiated lineages and could potentially reduce the risk of
tumor development or growth. Furthermore, decreased IR-B
expression in small intestinal or colonic epithelium might also

provide an early indicator of aberrant cell proliferation or risk of
tumor development. Future work will examine the effects of
enhanced IR-B expression on xenograft tumor growth to directly
address the anti-tumorigenic effects of IR-B.

It is known that increases in circulating insulin correlate with
colorectal adenoma risk in human patients (Keku et al., 2005),
but it is still not known whether or which IR isoforms might

mediate pro-tumorigenic effects of elevated insulin. Our findings
that IR-B is downregulated in early ApcMin/+ adenomas resulting
in a predominance of IR-A, indicate that it will be of great

interest to assess whether loss of IR-B accompanies or occurs in
colon or colon adenomas of humans with hyperinsulinemia.

Our results in sorted Sox9-EGFP cells, as well as in post-
confluent, differentiated Caco-2 cells support a model that IR

isoform switching occurs in the normal intestinal epithelium
along the stem-cell–progenitor–differentiated lineage axis
(Fig. 8). Previous work implies a role for the MBNL family of

proteins in differentiation in Drosophila and other mammalian
tissues (adipose, muscle) (Begemann et al., 1997; He et al., 2009;
Pascual et al., 2006; Shang et al., 2002), but to our knowledge,

these factors have not been examined or linked to differentiated
lineages in the intestine. Our data indicate that expression of the
IR-B splicing enhancer MBNL2 mirrors increased IR-B
expression in Caco-2 cells following differentiation, suggesting

a putative role for this enhancer in modulating IR isoform
expression during intestinal epithelial differentiation. A role for
MBNL2 in promoting IR-B expression is also supported by

findings that relative levels of Mbnl2 were higher in normal
mouse jejunum and colon compared with jejunal and colonic
tumors in ApcMin/+ mice, paralleling the higher levels of IR-B in

normal intestine and loss of IR-B in tumors. Although Cugbp1

mRNA expression was unchanged or decreased in ApcMin/+

tumor tissue, this splicing silencer was significantly decreased

during Caco-2 cell differentiation, suggesting a role for decreased
CUGBP1 in IR isoform switching during differentiation of Caco-
2 cells, but a less clear role during tumorigenesis in mouse small

intestine or colon (Fig. 8). Recently, Shapiro and co-workers

found that MBNL1, MBNL2 and CUGBP1 might be involved
in gene splicing changes that occur during epithelial-to-
mesenchymal transition in breast cancer tissue (Shapiro et al.,
2011). On the basis of studies in other systems and our current

findings, we propose a model for the roles of these splicing
regulators in IR isoform switching in IESCs and progenitors
compared with post-mitotic differentiated lineages and early

tumorigenesis (Fig. 8). Modulation of expression of these
splicing enhancers or silencers by overexpression or
knockdown represents a useful future direction to test this

model further.

Overall, these results indicate a novel, predominant role for
IR-A over IR-B in IESCs and progenitors, and suggest that
maintaining IR-B expression and signaling in the small intestinal
and colonic epithelia limits proliferation and protects against

tumor cell growth or dedifferentiation. Importantly, elevated IR-
B expression is sufficient to reduce proliferation in SW480 and
Caco-2 CRC cells.

Materials and Methods
Sox9-EGFP and ApcMin/+ mice

Mice were maintained in our specific-pathogen free facility and provided water
and food ad libitum. Sox9-EGFP mice (CD-1 background) were maintained as
heterozygotes by breeding with wild-type CD-1 mice, and genotyping was carried
out as described (Formeister et al., 2009). ApcMin/+ mice on a C57BL/6
background were purchased from the Jackson Laboratory (Bar Harbor, ME),
maintained, and genotyped as described (Newton et al., 2010). All animal studies
were approved by the Institutional Animal Care and Use Committee (IACUC) at
the University of North Carolina at Chapel Hill.

Immunofluorescence

Immunofluorescent staining was performed as described (Van Landeghem et al.,
2012) using anti-GFP (1:500, chicken; Aves Labs, Tigard, OR). The secondary
antibodies were Alexa-Fluor-488-labeled chicken IgG (1:500, goat; Jackson
ImmunoResearch Laboratories, West Grove, PA). Slides were imaged using an
Olympus FluoView FV1000MPE Confocal microscope and FluoView Imaging
Software (Hickville, NY).

