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Abstract. The focus of this paper is on how two main mani-
festations of nonlinearity in low-dimensional systems – shear
around a center fixed point (nonlinear center) and the differ-
ential divergence of trajectories passing by a saddle (nonlin-
ear saddle) – strongly affect data assimilation. The impact is
felt through their leading to non-Gaussian distribution func-
tions. The major factors that control the strength of these
effects is time between observations, and covariance of the
prior relative to covariance of the observational noise. Both
these factors – less frequent observations and larger prior
covariance – allow the nonlinearity to take hold. To expose
these nonlinear effects, we use the comparison between ex-
act posterior distributions conditioned on observations and
the ensemble Kalman filter (EnKF) approximation of these
posteriors. We discuss the serious limitations of the EnKF in
handling these effects.

1 Introduction

The assimilation of Lagrangian or pseudo-Lagrangian data
from fluid flow, obtained by surface and subsurface drifters
and floats in the ocean as well as by gliders and autonomous
underwater vehicles (AUV), has now become an indispens-
able and widely used tool for studying the oceans and other
natural water bodies (Chyba, 2009; The Argo Science Team,
2001). The set of mathematical techniques that use the data
from these instruments for the purpose of state estimation
are generally referred to as Lagrangian data assimilation
(LaDA) (Ide et al., 2002; Kuznetsov et al., 2003). The em-
phasis in the recent past on studying various aspects of LaDA
has been prompted mainly by the rapidly increasing avail-
ability and density of such data in a variety of situations. An-
other aspect of the LaDA problem that has received much
less attention is its suitability for studying certain funda-

mental aspects of the data assimilation problem in general
– namely, the effects of nonlinearity and the consequent non-
Gaussianity of probability densities involved in assimilation
problems.

The main emphasis of this paper will be precisely on these
issues of nonlinearity using the Lagrangian data assimilation
framework. We will use the Bayesian viewpoint of the data
assimilation problem (Apte et al., 2007, 2008a) that is sum-
marized later in Sect.3. The central object of study in the
Bayesian framework is the posterior probability distribution
function (PDF) on the dynamic state of the system, i.e., the
conditional PDF of the state conditioned on the observations.
This posterior is a compilation of the available information,
and approximating it as closely as possible is the main goal
of data assimilation. We take the viewpoint that valuable in-
sights on the interplay between the dynamics and statistics
can be gained through comparisons between this posterior
PDF and the results of other data assimilation methods that
produce, in effect, different approximations of this posterior.

In particular, we focus on comparing the Markov chain
Monte Carlo (MCMC) sampling of this posterior PDF with
a commonly used data assimilation technique – namely, the
ensemble Kalman filter (EnKF), (Evensen, 2009) which gen-
erates an ensemble of the states of the system, incorporat-
ing the observations sequentially using a Kalman-filter-based
method, explained in detail later in Sect.3. The ensemble
produced by the EnKF method also samples, albeit approx-
imately, the posterior PDF. In the limit of a large ensemble
size, the ensemble of states resulting from the “update” step
of the EnKF, or the various variants of it, is an exact represen-
tation of posterior PDF if the ensembleprior to the update is
Gaussian. (Lei et al., 2010) If the EnKF is initialized with a
Gaussian ensemble, the nonlinearity of the dynamical model
may result in a significantly non-Gaussian prior ensemble
that will update to a poor approximation of the posterior.
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We argue that this discrepancy between the exact MCMC
sampling of the posterior and a possibly poor approximation
of it produced by EnKF can be fruitfully exploited to analyze
and understand the effects of nonlinearity on data assimila-
tion strategies. In particular, we will utilize this method to
illustrate that the nonlinear shear and differential divergence
effects, explained in detail below, can lead to the failure (or
divergence) of the EnKF method precisely because of the
non-Gaussianity of the prior distributions.

To understand thenonlinear shear effect, we will consider
the situation occurring in a low-dimensional dynamical sys-
tem wherein a fixed point is surrounded by periodic orbits. In
the linear case (harmonic oscillator) the orbits rotate around
the center fixed point with the same angular velocity. But this
synchronicity is destroyed by nonlinearity, which will result
in a differential speed of rotation around the center. The re-
sulting prior distribution will then tend to spread around the
center in a annular shape.

A similar story holds in the saddle case, although of course
with different-shaped distributions emerging. In the case of
a saddle fixed point of a linear system, nearby orbits di-
verge from the separatrix at an exponential rate that is the
same for all the orbits. But different orbits near a saddle
point of a nonlinear system diverge away from the separa-
trix at a different rate and thisdifferential divergencegives
rise to non-Gaussian distributions for this case. Since the
case of saddle has been studied more extensively in previ-
ous works, (Kuznetsov et al., 2003; Salman et al., 2006) we
put greater focus in this paper on the nonlinear shear phe-
nomenon. Both these are discussed and illustrated in greater
detail in Sect.2.1.

These nonlinear effects may be mitigated in two ways: (1)
if the frequency of observations is high enough, i.e., the time
between observations small enough, then the shear effect will
be less pronounced, or (2) if the covariance of the prior is
small enough, then it will be dominated by the (Gaussian) ob-
servational likelihood. In both of these cases, the linear-based
approximations implicit in any Kalman filter scheme will be
effective. The point is, however, that working with a specific
system, a priori control of the observational frequency and/or
the prior covariance may be lacking. In the former case, the
issue is that the specifications for the needed observational
frequency will depend on a (potentially unknown) period in
the system. As for the prior covariance, in sequential data
assimilation it will have been built up through repeated ap-
plications of the dynamics and assimilation steps, and there
is no guarantee that this will have any particular size.

In general, the role of data assimilation is not only to give
information about the observed variables but also about the
unobserved ones. A novel phenomena that our studies illus-
trate is about the effects of nonlinearity on unobserved vari-
ables. In particular, we will see cases when the marginal pos-
terior given by EnKF for the observed variables andsome of
the unobserved variablesagrees well with the exact marginal
posterior for them, but the marginal posterior forsome of the

other unobserved variablesdisagrees. This is because the in-
formation contained in the nonlinearity about the latter type
of the unobserved variables is not captured by EnKF.

