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Dirac fermions in a power-law correlated random vector potential
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We study localization properties of two-dimensional Dirac fermions subject to a power-law cor-
related random vector potential describing, e.g., the effect of ”ripples” in graphene. By using a
variety of techniques (low-order perturbation theory, self-consistent Born approximation, replicas,
and supersymmetry) we make a case for a possible complete localization of all the electronic states
and compute the density of states.

Anderson localization in two spatial dimensions (2D)
has traditionally been studied in the context of doped
semiconductors which are characterized by the presence
of fermionic excitations with an extended Fermi sur-
face. After having been maturing steadily for almost
three decades, the theory of 2D localization was rekin-
dled by the advent of high-Tc superconductors and, more
recently, graphene, in which systems the Fermi surface
of quasiparticle excitations consists of isolated (nodal)
Fermi points.
Unlike in the conventional ”non-relativistic” 2D elec-

tron gas (2DEG), in the systems of nodal fermions the
single-particle density of states (DOS) can be strongly
affected by disorder. Moreover, a greater variety of DOS
behaviors and putative localization scenaria appear to be
determined not only by the symmetry of disorder, but its
strength as well1.
In undoped graphene, the low-energy Dirac-like quasi-

particle excitations reside near two conical points located
at the momenta K = (4π/3

√
3a, 0) and K′ = −K (here

a is the lattice spacing) in the inequivalent corners of the
hexagonal Brillouin zone. These excitations can be con-
veniently described in terms of the (retarded) bare Green
function

ĜR(ω,p) = [(ǫ+ i0)γ̂0 − pµγ̂µ]
−1 (1)

where µ = x, y and the fermion velocity is v =
1. The 4 × 4 γ̂-matrices γ̂0,x,y = (1 ⊗ σ̂3, i1 ⊗
σ̂2,−iσ̂3 ⊗ σ̂1) act in the space of Dirac bi-spinors ψ =
(ψK(A), ψK(B), ψK′(A), ψK′ (B)) composed of the val-
ues of the K(K′)-momentum components of the electron
wave function on the A and B sublattices of the bipartite
lattice of graphene.
An important feature of the fermion spectrum de-

scribed by Eq.(1) is its ”chiral” (ǫ → −ǫ) symmetry,
which, if respected by disorder, facilitates a possible
emergence of delocalized states at ǫ = 01. Indeed, un-
like in the case of the conventional 2DEG prone to weak
localization, the conductivity of graphene appears to be
surprisingly robust, assuming values about three times
higher than the ballistic result (σ = 2e2/π2h̄) pertaining
to the case of vanishing disorder2.
In an attempt to explain this observation, a num-

ber of proposals invoked the presence of an effective
random magnetic field (RMF) causing a suppression of
weak antilocalization that would otherwise have occurred
due to an ordinary (chirally non-symmetric) potential

disorder2,3. In that regard, it should be noted that, be-
ing a source of elastic scattering itself, a RMF, too, can
be solely responsible for the onset of localization in the
conventional 2DEG, the latter developing in accordance
with the standard unitary scenario4.
In this Letter, we will focus on the case of disorder

which, in the framework of the Dirac equation, can be
described as a random (and, generally speaking, non-
Abelian in the valley subspace) vector potential with the
Gaussian variance

< Âµ(q)⊗ Âν(−q) >= [1⊗ 1w(q)

+(σ̂+ ⊗ σ̂− + σ̂− ⊗ σ̂+)w(2K)](δµν − qµqν
q2

) (2)

which is characterized by a parameter g = na2 propor-
tional to the areal density n of the RMF sources (”de-
fects”) with an internal length scale l. Beyond this length
(q <∼ 1/l) the function w(q) decays algebraically

w(q) = g/(lq)2η (3)