Fig. 8. Model of IR isoform switching along the axis of proliferating crypt

stem and progenitors to post-mitotic differentiated lineages and in

adenoma formation. Our results support a model where IR-A expression is

enriched in IESCs and progenitors (crypt), whereas IR-B expression is

enhanced in post-mitotic, differentiated lineages (villus). IEC differentiation

involves increased expression of exon 11 splicing enhancer MBNL2 and

decreased expression of CUGBP1, exon 11 splicing silencer. These changes

parallel the increase in IR-B in post-mitotic, differentiated IECs. During

tumor formation, we propose that MBNL2 levels decrease, promoting a

parallel decrease in IR-B expression. CUGBP1, CUG triplet repeat RNA-

binding protein 1; MBNL2, muscleblind-like 2.
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Tissue harvest and FACS of small intestinal epithelial cells from Sox9-
EGFP mice
Single-cell suspensions were generated from the jejunum of 6- to 10-week-old
Sox9-EGFP mice after euthanasia by a lethal dose of Nembutal, as described (Van
Landeghem et al., 2012). FACS was performed on a MoFlo XDP FACS machine
(Dako/Cytomation, Carpinteria, CA). Summit v4.3 software was used to identify
and isolate the distinct cell populations (Sox9-EGFPHigh, Sox9-EGFPLow, Sox9-
EGFPSublow and Sox9-EGFPNegative) for RNA isolation, as outlined previously
(Van Landeghem et al., 2012). Forward side-scatter gating excluded dead and
immune cells and forward-scatter and side-scatter height–width plots were used to
exclude doublets. qRT-PCR and gene microarray (Van Landeghem et al., 2012)
was used to validate distinct profiles of Sox9-EGFP and enrichment of different
populations for appropriate phenotypic biomarkers.

ApcMin/+ tissue harvest and tumor dissection
Animals were 14–17 weeks old. Tumors were harvested from small intestine and
distal colons of ApcMin/+ mice for RNA isolation. Histology confirmed that tumors
contained predominantly tumor epithelial cells with some underlying lamina
propria. For comparison, normal small intestine and colonic mucosal punch
biopsies were collected from wild-type animals. Wild-type tissue was used to
avoid confounding effects from microadenomas, which could be present in
apparently normal tissue from ApcMin/+ animals. Punch biopsies ensured sampling
of epithelium and a small amount of underlying lamina propria as for tumors.

Cell lines and culture conditions
Colorectal cancer cell lines (Caco-2, HT-29, HCT116, SW480) were purchased
from American Type Culture Collection (Manassas, VA). The human intestinal
epithelial cell line (HIECs) was provided by J. F. Beaulieu (University of
Sherbrooke, Quebec, Canada) and were characterized previously (Pageot et al.,
2000; Perreault and Beaulieu, 1996). Caco-2, HT-29 and HCT116 cells were
maintained in DMEM High Glucose (4.5 g/mL) (Gibco, Grand Island, NY) and
the SW480 cells were maintained in RPMI 1640 with L-glutamine (Cellgro,
Manassas, VA). CRC medium was supplemented with fetal bovine serum (FBS,
10% v/v) (Gemini, Sacramento, CA) and 50 U/ml penicillin, 50 mg/ml
streptomycin (Gibco). Caco-2 medium also contained 10 mM glutamine
(Gibco). HIEC cells were maintained in Opti-MEM (Gibco) supplemented with
5% FBS, Glutamax-1 (Gibco), 5 ng/ml recombinant human epidermal growth
factor (EGF, Invitrogen, Grand Island, NY) and 50 U/ml penicillin, 50 mg/ml
streptomycin.

Expression constructs and cloning
The pBluescript-IR-B expression construct was provided by Charles Roberts
(Oregon Health Sciences University, Portland, OR). IR-B cDNA was excised and
cloned into the HpaI site upstream of an internal ribosomal entry site (IRES) for a
green fluorescent protein fused to a blasticidin-resistance gene (GFP-BSDR) in the
HIV-based vector pTK642 to generate pTK642-IR-B. The orientation and
sequence were confirmed by restriction digestion and sequencing. Empty vector
pTK642 was used as a control.

Lentiviruses and lentiviral transduction
The pTK642 (Vector) and pTK642-IR-B (IR-B) vector constructs were packaged
into self-inactivating HIV-1-based vectors with a VSV-G envelope by the
University of North Carolina Vector Core Facility. Caco-2 or SW480 cells were
incubated overnight with medium containing virus with empty vector or IR-B-
containing vector. Stably expressing cells were selected and maintained using
blasticidin (25 mg/ml (Caco-2) or 10 mg/ml (SW480), Invitrogen). Overexpression
of IR-B was confirmed by RT-PCR and western blot. All subsequent experiments
were conducted in medium containing half the dose of blasticidin used for
selection.