Thesaddle effect(Ide et al., 2002; Kuznetsov et al., 2003;
Salman et al., 2006) has been known to be a cause of the fail-
ure of EnKF and the effect of the observational time on fil-
tering has also been studied. (Apte et al., 2008b; Nurujjaman
et al., 2012) The four main contributions of the present work
are a detailed study of the precise origin of the EnKF diver-
gence, the new phenomenon of EnKF failure due to the shear
around a center, the exact role played by the prior covariance
in these phenomena, and the effect of the nonlinearity on un-
observed variables.

A brief outline of the paper is as follows. The next sec-
tion contains a description of the specific dynamical model
we use, along with an illustration of the shear and the sad-
dle effect. In Sect.3 we review the Bayesian framework and
the EnKF method. Section4 is devoted to describing how the
shear manifests itself in the failure of EnKF and generally its
effects on data assimilation. The saddle effect is more briefly
described in Sect.5, followed by Sect.6 containing a sum-
mary and a discussion of some of the directions for further
studies.

2 Shear and saddle effects in linear shallow water
Lagrangian dynamics

The specific dynamical system under consideration is the
same as that used inApte et al.(2008b), i.e., the follow-
ing two Fourier modes of the velocity(u,v)(x,y, t) and the
height h(x,y, t) of linear shallow water (LSW) equations
with M Lagrangian floats.

u(x,y, t) = −2π sin(2πx)cos(2πy)u0+

cos(2πy)u1(t),

v(x,y, t) = 2π cos(2πx)sin(2πy)u0+

cos(2πy)v1(t), (1)

h(x,y, t) = sin(2πx)sin(2πy)u0+

sin(2πy)h1(t).

The dynamics for the velocity field Fourier modes
(u0,u1,v1,h1) and positions(xi,yi), i = 1, . . . ,M of M La-
grangian drifters is given by the following set of ODE.

u̇0 = 0, u̇1 = v1 ,

v̇1 = −u1 − 2πh1 , ḣ1 = 2πv1 , (2)

ẋi(t) = u(xi(t),yi(t), t) ,

ẏi(t) = v(xi(t),yi(t), t) , i = 1, . . . ,M ,

where the functionsu and v on the right-hand side are as
given in Eq. (1). The LaDA problem is to infer the ve-
locity field (the Fourier modes(u0,u1,v1,h1) in the above
model) from the measurements of the positions(xi,yi), i =
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Fig. 1. Top panel shows the velocity field (arrows) and the height field (shaded) of the linear shallow water equations for

typical initial conditions used in this paper. We will focus on Lagrangian dynamics near the saddle at (x,y) = (0.5,0) and the
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Fig. 1. Top panel shows the velocity field (arrows) and the height
field (shaded) of the linear shallow water equations for typical ini-
tial conditions used in this paper. We will focus on Lagrangian dy-
namics near the saddle at(x,y) = (0.5,0) and the center at(x,y) =

(0.25,0.25). The Poincaŕe plot at the bottom shows a number of dif-
ferent orbits – some quasi-periodic orbits on invariant circles, some
periodic orbits, and some chaotic orbits near the two separatrices at
x = 0.5 andy = 0.5. This plot shows that some parts of the phase
space for the Lagrangian trajectories are chaotic, while some are
regular.

1, . . . ,M of the M Lagrangian drifters. The following key
features of this model make it suitable for studying the ef-
fects of nonlinearity in data assimilation.

1. As with other Lagrangian data assimilation problems,
the dynamical model has a skew-product structure – the
drifter dynamics depends on the velocity field but not
the other way around – and only the drifter positions are
observed.

2. For the LSW the velocity dynamics is linear, while all
the nonlinearity is contained in the Lagrangian drifter
dynamics, which is observed. Thus the observed com-
ponent is highly nonlinear. This helps us in isolating the
precise nonlinear effects.

3. Most importantly, the model shows the dynamical be-
havior of interest to our purposes – namely, presence
of saddles and centers. Figure1 shows typical velocity
and height fields along with a representative Poincaré
plot of the Lagrangian trajectories. Note that the ve-
locity dynamics alone, i.e., the solutions of the first
four of Eq. (2) are periodic in time with periodTflow =

2π/
√

1+ 4π2 ≈ 1 and the Poincaré plot shows the po-
sitions of a number of drifters at times that are multiples
of Tflow.

2.1 Illustrative examples

In order to understand the effects of shear and saddle on
ensembles of initial conditions, we start with a simple en-
semble of Lagrangian drifters along a straight line. Figure2
shows the positions of these Lagrangian drifters after ev-
ery 0.05 time units (which is small compared to the pe-
riod of the velocity flowTflow ≈ 1). The blue dots show the
positions of Lagrangian drifters after every 0.05 time step
for trajectories in the time-independent velocity flow (i.e.,
with u0 = 1, (u1,v1,h1) = (0,0,0)), the red ones in a time-
dependent flow (with initial conditionsu0 = 1, (u1,v1,h1) =

(0.5,0.34,0.26)), and the black ones in an ensemble of
velocity flows (with initial conditionsu0 = 1,h1 = 0 and
(u1,v1) initial conditions chosen randomly to be uniform in
the interval(0,1)). (Note that here and in the rest of the pa-
per, the dependence ofu1,v1,h1 on time will be understood
and the plots show the values of these variables at the corre-
sponding time relevant to that discussion.)

1. The figure clearly shows the strong shear effect – the
trajectories near the center rotate much faster than those
away from it, leading to strong distortion of the ini-
tial line of drifters. We will see later that this effect
leads to initial Gaussian distributions being distorted
into “annulus”-shaped non-Gaussian distributions (see,
e.g., Fig.4).

2. The shear effect is the basic feature of the time-
independent flow, and the time-dependent flow modifies
it only slightly. Thus, trajectories near the center contain
information mostly about the first Fourier modeu0 and
much less about the other modesu1,v1,h1. This will
again be revealed by the posterior distributions of these
variables.

3. The middle panel shows dynamics near the separatrix at
x = 0.5. We note that the origin of the saddle effect in
data assimilation is not just the divergence near the sad-
dle, which is a purely linear effect, but the “differential
divergence” (as shown by the distortion of the line of
initial conditions in the small inset at the top right). It is
the latter of the two that leads to non-Gaussian distribu-
tions.

www.nonlin-processes-geophys.net/20/329/2013/ Nonlin. Processes Geophys., 20, 329–341, 2013
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We concatenate the observations at various times t1,...,tK to write the total observational random vector yT =

7

Fig. 2. The effect of shear and saddle on an ensemble of ini-
tial conditions of the Lagrangian drifter near a center at(x,y) =

(0.25,0.25) (top panel) and near the saddle at(x,y) = (0.5,0.5)

with separatricesx = 0.5 andy = 0.5 (middle panel). The diver-
gence of trajectories starting near the saddle, within a time span of
0.50 in an ensemble of velocities, is shown in bottom panel.