Although for any η > 0 the parameters g and l can be
combined together, we choose to keep them separate. We
also note that, owing to its effective nature, this RMF
does not couple to physical fermion spin (if any).
With an eye on the problem of electronic transport in

graphene, we will set out to explore the general case of
vector disorder with a variable exponent η ≥ 0. For η > 0
and l ≫ a the inter-node scattering does get suppressed
(w(1/l) ≫ w(2K)), and the problem can be effectively
treated as a single-node one (hence, in effect, Abelian).
We will comment on the limitations of the single-node
approximation below.
The value of the exponent η is determined by the type

of topological structural defects, such as disclinations
(isolated pentagon- and heptagon-rings) with η = 1 and
l ∼ a, dislocations (pairs of adjacent pentagons and hep-
tagons) with η = 0 and l given by the Burgers vector,
etc.5. Moreover, a mathematically similar description
was also proposed for the effect of thermal shape fluc-
tuations of the graphene sheet (”ripples”) whose origin
can be traced back to the intrinsic thermodynamic insta-
bility of 2D crystals.
In recent derivations based on the theory of 2D elastic

membranes, the effective gauge field Aµ was related to
a fluctuating local height h of the graphene sheet with
respect to the substrate (the authors of Ref.6 derived
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Aµ ∝ (∂2νh)
2, although a much stronger dependence,

Aµ ∝ (∂νh)
2, can occur as well7).

In what follows, we consider the more relevant version
of RMF disorder described in Ref.7 where g ∼ 1, l ∼
5nm, and the exponent η = 0.2 can be deduced from
the previously studied asymptotic behavior of the height
fluctuations of a 2D membrane of size L (< h2 >∝ L1+η).
Despite the lack of immediate physical examples, we

find it instructive to extend our discussion to the entire
range of exponents 0 ≤ η < 2, for which the root mean
square (RMS) value of the divergence-free part of the
vector potential

Aη = [

∫

d2q

(2π)2
w(q)]1/2 ∝ Lη−1 (4)

(A1 ∝ lnL/l) increases with the system size, although
the RMS of the physical magnetic field B = ∇ × A

and the corresponding energy density remain finite, Bη ∝
lη−2.
It should be noted, though, that any value η 6= 1

would be in conflict (see Ref.8) with the observed elec-
tron density dependence of the conductivity of graphene,
σ ∼ ne

2, if the ripples were to dominate over the other
sources of elastic scattering.
While the extensively studied Abelian and non-Abelian

versions of the η = 0 problem are amenable to such pow-
erful techniques as renormalization group, conformal al-
gebra, and Liouville field theory, the case η > 0 has,
so far, only been studied for η = 1 and in the ballistic
regime (ǫ ≫ 1/l)8. In order to gain a preliminary in-
sight, we first estimate the lowest-order correction to the
(gauge-invariant) DOS

δνη(ǫ) = Im

∫

dpdq

16π5
w(q)(δµν − qµqν

q2
)Tr[γ̂µĜR(ω,p)

γ̂0ĜR(ω,p)γ̂νĜR(ω,p+ q)] ∼ g
1− η

η

ǫ1−2η

l2η
(5)

which, incidentally, vanishes at η = 1, while at η = 0
this correction (δν0(ǫ) ∼ gǫ ln ǫ) is consistent with the
previously obtained exact result

ν0(ǫ) ∝ ǫ2/z−1 (6)

where z = 1 + g for g < 2 (weak coupling), whereas at
strong coupling (g > 2) z = (8g)1/2 − 1 9.
It should be mentioned, however, that at η = 0 and

l ∼ a the original model (2,3) becomes SU(2)-symmetric
in the valley space (w(0) = w(2K)), in which case the
power-law DOS features a universal exponent 1/7 10.
The first order DOS correction (5) becomes compara-

ble to the bare DOS (ν(0)(ǫ) ∼ ǫ) at ǫ ∼ g1/2η/l, thus
indicating the importance of higher-order corrections at
still lower energies. Routinely, a further improvement
would be sought out in the framework of the custom-
ary self-consistent Born approximation (SCBA) for the
(gauge-non-invariant) fermion self-energy

Σ̂R(ǫ,p) =

∫

dq

(2π)2
w(q)

ĜR(ǫ,p+ q)−1 − Σ̂R(ǫ,p+ q)
(7)

It can be readily seen, however, that for η < 1 the SCBA
solution remains finite at the nodal point, ΣR(0, 0) =
iΓ ∼ ig1/2/l, whereas for η ≥ 1 it is determined to the