Transwell differentiation assays
Caco-2 cells were plated on Transwell inserts (Costar, Fisher, Pittsburgh, PA) and
harvested 48 hours after plating to study subconfluent cells and at 21 days after
reaching confluence for differentiated cells. IR-B-Caco-2 or Vector-Caco-2 cells
were harvested at 3 days or 20 days (post-confluent) after plating.

RNA isolation
RNA was isolated from cultured or sorted cells using RNeasy mini kit, on-column
DNase digestion (Qiagen, Valencia, CA). RNA purity and integrity were confirmed
by electrophoresis in agarose gels containing ethidium bromide. RNA was isolated
from tissue using an RNeasy mini kit after homogenization in Lysing Matrix D
tubes (MP Biomedicals, Santa Ana, CA) containing RLT buffer and 1% b-
mercaptoethanol (Gibco) and a Precellys24 (Bertin Technologies, Rockville, MD).

RT-PCR for IR isoforms
cDNA synthesis was performed using 0.5–1.0 mg RNA and the High Capacity
cDNA Reverse Transcription kit, including RNase inhibitor (Applied Biosystems,

Carlsbad, CA). For mouse tissue, IR-A and IR-B mRNA expression was examined
using primers located 59 and 39 to exon 11 such that IR-B (exon 11 included) and
IR-A (exon 11 excluded) are amplified in the same reaction. PCR conditions
modified from Ulanet and co-workers (Ulanet et al., 2010) were: denaturation for
5 minutes at 95 C̊, 30 cycles at 95 C̊ for 30 seconds, annealing at 52 C̊ for
40 seconds, and extension at 72 C̊ for 30 seconds, concluding with 5 minutes
at 72 C̊. Primers were forward, 59-AATCAGAGTGAGTATGACGAC-39

and reverse, 59-ACCATTGTGCCCACAAGTC-39. Fragments 210 bp (IR-A) and
246 bp (IR-B) were resolved on 2.5% agarose gels. For human cells, IR-A and IR-
B mRNAs were examined using primers 59 and 39 to exon 11 (present in IR-B) and
modified from a published protocol (Brierley et al., 2010): denaturation for
5 minutes at 92 C̊, 30 cycles of 92 C̊ for 30 seconds, annealing at 60 C̊ for
30 seconds, and extension at 72 C̊ for 30 seconds. Primers were forward in exon
10, 59-GAATGCTGCTCCTGTCCAAA-39 and reverse in exon 12, 59-
TCGTGGGCACGCTGGTCGAG-39. Fragments 214 bp (IR-A) and 250 bp (IR-
B) were resolved on 2.5% agarose gels. Densitometry for IR-B to IR-A ratios was
performed using ImageJ software, available from the National Institutes of Health
(http://rsbweb.nih.gov/ij/).

Quantitative (qRT-PCR)

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using
Platinum Quantitative PCR 2X Supermix-UDG (Invitrogen) and Taqman primer/
probe sets (Applied Biosystems). Reactions were run using the Rotor-Gene 3000,
software version 6.0.23 (Qiagen). Gene expression values were determined using a
standard curve of pooled samples. All samples were run in triplicate and
expression values reflect an average of replicates with ,0.5 Ct of variation. All
expression values were normalized to an invariant control gene as indicated.
Primer/probe sets used for human genes include: ribosomal phosphoprotein P0
(RPLP0) Hs99999902_m1 (invariant control); CUG triplet repeat RNA binding
protein 1 (CUGBP1) Hs00198069_m1; insulin receptor (INSR) Hs00961550_m1;
muscleblind-like 2 (MBNL2) Hs01058996_m1; sucrase isomaltase (SI)
Hs00356112_m1. Primer/probe sets used for mouse genes include: ribosomal
protein S6 (Rps6) Mm02342456_g1 (invariant control); CUG triplet repeat RNA
binding protein 1 (Cugbp1) Mm0133499_m1; insulin-like growth factor 1 (Igf1)
Mm00439561_m1; insulin-like growth factor receptor (Igf1r) Mm00802831_m1;
insulin receptor (Insr) Mm01211881_m1; insulin receptor substrate 1 (Irs1)
Mm01278327_m1; insulin receptor substrate 2 (Irs2) Mm03038438_m1;
muscleblind-like 2 (Mbnl2) Mm00614679_m1; serine arginine rich splicing
factor 3 (Srsf3) Mm00786953_s1.