4. The middle panel clearly shows that the trajectories
near the saddle are strongly affected by the time-
dependent flow since even small perturbations of the
time-independent flow lead to drastically different dy-

namics near the saddle at(0.5,0.5). (This is seen from
the fact that there is a large difference between the
blue, red, and black lines, which are the trajectories in
time-independent, time-dependent, and an ensemble of
time-dependent flows, respectively.) Thus, the trajecto-
ries near the saddle contain information about precisely
those modesu1,v1,h1 of the velocity about which the
trajectories near the center do not contain much infor-
mation. Thus, a judicious mix of the trajectories near
the centers and saddles will be required to get enough
knowledge of the full velocity field. This has implica-
tions for the so-called “drifter placement strategies”, as
discussed inSalman et al.(2008).

5. The divergence near the different saddles leads to dras-
tically different dynamics of the drifters that are initially
nearby, as shown in the panel at the bottom. This sen-
sitivity to initial conditions poses problems for data as-
similation methods in general, as discussed later. (For
clarity, the positions at different times are shown in dif-
ferent colors. Note also that the velocity flow is different
for each different drifter.)

We will see later in Sects.4–5 the implications for data
assimilation of all these basic facts about the dynamics of
nonlinear systems. Before beginning that discussion, we will
describe the Bayesian formulation of data assimilation and
the ensemble Kalman filter in the following section.

3 Posterior distribution: exact sampling and ensemble
Kalman filter approximation

We will use the Bayesian viewpoint outlined in detail inApte
et al.(2007, 2008a). Here we will only state a few key points
for reference. We will consider deterministic models

dx

dt
= f (x, t), x(t0) = x0 ∼ ζ, (3)

with solutionx(t) = 8(x0; t0, t) for n-dimensional state vec-
tor x(t) ∈ Rn with initial conditions drawn from a prior with
probability density functionpζ (x0). The data, or the obser-
vations, are taken at discrete times and are subject to noise
whose statistical characteristics, or the probability densities,
are assumed to be known. Thus, the observationyk ∈ Rm at
time tk is modeled as a random vector

yk = h(x(tk)) + ηk = h(8(x0; tk)) + ηk,

whereh : Rn
→ Rm .

Remark 1

For the specific dynamical model used in this paper – namely,
the linear shallow water equations withM Lagrangian
drifters – the state vector or the control vector isx(t) ≡

Nonlin. Processes Geophys., 20, 329–341, 2013 www.nonlin-processes-geophys.net/20/329/2013/



A. Apte and C. K. R. T. Jones: The impact of nonlinearity in Lagrangian data assimilation 333

(u0(t),u1(t),v1(t),h1(t),x1(t),y1(t), . . . ,xM(t),yM(t)).
Since the observations are only of the drifter location, the ob-
servation vector isyk = (x1(tk),y1(tk), . . . ,xM(tk),yM(tk)),
resulting in an observation operatorh(x(t)) = [0 I ]x(t),
which is a projection on the drifter position components
of the statex(t). In this section we will only discuss the
general setting, and hence in this section, instances ofx will
refer to the state vector of the model and those ofy to the
observations, consistent with generally accepted notation in
data assimilation literature. (Ide et al., 1997) In the rest of
the paper,(x,y) will refer to the positions of Lagrangian
drifters.

We concatenate the observations at various timest1, . . . , tK
to write the total observational random vectoryT

=

(yT
1 , . . . ,yT

K) as

y = H(x0) + η, (4)

where

H(x0)
T

= (h(x(t1))
T , . . . ,h(x(tK))T )

and

ηT
= (ηT

1 , . . . ,ηT
K).

We assume that we are given the probability density func-
tion pη : RmK

→ R of the random vectorη. Thus, for a given
set of the observationŝy, which area realizationof the ran-
dom vectory, the posterior probabilityPex(x(t0)|ŷ1, . . . , ŷK)

for the initial conditionxo conditioned on observations up to
time tK is obtained from Bayes’ theorem:

Pex(x(t0)|ŷ1, . . . , ŷK) := p(x0|ŷ) (5)

=
pη(ŷ − H(x0))pζ (x0)

p(ŷ)

∝ pη(ŷ − H(x0))pζ (x0),

where

p(y) =

∫
pη(y − H(x0))pζ (x0)dx0

is a function of the observationsy alone, and hencep(ŷ) is
a constant for a given realization̂y. In particular the constant
of proportionality in Eq. (5) does not depend uponx0. This
distribution can be pushed forward to obtain conditional dis-
tribution Pex(x(t)|ŷ1, . . . , ŷK) for the state at any later time
t > 0. Note that whent < tK , this is asmoothing distribution,
whereasPex(x(tK)|ŷ1, . . . , ŷK) is thefiltering distribution.

In this paper we have used Markov chain Monte Carlo
(MCMC) methods in order to get samples from this poste-
rior distributionπ(z) := Pex(x(t0)|ŷ1, . . . , ŷK) for the initial
conditionz := x0. The details of the method are detailed in
Apte et al.(2008b). Here we only give a brief description
of the Metropolis–Hastings algorithm we use. The Markov
chain is generated by using a proposal

z∗
= zn + α3∇z lnπ(zn)δn +

√
2δn3ωn,

whereωn are iid standard Gaussian random variables. Thus,
z∗

∼N (µ(zn),6) with µ(z) = z+α3∇z lnπ(z)δn and6 =

2δn3. This has a distribution

q(z,z∗) ∝ exp

[
−

1

2
‖z∗

− µ(z)‖2
6

]
,

where‖z‖2
6 = zT 6−1z. The standard Metropolis–Hastings

criterion is used for accepting or rejecting the proposed state:
if α = min{(π(z∗)q(z∗,zn)/π(zn)q(zn,z

∗)),1} > un, then
zn+1 = z∗; otherwisezn+1 = zn, whereun ∼ U(0,1) are iid
uniform random variables. The parameterα = 1 corresponds
to the Metropolis-adjusted Langevin algorithm, (Robert and
Casella, 1999; Roberts and Rosenthal, 2001) while α = 0
gives the usual random walk Metropolis–Hastings (Robert
and Casella, 1999). The appropriate choice of the proposal
covariance3, step-sizeδn, and their adaptation is discussed
in detail in Ref. (Apte et al., 2008b, Sect. (5.2)).