RMS of the RMF (Γ ∼ A1/2
η ), both diverging with in-

creasing L. A finite imaginary self-energy would then
imply a finite DOS at ǫ = 0 (namely, νη(0) ∼ Γ| ln Γa| 1),
in a stark contrast with Eq.(6), which calls the validity
of SCBA into question.
It is well known that for η = 0 the failure of SCBA

stems from the fact that perturbative corrections repre-
sented by diagrams with crossing disorder lines turn out
to be as important as the non-crossed ones (which SCBA,
in effect, accounts for)10. However, for η ≥ 1 the situa-
tion appears to be more involved, since a singular (small
angle) scattering tends to favor the so-called ”maximally
crossed” (including the nominally non-crossed) diagrams,
as can be seen, e.g., from a direct comparison between
the crossed and non-crossed second order corrections.
Albeit not being a justification for SCBA, this observa-

tion attests to a potentially singular behavior of the self-
energy at small energies and/or momenta, which, in turn,
would be indicative of a strong modification of the cor-
responding quantum states by disorder that might even
give rise to their complete localization.
A further evidence to that effect can be gathered from

the properties of the exact zero-energy states which can
be explicitly contructed for any η ≥ 0. In the trans-
verse gauge representation of the random vector poten-
tial Aµ = ǫµν∂νφ describing a given RMF configuration,
the exact (unnormalized) zero-energy states read

ψ±(r) ∝ (1± γ̂0)

(

eφ(r)

e−φ(r)

)

(8)

Among the traditional objects of interest are such quan-
tifiers of the (normalized) zero-energy wave functions’
statisics as the inverse participation ratios (IPR)

Pn =<

∫

e2nφ(r)d2r

(
∫

e2φ(r′)d2r′)n
> (9)

where the averaging over different RMF configurations is
performed with the statistical weight

P [φ] = exp[−
∫

d2q

(2π)2
|φq |2
2w(q)

] (10)

The IPR can be computed with the use of replicas,
whereby one multiplies Eq.(9) by the denominator (nor-
malization factor) raised to the power N − n, evalu-
ates the resulting average, and eventually takes the limit
N → 0, thus arriving at the result

Pn = lim
N→0

<

∫

e2nφ(r)+2
∑

N−n

i=1
φ(ri)d2r

N−n
∏

i

d2ri >

∼ L2

l2n
Cη(n)

n/η (11)

where for integer values of η the coefficient Cη(n) is a
logarithmic function of L (e.g., C1(n) ∝ lnL/l).
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The (nearly) quadratic (for all n) dependence on the
system size is related to the groupping of the arguments
(|ri − rj | ∼ l) which indicates a spontaneous symme-
try breaking in the replica space. Furthermore, the ab-
sence of n-dependence (except, for, possibly, logarithmic
factors) suggests that for η > 0 the zero-energy states
tend to (pre)localize over a characteristic length of order
l (possibly, up to a logarithmic factor).
This result bears a certain resemblance to that found

in the strong coupling regime of the previously studied
η = 0 problem9. At weak coupling (g < 2) IPR ex-
hibit a multifractal spectrum Pn ∼ L−∆n governed by
the anomalous dimensions ∆n = (2−gn)(n−1) for g < 2
and n < nc = (2/g)1/2 (∆n = 2n(1− 1/nc)

2 for n > nc),
whereas for g > 2 this spectrum terminates (∆n = 0
for all integer n), thus signaling the onset of a certain
”freezing” transtion11.
Another signature of this peculiar (pre)localized be-

havior can be gleaned from the correlation function of
the (normalized) wave functions’ amplitudes. Using the
same replica trick, the latter can be cast in the form

< ψ2(r1)ψ
2(r2) >=<

e2φ(r1)e2φ(r2)

(
∫

e2φ(r′)d2r′)2
>

∼ lim
N→0

l2N−4 exp[−Cη(2)