Western blotting

Cells were lysed in Laemmli lysis buffer (200 mM Tris-HCl, pH 6.8, 20%
glycerol, 5% b-mercaptoethanol, 4% sodium dodecyl sulfate, 0.03% Bromophenol
Blue). Lysates were boiled, sonicated, and resolved on NuPAGE 4–12% Bis-Tris
1.5 mm gels (Invitrogen) and transferred to a PVDF membrane (0.45 mm pore;
Millipore, Billerica, MA). Membranes were blocked in Blocker Casein in PBS
(Thermo Scientific, Fisher). Primary antibodies were incubated overnight at 4 C̊
and were as follows: anti-AKT rabbit polyclonal (1:1000, Cell Signaling
Technology, Danvers, MA); anti-phospho-AKT (Ser473) rabbit monoclonal
(1:1000, D7F10, Cell Signaling Technology); anti-b-actin mouse monoclonal
(1:250, ACTBD11D7, Santa Cruz), as invariant control; b-catenin (1:1000, R&D
Systems, Minneapolis, MN); anti-insulin receptor-b rabbit polyclonal (1:250; C-
19, Santa Cruz Biotechnology, Santa Cruz, CA); anti-insulin receptor isoform B
(rabbit, 1:250) (provided by Giorgio Sesti, Universita Magna Graecia, Catanzaro,
Italy) (Sesti et al., 1994); anti-sucrase-isomaltase goat polyclonal (1:500, A-17,
Santa Cruz); anti-zonula occludens-1 rabbit monoclonal (1:1000; #8193, Cell
Signaling Technology). Secondary antibodies were incubated at room temperature
for 2 hours and conjugated to Dylight800 (goat anti-rabbit IgG, goat anti-mouse
IgG, donkey anti-goat IgG) or Dylight680 (goat anti-mouse) (1:20,000, Pierce,
ThermoScientific Rockford, IL). Membranes were imaged using a LI-COR
Odyssey infrared imaging system (Version 3, LI-COR, Lincoln, NE).
Quantification was performed using ImageJ software.

Immunoprecipitation

Whole-cell extracts were prepared by scraping adherent cells into lysis buffer
[50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% nonylphenoxypolyethoxyethanol
(NP-40), 0.25% sodium deoxycholate, 1 mM EDTA, 1 mM NaF, 1 mg/ml
aprotinin, 1 mM PMSF and 1 mM vanadate]. Extracts were centrifuged and
supernatants collected. Protein concentration was measured by BCA assay
(bicinchoninic acid, Pierce, ThermoFisher Scientific, Rockford, IL) and protein
integrity verified by PAGE followed by Coomassie Blue staining. IR-B was
immunoprecipitated from 500 mg of cell lysate using 1 mg of anti-insulin receptor
isoform B, rabbit (provided by Giorgio Sesti), followed by 50% slurry of Protein A
(Sigma-Aldrich). Immunoprecipitates were disrupted in gel loading buffer (10%
glycerol, 1% SDS, 30 mM Tris-HCl, pH 6.8, 2.5% b-mercaptoethanol), then size-
fractionated on an 8.5% SDS-polyacrylamide gel, transferred onto an Immobilon-
FL (Millipore) membrane, and blocked. Antibody details listed above.
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Nuclear extracts

Nuclear extracts were prepared as described previously (Smith et al., 2001).

Cell Counting assay

Vector-Caco-2 and IR-B-Caco-2 cells were plated at 70,000 cells/cm2 in a 24-well
plate and grown for 72 hours. Live cells were quantified using Trypan Blue
(Sigma).

[3H]thymidine incorporation assay

Vector and IR-B cells (Caco-2 or SW480) were plated and adhered overnight.
Subconfluent cells were then serum deprived overnight. Forty-eight hours after
plating, [3H]thymidine was added and incorporation was measured 24 hours later,
as previously described (Simmons et al., 1995).

Paracellular permeability assay

Vector-Caco-2 and IR-B-Caco-2 cells were grown on Transwell filters for 16 days
after confluence. Paracellular permeability was quantified by recording the rate of
fluorescein-5-(and-6)-sulfonic acid (final concentration, 0.1 mg/ml; Life Sciences,
Grand Island, NY) translocation to the basolateral compartment using a Biotek
Synergy HT plate reader (Biotek, Winooski, VT) with Gen5 software (Biotek),
excitation, 485 nm; emission, 528 nm. Fluorescence was measured before the
addition of sulfonic acid (baseline) and then every 30 minutes for 3 hours.
Medium was returned to the basolateral compartment after each measurement to
ensure constant volume.

Statistical analysis

All data represent means 6 s.e.m. Specific n values are listed in legends. Data
were analyzed using one-way or two-way ANOVA or Student’s t-test, as
appropriate. P,0.05 was considered statistically significant. Analyses were
performed on GraphPad Prism 6.
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