Continuing the study begun inApte et al. (2008b),
we argue in this paper that this Bayesian posterior density
Pex(x(t)|ŷ1, . . . , ŷK) – henceforth referred to asexact pos-
terior – can be used as a key tool in understanding the ef-
fects of nonlinearity on data assimilation problems. (Zhou
et al., 2006) The method we use for this purpose is to com-
pare this exact posterior with an approximation of it given
by theensemble Kalman filter (EnKF)algorithm (Evensen,
2009), which we also outline below for further reference in
this paper, using the same notation as the above discussion.

EnKF begins with an ensemble{x1
u(t0), . . . ,x

N
u (t0)} of N

samples of the state at initial time, drawn from the prior
densitypζ (x0). For each of the observational time instances
t1, . . . , tK , the following steps are performed:

1. Evolve the “updated” ensemble
{x1

u(ti−1), . . . ,x
N
u (ti−1)} from time ti−1 to ti to get

the “forecast” ensemble{x1
f (ti), . . . ,x

N
f (ti)}. I.e.,

x
j
f (ti) = 8(x

j
u(ti−1); ti−1, ti) for eachj = 1, . . . ,N .

2. Calculate the ensemble mean x̄f (ti) =(∑N
k=1xk

f (ti)
)
/N and ensemble covariance

P̄f (ti) =
1

N − 1

[
N∑

k=1

δk
f (δk

f )T

]

where δk
f =

(
xk
f (ti) − x̄f (ti)

)
. In practice, for large

system sizen, typical EnKF algorithms avoid calculat-
ing the n × n covarianceP̄f (ti), by using appropriate
matrix identities involving the much smallern×N ma-
trix formed withδk

f as columns.

3. Find an updated ensemble at timeti in such a fashion
that the ensemble meanx̄u(ti) and covariancēPu(ti) of
this updated ensemble are the same as the mean and co-
variance given by the following equations, which are ba-
sically the update equations of the Kalman filter:

x̄u(ti) = x̄f (ti) + K
(
ŷi − Hx̄f (ti)

)
(6)
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Fig. 3. The trajectory used to study the effect of shear on data assimilation

We will see that in the first case, the EnKF fails to approximate the posterior, whereas in the latter two cases,

it provides a pretty accurate representation of the posterior. We will see in subsection 4.1 that this is precisely

because of the shear near the center. The above choice of the specific trajectory is only representative of this

phenomena, which is observed in all the trajectories which show qualitatively the same feature, namely the shear.215

Our studies so far do not lead to quantifying the effect of varying Tobs or the prior covariance Σζ but we are

currently working on this aspect.

4.1 The failure of EnKF update steps due to shear effect

Figure 4 shows the exact and EnKF priors and the posteriors pex,pr (black), pkf,pr (magenta), pex,po (red), and

pkf,po (blue) (see subsection 3.1 for the notation), for the update step involving the first and second observation,220

i.e. at times t= 0.1,0.2, for the first of the three cases described above, i.e., broad prior with covariance ΣLζ at

the initial time and infrequent observations with TLobs = 0.1. Note that for the first observation, pkf,pr1 = pex,pr1

since this is simply the distribution at time t= 0 pushed forward up to time t= TLobs. Since the posterior after

incorporating the first observation using EnKF is different from the exact posterior, i.e. pex,po1 6= pkf,po1 , the prior

at other observation times is different for EnKF and exact sampling method, i.e., pex,pri 6= pkf,pri for i> 1.225

It is clear from this figure that the main cause of the failure of EnKF in this case is the highly non-Gaussian

nature of the prior distribution pkf,pr1 . Clearly, a Gaussian approximation of this prior will have a mean which is

near the center (x,y) = (0.25,0.25) which is a very low probability state. Of course, since the drifter position is

observed with high accuracy, the EnKF posterior in the position variables is very close to the exact posterior. But

the EnKF fails in the update of the unobserved velocity components – the EnKF posterior in the velocity variables230

is a poor approximation of the exact posterior. We also see that since the shear around the center is mainly affected

by the time independent mode u0 and not much by the time-dependent modes (u1,v1,h1), the update in u0 is the

worst for EnKF whereas the update is other velocity components is reasonably good.

11

Fig. 3. The trajectory used to study the effect of shear on data as-
similation

and

P̄u(ti) = (I − KH)P̄f (ti) , (7)

where

K = P̄f (ti)H
T

(
HP̄f (ti)H

T
+ Ri

)−1
(8)

andH = ∇h(x̄f (ti)) . Thus, it is clear that this update
process is nonunique since only the first two moments
of this updated or “posterior” density are specified by
the above two equations. This nonuniqueness gives rise
to the many different versions of the EnKF available in
the literature, such as the ensemble transform Kalman
filter (ETKF) (Bishop et al., 2001) or the ensemble ad-
justment Kalman filter (EAKF) (Anderson, 2001). In
our numerical experiments described below, we imple-
ment the perturbed observations EnKF (Burgers et al.,
1998), (Evensen, 2009, pp. 41-44) with large enough
ensemble size. We also choose an ensemble size be-
tween 104 and 105 in many of the cases shown below
and this is chosen so that increasing the ensemble size
does not affect the results. Also note that because of the
large ensemble size, the results are expected to be inde-
pendent of the choice of Kalman filter such as perturbed
observation EnKf or EAKF or ETKF.

3.1 Comparison between EnKF and exact sampling

For any observation timeti , we will consider the following
four ensembles.

1. The ensemble of samples drawn from the exact prior
Pex(x(ti)|ŷ1, . . . , ŷi−1), i.e., distribution for state at time
ti conditioned on observations up to timeti−1, denoted
by p

ex,pr
i , and shown consistently with black in all the

plots.

2. The ensemble drawn from the EnKF approximation of
this priorPkf(x(ti)|ŷ1, . . . , ŷi−1), denoted bypkf,pr

i and
shown with magenta.

3. The ensemble drawn from the exact posterior
Pex(x(ti)|ŷ1, . . . , ŷi), denoted byp

ex,po
i and shown

with red.