η
(N − 1)(

|r1 − r2|
l

)2η] (12)

that clearly shows an unphysical (”negative norm”) be-
havior in the replica limit, which pattern is consistent
with the replica symmetry breaking and a possible local-
ization of the zero-energy states.
From the formal standpoint, the origin of the above

behavior lies in the divergence of the corresponding in-
tegral over the disorder field for any η > 0 (at η = 0 it
only diverges for g > 2). In order to see that, we employ
a supersymmetric formulation of the disorder averages

< X(ψ̄, ψ) >=

∫

D[ψ̄, ψ, b̄, c, φ]P [φ]X(ψ̄, ψ)

exp(i

∫

d2r[ψ̄γ̂µ(i∂µ +Aµ)− ǫ)ψ + b̄γ̂µ(i∂µ +Aµ)− ǫ)c])(13)

where X stands for an arbitrary product of local fermion
operators and the path integral over bosonic ghost fields
b and c serves to the purpose of normalizing the fermion
average by the partition function before averaging their
ratio over disorder.
A further progress can be achieved with the use of

the 2D bosonization technique. Bosonization formulas12

for the relevant bilinear operators (ψ̄ψ ∼ a−1 cos 2ϕ,
ψ̄γ̂µψ = iεµν∂µϕ and b̄c ∼ −a−1 cos 2θ, b̄γ̂µc = iεµν∂µθ)
involve two bosonic (ϕ and θ) and two auxiliary fermionic
(ξ̄ and ξ) fields, in terms of which the functional average
(13) takes the form

< X(ψ̄, ψ) > =

∫

D[ϕ, θ, φ, ξ̄, ξ]P [φ]X(eiϕ)e−S (14)

and the bosonized action reads

S[ϕ, θ, ξ̄, ξ, φ] =

∫

d2r[(∂µϕ)
2 − (∂µθ)

2 + ∂µξ̄∂µξ

+i(∂µϕ+ ∂µθ)∂µφ+
ǫ

a
(cos 2ϕ− cos 2θ)] (15)

The negative sign in front of the kinetic term of the field
θ is a salient feature of the bosonized ghost action12.
Had all the integrals over the bosonic fields been con-

vergent, one could have first integrated over θ, then
shifted the field ϕ by iφ and, finally, integrated it out
as well. The remaining integral over φ would then have
all the operators ψ in the integrand replaced by eφ, in
agreement with Eqs.(11,12).
However, under a closer inspection one finds that the

integral over φ appears to be controled by a modified
weight P [φ] exp(

∫

d2qq2|φq|2/(4π)2) and, therefore, di-
verges for any η > 0 (and g > 2 for η = 0), thereby
precluding one from the being able to readily integrate
over ϕ and θ.
Nevertheless, the problem can be circumvented if one

first integrates over the disorder field, thus arriving at the
”(sub)Sine-Gordon” action with a quadratic part whose
diagonal terms remain positive definite for the modes
with momenta q ≤ g1/2η/l

S(2)[ϕ, θ, ξ̄, ξ] =

∫

d2q

(2π)2
q2[(1 + w(q))|ϕq |2

+(w(q)− 1)|θq|2 + |ξq|2 + 2w(q)ϕqθ−q] (16)

while its non-Gaussian part is given by the last term in
Eq.(15).
Albeit not being amenable to the renormalization

group treatment for any η > 0, the resulting model can
still be studied with the use of the variational method.
In applications of this technique, the non-Gaussian part
of the action is treated as a source of possible mass terms
which cut off all the infrared divergencies. We choose a
variational action in the form

S0[ϕ, θ] =

∫

d2q

(2π)2
[q2(1 + w(q)) +m2

ϕ)|ϕq|2

+(q2(w(q) − 1) +m2
θ)|θq|2 + 2q2w(q)ϕqθ−q] (17)

where the mass parameters mϕ and mθ satisfy the cou-
pled equations

m2
ϕ,θ =

1

L2
<
δ2(S − S0)