4. The ensemble drawn from the EnKF approximation of
this posteriorPkf(x(ti)|ŷ1, . . . , ŷi), denoted bypkf,po

i

and shown with blue.

Note that the first two of these are obtained by push-
ing forward from time ti−1 to time ti the ensemble of
samples drawn fromPex(x(ti−1)|ŷ1, . . . , ŷi−1) and from
Pkf(x(ti−1)|ŷ1, . . . , ŷi−1), respectively. The EnKF is consid-
ered to “fail” when thePkf(x(ti)|ŷ1, . . . , ŷi) is a poor approx-
imation of thePex(x(ti)|ŷ1, . . . , ŷi). This is to be contrasted
with what is commonly known as divergence of EnKF (or fil-
tering/smoothing methods in general), which refers to com-
paring the results with a “true” state of the system that is
known (Brett et al., 2011). We will later also comment on the
approximation of the “true” state both by the exact and the
EnKF posteriors.

We will see later that in many cases including those when
EnKF fails, the latter two distributions, i.e., the posteriors,
are approximately Gaussian. The main deciding factor for
failure or success of EnKF will be seen to be the Gaussian-
ity or the lack of it for the priorPkf(x(ti−1)|ŷ1, . . . , ŷi−1).
This is the main reason for considering the above four dis-
tributions. Of course, if the dynamical system is linear,
a GaussianPkf(x(ti−1)|ŷ1, . . . , ŷi−1) will lead to Gaussian
Pkf(x(ti)|ŷ1, . . . , ŷi−1), and thus EnKF will not fail, as has
been known to be the case.

4 The shear effect near the center

In this section we will focus on comparison of ex-
act Bayesian posterior and the EnKF posterior for a
trajectory, shown in Fig. 3, that is near the cen-
ter at (x,y) = (0.25,0.25). The true initial condition is
(u0,u1,v1,h1,x,y) = (1.0,0.5,0.8,0.7,0.23,0.33). In all
these experiments, the observational error covarianceR is
taken so that

√
R = diag(0.005,0.003). For this specific tra-

jectory, we will discuss the following three different numeri-
cal experiments.

– In the first case, we choose a relatively large time
between the observationsT L

obs= ti − ti−1 = 0.1, and
these observations are shown by filled circles in
Fig. 3. The prior in this case is Gaussian with mean
(0.9,0.2,0.2,0.2,0.2,0.3) and broad covariance6L

ζ ,

where
√

6L
ζ = diag(1.0,0.7,0.7,0.7,0.005,0.005).

Note that we have chosen the velocity covariance to
be large but the drifter position covariance to be small.
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Fig. 4. The four distributions pkf,pri (magenta), pex,pri (black), pkf,poi (blue), and pex,poi (red) for the update step of

the first observation i = 1 at t = TLobs (top row), and at the second observation i = 2 at t = 2TLobs (bottom row), with

TLobs = 0.1. The scatter-plots are for (u0,u1) (left column), (v1,h1) (middle column), (x,y) (right column) variables.

Note that the observations are of the (x,y) variables. The distribution at time t = 0 has a “broad” covariance of ΣLζ with√
ΣLζ = diag(1.0,0.7,0.7,0.7,0.005,0.005).

In the case of infrequent observations with TLobs = 0.1 but with a prior which is also broad in the drifter position

components, e.g.
√

Σζ = diag(1.0,0.7,0.7,0.7,0.5,0.5), the above discussed distributions (not shown) are almost235

identical to those shown in figure 4, except those at the first observation time t=TLobs (where the prior in position

variables have a very large covariance). This is because the large prior in position components only affects pex,pr1

which is very broad in this case. But by assimilating the observation of the position which has a much smaller

error covariance, the posterior pex,po1 is seen to be identical to that shown in the above figure.

In contrast, figure 5 shows the prior and posterior distributions for the second of the three cases, i.e., still with240

infrequent observations with TLobs = 0.1 but using a prior that is narrow in velocity components. We see that even

at the first observation time, the prior pkf,pr1 is not as severely non-Gaussian as in the previous case, leading to a

good approximation of the posterior, i.e., pkf,po1 ≈ pex,po1 . Because of this, the EnKF posterior gives a much better

approximation of the exact one at later times, as seen in the second row.

Another way by which the effect of shear in producing the non-Gaussianity is suppressed is obviously by245

decreasing the time between the observations, as shown in figure 6. The prior chosen is the same as the first case

presented above, but the time between the observations is TLobs = 0.01. The resemblance with figure 5 is quite

striking. In fact, the posterior and prior distributions at the second observation time are not qualitatively different

from those shown in figure 5 and hence not shown.

In order to quantify this effect, we will compare the so called degree of freedom (DOF) for signal, denoted

12

Fig. 4.The four distributionspkf,pr
i

(magenta),pex,pr
i

(black),pkf,po
i

(blue), andpex,po
i

(red) for the update step of the first observationi = 1

at t = T L
obs (top row), and at the second observationi = 2 at t = 2T L

obs (bottom row), withT L
obs= 0.1. The scatter plots are for(u0,u1) (left

column),(v1,h1) (middle column), and(x,y) (right column) variables. Note that the observations are of the(x,y) variables. The distribution

at timet = 0 has a “broad” covariance of6L
ζ with

√
6L

ζ = diag(1.0,0.7,0.7,0.7,0.005,0.005).

None of the remarks we make below about the posterior
are affected by this choice since the drifter positions are
observed with error covariance comparable to this prior
covariance.

– In the second case, we choose the same timeT L
obs= 0.1

between observations as in the first case (and also the
same realization of the observations), but choose a tight
prior covariance6S

ζ with√
6S

ζ = diag(0.1,0.07,0.07,0.07,0.005,0.005).

– In the last case, we choose the broad prior covariance
6L

ζ as in the first case, but choose a smaller time be-

tween the observations:T S
obs= 0.01. These frequent ob-

servations are shown by open triangles in Fig.3.

We will see that in the first case, the EnKF fails to approxi-
mate the posterior, whereas in the latter two cases, it provides
a pretty accurate representation of the posterior. We will see
in Sect.4.1 that this is precisely because of the shear near
the center. The above choice of the specific trajectory is only
representative of this phenomena, which is observed in all the
trajectories that show qualitatively the same feature, namely
the shear. Our studies so far do not lead to quantifying the
effect of varyingTobs or the prior covariance6ζ , but we are
currently working on this aspect.

4.1 The failure of EnKF update steps due to shear effect

Figure4 shows the exact and EnKF priors and the posteriors
pex,pr (black),pkf,pr (magenta),pex,po(red), andpkf,po (blue)
(see Sect.3.1 for the notation) for the update step involving
the first and second observation, i.e., at timest = 0.1,0.2, for

the first of the three cases described above, i.e., broad prior
with covariance6L

ζ at the initial time and infrequent obser-

vations withT L
obs= 0.1. Note that for the first observation,

p
kf,pr
1 = p

ex,pr
1 since this is simply the distribution at time

t = 0 pushed forward up to timet = T L
obs. Since the posterior

after incorporating the first observation using EnKF is differ-
ent from the exact posterior, i.e.,p

ex,po
1 6= p

kf,po
1 , the prior at

other observation times is different for EnKF and exact sam-
pling method, i.e.,pex,pr

i 6= p
kf,pr
i for i > 1.

It is clear from this figure that the main cause of the fail-
ure of EnKF in this case is the highly non-Gaussian nature
of the prior distributionpkf,pr

1 . Clearly, a Gaussian approxi-
mation of this prior will have a mean that is near the center
(x,y) = (0.25,0.25), which is a very low probability state.
Of course, since the drifter position is observed with high ac-
curacy, the EnKF posterior in the position variables is very
close to the exact posterior. But the EnKF fails in the update
of theunobservedvelocity components – the EnKF posterior
in the velocity variables is a poor approximation of the exact
posterior. We also see that since the shear around the cen-
ter is mainly affected by the time independent modeu0 and
not much by the time-dependent modes(u1,v1,h1), the up-
date inu0 is the worst for EnKF, whereas the update in other
velocity components is reasonably good.

In the case of infrequent observations withT L
obs= 0.1 but

with a prior that is also broad in the drifter position com-
ponents, e.g.,

√
6ζ = diag(1.0,0.7,0.7,0.7,0.5,0.5), the

above discussed distributions (not shown) are almost identi-
cal to those shown in Fig.4, except those at the first observa-
tion timet = T L

obs (where the prior in position variables have
a very large covariance). This is because the large prior in
position components only affectspex,pr

1 , which is very broad
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Fig. 5. Same as Fig. 4, except that the prior distribution at time t = 0 has a “narrow” covariance with
√

ΣSζ =

diag(0.1,0.07,0.07,0.07,0.005,0.005).
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Fig. 6. Same as Fig. 4, except that TSobs = 0.01 and distributions at only the first observation time t = TSobs = 0.01 are shown.

ds(t), which in the case of data assimilation has the form Zupanski et al. (2007),

ds(t) = tr
[
I−Σ(p(t))(Σζ)

−1
]
. (8)

Here, Σζ is the covariance of the prior distribution at time t= 0 while Σ(p) is the covariance of the distributions250

pex,pr, pex,po, pkf,pr, or pkf,po. The larger the value of ds, the more information is gained through assimilation

and it asymptotes to tr(I). This is shown in Fig. 7 for both the broad prior (top row) and the narrow prior (bottom

row). The left column shows the degree of freedom for the distributions on all the six variables of the model, while

the right column shows it for the marginal distributions on only the velocity variables (u0,u1,v1,h1). We notice

that in the case of a broad prior, the exact posterior has more information than the prior at all the times. In fact, in255

our numerical experiments, at time t= 5.0, the value of ds for the posterior approaches 6 which is the theoretical

maximum, as shows in Table 4.1. On the other hand, the EnKF posterior is unable to gain such information. As
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Fig. 5. Same as Fig. 4, except that the prior distribution at timet = 0 has a “narrow” covariance with
√

6S
ζ =

diag(0.1,0.07,0.07,0.07,0.005,0.005).
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Fig. 6. Same as Fig. 4, except that TSobs = 0.01 and distributions at only the first observation time t = TSobs = 0.01 are shown.

ds(t), which in the case of data assimilation has the form Zupanski et al. (2007),

ds(t) = tr
[
I−Σ(p(t))(Σζ)

−1
]
. (8)

Here, Σζ is the covariance of the prior distribution at time t= 0 while Σ(p) is the covariance of the distributions250

pex,pr, pex,po, pkf,pr, or pkf,po. The larger the value of ds, the more information is gained through assimilation

and it asymptotes to tr(I). This is shown in Fig. 7 for both the broad prior (top row) and the narrow prior (bottom

row). The left column shows the degree of freedom for the distributions on all the six variables of the model, while

the right column shows it for the marginal distributions on only the velocity variables (u0,u1,v1,h1). We notice

that in the case of a broad prior, the exact posterior has more information than the prior at all the times. In fact, in255

our numerical experiments, at time t= 5.0, the value of ds for the posterior approaches 6 which is the theoretical

maximum, as shows in Table 4.1. On the other hand, the EnKF posterior is unable to gain such information. As

13

Fig. 6.Same as Fig.4, except thatT S
obs= 0.01 and distributions at only the first observation timet = T S

obs= 0.01 are shown.

in this case. But by assimilating the observation of the posi-
tion that has a much smaller error covariance, the posterior
p

ex,po
1 is seen to be identical to that shown in the above figure.
In contrast, Fig.5 shows the prior and posterior distri-

butions for the second of the three cases, i.e., still with in-
frequent observations withT L

obs= 0.1 but using a prior that
is narrow in velocity components. We see that even at the
first observation time, the priorpkf,pr

1 is not as severely non-
Gaussian as in the previous case, leading to a good approxi-
mation of the posterior, i.e.,pkf,po

1 ≈ p
ex,po
1 . Because of this

the EnKF posterior gives a much better approximation of the
exact one at later times, as seen in the second row.

Another way by which the effect of shear in producing
the non-Gaussianity is suppressed is obviously by decreas-
ing the time between the observations, as shown in Fig.6.
The prior chosen is the same as the first case presented above,
but the time between the observations isT L

obs= 0.01. The re-
semblance with Fig.5 is quite striking. In fact, the posterior
and prior distributions at the second observation time are not
qualitatively different from those shown in Fig.5 and hence
not shown.