δ[ϕ, θ]2
>0= ±

∫

D[ϕ, θ] cos 2[ϕ, θ]e−S0

(18)
For η = 0 the solution of Eqs.(18) reproduces the alge-
braically vanishing DOS (6). The transition from weak
to strong disorder and a concomitant (pre)localization of
the zero-energy states (the states at ǫ 6= 0 are localized at
arbitrarily weak disorder) which occurs at g = 2 can then
be understood as a proliferation of unbound vortices of
the field ϕ 11.
At all 0 < η < 2 Eqs.(18) allow for an (approximate)

solution with the masses m2
ϕ = −m2

θ = m2(ǫ) obeying
the equation

ln
m(ǫ)

ǫ
=

1

2

∫

d2q

(2π)2
q2w(q)

[m2(ǫ) + q2]2
(19)
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Solving Eq.(19) with a logarithmic accuracy, one obtains
the mass

m(ǫ) ∼ 1

l| ln lǫ| 1

2η

(20)

which reveals a chiral symmetry breaking and emergence
of the chiral order parameter < ψ̄ψ >∝< cos 2ϕ > for
ǫ 6= 0. The solution (20) applies throughout the entire
range of g and l, thus suggesting that at η > 0 there is no
counterpart of the freezing transition found at η = 09,11.
The corresponding DOS is given by the expression

νη(ǫ) =
1

π
Im < ψ̄ψ >=

∂m2(ǫ)

∂ǫ
∼ 1

ηǫl2| ln lǫ|1+1/η

(21)
which diverges at ǫ → 0 but remains integrable for all
η. Interestingly, at η = 1 the energy dependence (21)
resembles that found in the unitary limit of random po-
tential scattering1 (cf. Eq.(21) with the result reported
in Ref.13).
It is worth noting that in the single-node approxima-

tion the effect of (Abelian) potential scattering is not ex-
pected to be localizing (which conclusion can be viewed
as another manifestation of the Klein’s paradox)14. How-
ever, the above results indicate that, by contrast, the ef-
fect of a RMF on the Dirac fermions might be confining,
consistent with the earlier observations8,15.
On the other hand, the authors of Ref.16 argued that

in the single-node approximation the effective description
of undoped graphene can be achieved in terms of a pair
of decoupled Wess-Zumino-Witten (WZW) or (if chiral
symmetry is broken) non-linear σ (NLσ) models, each of
which has a topological term driving it to a stable fixed
point of either symplectic (if the time-reversal invariance
is intact) or unitary (as in the present case of a RMF)
symmetry.
However, the validity of the conclusions drawn in

Refs.16 hinges on the possibility of performing various
disorder averages without encountering any divergencies

in the underlying functional integrals. As follows from
the previous discussion, such assumptions can only be
justified in the weak-coupling regime (g < 2) of the short-
range-correlated RMF (η = 0), thus allowing for possible
alternative scenarios for η > 0. In that regard, it should
also be mentioned that recent numerical simulations17

seem to contradict the predictions of Ref.16 pertaining
to the non-chirally-symmetrical symplectic case.

The above picture also suggests that, once the inter-
node scattering has been put back in, the twoWZW/NLσ
models become coupled and the topological terms can-
cel against each other, thereby restoring the standard
localizing behavior, which in the RMF case would be de-
scribed by the unitary NLσ-model (presumably, similar
to that previously derived for non-relativistic spin-1/2
fermions with a gyromagnetic ratio equal two18).

Although the above scenario is believed to be rather
generic, there might be such exclusions as the SU(2)
(valley)-symmetric η = 0 case of the model (2,3) where
the zero-energy states remain critical (delocalized) for all
g 10. Moreover, it is also possible that a non-Gaussian
(truly smooth) long-range-correlated RMF can support
fermion trajectories which follow the lines of zero field
and enable semiclassical percolation19. This possibility
lies well outside the domain of the Gaussian model (2,3),
though.

To conclude, in this work we applied a number of
techniques to gain insight into the behavior of 2D Dirac
fermions subject to a generic power-law correlated RMF.
The available evidence suggests that the zero-energy
states become localized, while the DOS diverges at ǫ = 0.

The results of this work can facilitate a better under-
standing of the effects of ripples and topological struc-
tural defects on electronic transport in graphene and
other nodal fermion systems, such as the vortex line liq-
uid phase of high-Tc cuprates.
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