In order to quantify this effect, we will compare the so-
called degree of freedom (DOF) for signal, denotedds(t),
which in the case of data assimilation has the form from

Zupanski et al.(2007),

ds(t) = tr
[
I − 6(p(t))(6ζ )

−1
]

. (9)

Here,6ζ is the covariance of the prior distribution at time
t = 0, while6(p) is the covariance of the distributionspex,pr,
pex,po, pkf,pr, or pkf,po. The larger the value ofds , the more
information is gained through assimilation and it asymptotes
to tr(I). This is shown in Fig.7 for both the broad prior
(top row) and the narrow prior (bottom row). The left column
shows the degree of freedom for the distributions on all the
six variables of the model, while the right column shows it
for the marginal distributions on only the velocity variables
(u0,u1,v1,h1). We notice that in the case of a broad prior,
the exact posterior has more information than the prior at
all the times. In fact, in our numerical experiments, at time
t = 5.0, the value ofds for the posterior approaches 6, which
is the theoretical maximum, as shows in Table1. On the other
hand, the EnKF posterior is unable to gain such information.
As indicated before, when the prior is narrow, the EnKF pos-
terior has as much information as the exact posterior.

Nonlin. Processes Geophys., 20, 329–341, 2013 www.nonlin-processes-geophys.net/20/329/2013/



A. Apte and C. K. R. T. Jones: The impact of nonlinearity in Lagrangian data assimilation 337

 0

 2

 4

 6

 0  0.1  0.2  0.3  0.4  0.5

d
s

time

For exact prior
For exact posterior

For EnKF prior
For EnKF posterior

 0

 2

 4

 0  0.1  0.2  0.3  0.4  0.5

d
s

time

For exact prior
For exact posterior

For EnKF prior
For EnKF posterior

 0

 2

 4

 6

 0  0.1  0.2  0.3  0.4  0.5

d
s

time

For exact prior
For exact posterior

For EnKF prior
For EnKF posterior

 0

 2

 4

 0  0.1  0.2  0.3  0.4  0.5
d

s

time

For exact prior
For exact posterior

For EnKF prior
For EnKF posterior

Fig. 7. The degree of freedom Eq. (8) for various distributions described in the text. Left column is for the full distributions on

all the six variables of the model (u0,u1,v1,h1,x,y) while the right column is for the velocity variables (u0,u1,v1,h1). Top

row is for the case of broad prior (see Fig. 4), bottom row for narrow prior (see Fig. 5).

Time Broad prior Narrow prior

pex,pr pex,po pkf,pr pkf,po pex,pr pex,po pkf,pr pkf,po

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.1 4.559 2.930 1.478 1.478 2.568 0.940 0.931 0.931

0.2 4.510 4.940 1.791 1.791 2.568 2.948 0.940 0.940

0.3 4.891 5.218 1.650 1.650 2.948 3.226 0.945 0.945

0.4 5.164 5.317 0.861 0.861 3.226 3.325 0.949 0.949

5.0 5.980 5.979 4.143 4.143 3.980 3.979 2.549 2.549

Table 1. The degree of freedom Eq. (8) for various distributions described in the text.

indicated before, when the prior is narrow, the EnKF posterior has as much information as the exact posterior.

14

Fig. 7. The degree of freedom Eq. (9) for various distributions described in the text. Left column is for the full distributions on all the six
variables of the model(u0,u1,v1,h1,x,y), while the right column is for the velocity variables(u0,u1,v1,h1). Top row is for the case of
broad prior (see Fig.4), bottom row for narrow prior (see Fig.5).

Table 1.The degree of freedom Eq. (9) for various distributions described in the text.

Time Broad prior Narrow prior

pex,pr pex,po pkf,pr pkf,po pex,pr pex,po pkf,pr pkf,po

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 4.559 2.930 1.478 1.478 2.568 0.940 0.931 0.931
0.2 4.510 4.940 1.791 1.791 2.568 2.948 0.940 0.940
0.3 4.891 5.218 1.650 1.650 2.948 3.226 0.945 0.945
0.4 5.164 5.317 0.861 0.861 3.226 3.325 0.949 0.949
5.0 5.980 5.979 4.143 4.143 3.980 3.979 2.549 2.549

4.2 Effect of nonlinearity on assimilation over longer
time periods

Figure 8 shows the posterior distributions at timet = 5.0,
conditioned on 50 observations in the first two of the above
three cases withT L

obs= 0.1 (top and middle rows, with broad
and narrow priors att = 0, respectively) and conditioned on
500 observations in the last of the three cases withT S

obs=

0.01 (bottom row). We see that in the last of the three cases,
when the prior is broad and the time between the observa-
tions is short, the EnKF approximates the posterior very well.
At the other extreme, when the prior is broad and the time be-
tween the observations is long, the EnKF gives a very poor
approximation of the posterior. In the case when the prior
is narrow but the time between the observations is long, the

EnKF does produce distributions whose covariance is com-
parable to that of the exact distributions but the mean is sys-
tematically biased compared to the exact distribution.

5 Saddle effect

The nonlinear divergence of trajectories, as illustrated in
Fig. 2, poses a challenge for data assimilation methods in
general. In this section we describe the comparison of the
EnKF and the exact posteriors in order to understand in de-
tail the origin of the saddle effect, using a chaotic trajectory,
shown in Fig.9, which is near the saddle point at(x,y) =

(0.5,0). The true initial condition is(u0,u1,v1,h1,x,y) =
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the posterior very well. At the other extreme, when the prior is broad and the time between the observations is

long, the EnKF give a very poor approximation of the posterior. In the case when the prior is narrow but the time265
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the exact distributions but the mean is systematically biased compared to the exact distribution.
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in general. In this section, we describe the comparison of the EnKF and the exact posteriors in order to understand270
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As in the case of the center, Fig. 10 shows the posterior and prior distributions when assimilating frequent

and infrequent observations with a broad and a narrow prior using the EnKF as well as using exact sampling.275

The broad conclusions we can draw from these are the same as in the case of the centre, except that the cause

of these effects is different. In particular, the prior at each observational time is still non-Gaussian in the case

when the time between the observations is large: TLobs = 0.1 and the prior has a broad prior covariance ΣLζ with√
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case do contain information about the time-dependent modes (u1,v1,h1), as noted in Sec. 2.1. Thus the exact

posteriors in all the components are much more narrow compared with assimilation of trajectory near a centre.
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one shown in Fig. 9, it becomes exceedingly difficult to effectively sample the posterior distributions on initial

conditions, conditioned on more than a few observations. This is clearly because of the sensitive dependence
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Fig. 9. The trajectory used to study the effect of saddles on data
assimilation. Note that the Poincaré plot, shown by black dots, of
this trajectory shows that it is a chaotic trajectory.

(1.0,0.5,0.8,0.7,0.458,0.4), and the observational error co-
varianceR is fixed so that

√
R = diag(0.005,0.003).

As in the case of the center, Fig.10 shows the posterior
and prior distributions when assimilating frequent and infre-
quent observations with a broad and a narrow prior using the

EnKF as well as using exact sampling. The broad conclu-
sions we can draw from these are the same as in the case of
the center, except that the cause of these effects is different.
In particular, the prior at each observational time is still non-
Gaussian in the case when the time between the observations
is large:T L

obs= 0.1 and the prior has a broad prior covari-

ance6L
ζ with

√
6L

ζ = diag(1.0,0.7,0.7,0.7,0.005,0.005)

(first and second row of Fig.10 for assimilation of first and
second observations, respectively). In contrast with the data
for the trajectory around the center, the observations in this
case do contain information about the time-dependent modes
(u1,v1,h1), as noted in Sect.2.1. Thus, the exact posteriors
in all the components are much more narrow compared with
assimilation of trajectory near a center. Hence, we see here
an example of how information about different aspects of ve-
locity flow is obtained through different trajectories, either
near the saddle or near the centers. Similar conclusions have
been discussed and used to propose different drifter place-
ment strategies inSalman et al.(2008).

Recall that in the case of trajectory near the center, we
looked at the effect of assimilating observations over long
time periods, on both the exact and the EnKF posteriors. In
contrast, for chaotic trajectories such as the one shown in
Fig. 9, it becomes exceedingly difficult to effectively sample
the posterior distributions on initial conditions, conditioned
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because of which the marginal posterior distribution in the observed variables is very close to the observational325

likelihood, but the nonlinearity leads to a poor EnKF approximation of the marginal posterior of unobserved

variables. Using numerical observations for the case of trajectories near the center, we surmise that this is precisely

the cause of EnKF divergence.

Finally, We have hinted at the connection between the failure of the EnKF (mismatch between exact posterior

and EnKF posterior) and the filter divergence (mismatch between filter estimate and the true state of the system)330

18

Fig. 10.Same as Figs.4 (broad prior and infrequent observations, top row is update step at the first observation, second row at second obser-
vation) and5 (narrow prior and infrequent observations, third row is update step at the first observation, bottom row at second observation),
except that the observations from the trajectory near the saddle are assimilated.

on more than a few observations. This is clearly because of
the sensitive dependence of such trajectories on initial con-
ditions. It is known that assimilation of such trajectory data
may lead to the divergence of EnKF – the so-called saddle
effect (Kuznetsov et al., 2003) – in the sense that the EnKF
estimates and the true trajectory diverge from each other. Our
current work or other previous studies of the Lagrangian data
assimilation problem havenotyet given sufficient indications
about the conditions under which the EnKF distribution con-
verges to the exact distribution in the case of trajectories near
the saddle, though there are previous results proving conver-
gence of the EnKF distribution to the exact distribution when
the dynamics is linear, but to a distribution that may not be
the exact Bayesian distribution in the case of nonlinear dy-
namics. (Le Gland et al., 2011)

6 Discussion and future directions

This paper discusses the effects of nonlinearity on data as-
similation. Adopting the Bayesian framework, we work with
two different DA methods – namely, the exact Markov chain
Monte Carlo sampling of the posterior distribution for the
initial conditions of the model conditioned on observations
over a given time period, and the ensemble Kalman filter
(EnKF) approximation of this distribution. Since the EnKF
update step is exact only when the prior distribution at each
step is Gaussian, the comparison of the exact posterior and
the EnKF posterior gives us information about which aspects
of nonlinearity play a significant role in DA. Some of the
main conclusions we draw from this comparison are summa-
rized below.

The flow near an elliptic fixed point, or center, in a nonlin-
ear dynamical systems generically has a shear or differential
speed of rotation. Specifically, the initial conditions near the
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center rotate faster than those farther away. The probability
densities on the phase space evolving under such flow natu-
rally develop non-Gaussianity.

The flow near a hyperbolic fixed point, or saddle, in a non-
linear systems is qualitatively and quantitatively similar to
the flow near a saddle in the linearized system. But in the
case of a nonlinear system, the saturation of the diverging
parts leads to the eventual development of characteristic non-
Gaussian features of the densities.

The presence of such non-Gaussian densities leads to the
failure of data assimilation techniques such as the ensem-
ble Kalman filter (EnKF). We emphasize our viewpoint, also
presented in (Apte et al., 2008b), that the failure or success
of data assimilation scheme such as the EnKF is measured
by comparing its outcome with the exact posterior distribu-
tion Eq. (5) given by Bayes’ rule. This is to be contrasted
with the so-called divergence of EnKF (or filter divergence
in general), which refers to the growing difference between
the filter estimate and the true state of the system.

The comparisons between the exact posterior and the
EnKF posterior reveal that the shear effect is one of the main
causes of EnKF failure. In fact, even in the case of failure
of EnKF for chaotic trajectories near the saddle, it is the dif-
ferential speed of divergence and ultimately the shear that
causes the failure of the EnKf.

We note that the EnKF fails when the observations are in-
frequent and the prior at the initial time is broad. We show
using examples that the effects of nonlinearity are less promi-
nent either when the observations are frequent or when the
prior is narrow. We also emphasize the effects of nonlin-
earity on the marginal posterior distributions of unobserved
variables. In our numerical experiments, we have taken the
observations to be relatively accurate, and because of which
the marginal posterior distribution in the observed variables
is very close to the observational likelihood, but the nonlin-
earity leads to a poor EnKF approximation of the marginal
posterior of unobserved variables. Using numerical observa-
tions for the case of trajectories near the center, we surmise
that this is precisely the cause of EnKF divergence.

Finally, We have hinted at the connection between the
failure of the EnKF (mismatch between exact posterior and
EnKF posterior) and the filter divergence (mismatch between
filter estimate and the true state of the system) over long pe-
riods of time. But because of sensitivity to initial conditions,
sampling the exact (smoothing) posterior conditioned on data
over long time periods becomes prohibitively difficult for the
MCMC method we have used for the studies in this paper.
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