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Abstract. The focus of this paper is on how two main mani- mental aspects of the data assimilation problem in general
festations of nonlinearity in low-dimensional systems — shear namely, the effects of nonlinearity and the consequent non-
around a center fixed point (nonlinear center) and the differ-Gaussianity of probability densities involved in assimilation
ential divergence of trajectories passing by a saddle (nonlinproblems.
ear saddle) — strongly affect data assimilation. The impactis The main emphasis of this paper will be precisely on these
felt through their leading to non-Gaussian distribution func- issues of nonlinearity using the Lagrangian data assimilation
tions. The major factors that control the strength of theseframework. We will use the Bayesian viewpoint of the data
effects is time between observations, and covariance of thassimilation problemApte et al, 2007, 20083 that is sum-
prior relative to covariance of the observational noise. Bothmarized later in SecB. The central object of study in the
these factors — less frequent observations and larger prioBayesian framework is the posterior probability distribution
covariance — allow the nonlinearity to take hold. To exposefunction (PDF) on the dynamic state of the system, i.e., the
these nonlinear effects, we use the comparison between exonditional PDF of the state conditioned on the observations.
act posterior distributions conditioned on observations andThis posterior is a compilation of the available information,
the ensemble Kalman filter (EnKF) approximation of theseand approximating it as closely as possible is the main goal
posteriors. We discuss the serious limitations of the EnKF inof data assimilation. We take the viewpoint that valuable in-
handling these effects. sights on the interplay between the dynamics and statistics
can be gained through comparisons between this posterior
PDF and the results of other data assimilation methods that
produce, in effect, different approximations of this posterior.
In particular, we focus on comparing the Markov chain
S . . Monte Carlo (MCMC) sampling of this posterior PDF with
The as§|m|lat|on of.Lagrang|an or pseudo-Lagranglaq dataa commonly used data assimilation technique — namely, the
from fluid flow, obtained by surface and subsurface d”ﬂersensemble Kalman filter (EnKF)Eensen2009 which gen-

and floats in the ocean as well as by gliders and autonomou‘graltes an ensemble of the states of the system, incorporat-

underwater vehicles (AUV), has now become an |nd|spens~mg the observations sequentially using a Kalman-filter-based

ethod, explained in detail later in Se&t. The ensemble
roduced by the EnKF method also samples, albeit approx-
ately, the posterior PDF. In the limit of a large ensemble
Lize, the ensemble of states resulting from the “update” step

'Vt the EnKF, or the various variants of it, is an exact represen-
(LaDA) (Ide et al, 2002 Kuznetsov et a}.2003. The em- ' y P

e : . tation of posterior PDF if the ensemlpeior to the update is
phasis in the recent past on studying various aspects of LaDAs 5 isjan. I(ei et al, 2010 If the EnKF is initialized with a

hzfsl,'tbeer:j r()jromFt)tedf malrr: Ig tt)y .the rap.mLIy '?C.rt ea?ng axa'l'Gaussian ensemble, the nonlinearity of the dynamical model
ability and density of such data In a variety ot situations. An- may result in a significantly non-Gaussian prior ensemble

other aspe_ct O.f the LaI_DA p_roblem that _has rece!ved mucr}hat will update to a poor approximation of the posterior.
less attention is its suitability for studying certain funda-

1 Introduction

able and widely used tool for studying the oceans and othe
natural water bodiesOhyba 2009 The Argo Science Team

2007). The set of mathematical techniques that use the dat
from these instruments for the purpose of state estimatio
are generally referred to as Lagrangian data assimilatio
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We argue that this discrepancy between the exact MCMGQother unobserved variableksagrees. This is because the in-
sampling of the posterior and a possibly poor approximationformation contained in the nonlinearity about the latter type
of it produced by EnKF can be fruitfully exploited to analyze of the unobserved variables is not captured by EnKF.
and understand the effects of nonlinearity on data assimila- Thesaddle effecflde et al, 2002 Kuznetsov et a].2003
tion strategies. In particular, we will utilize this method to Salman et a].2006 has been known to be a cause of the fail-
illustrate that the nonlinear shear and differential divergenceure of EnKF and the effect of the observational time on fil-
effects, explained in detail below, can lead to the failure (ortering has also been studiedpte et al, 2008k Nurujjaman
divergence) of the EnKF method precisely because of theet al, 2012 The four main contributions of the present work
non-Gaussianity of the prior distributions. are a detailed study of the precise origin of the EnKF diver-

To understand theonlinear shear effectve will consider  gence, the new phenomenon of EnKF failure due to the shear
the situation occurring in a low-dimensional dynamical sys-around a center, the exact role played by the prior covariance
tem wherein a fixed point is surrounded by periodic orbits. Inin these phenomena, and the effect of the nonlinearity on un-
the linear case (harmonic oscillator) the orbits rotate arouncbbserved variables.
the center fixed point with the same angular velocity. But this A brief outline of the paper is as follows. The next sec-
synchronicity is destroyed by nonlinearity, which will result tion contains a description of the specific dynamical model
in a differential speed of rotation around the center. The re-we use, along with an illustration of the shear and the sad-
sulting prior distribution will then tend to spread around the dle effect. In Sect3 we review the Bayesian framework and
center in a annular shape. the EnKF method. Sectiohis devoted to describing how the

A similar story holds in the saddle case, although of courseshear manifests itself in the failure of EnKF and generally its
with different-shaped distributions emerging. In the case ofeffects on data assimilation. The saddle effect is more briefly
a saddle fixed point of a linear system, nearby orbits di-described in Secb, followed by Sect6 containing a sum-
verge from the separatrix at an exponential rate that is thanary and a discussion of some of the directions for further
same for all the orbits. But different orbits near a saddlestudies.
point of a nonlinear system diverge away from the separa-
trix at a different rate and thidifferential divergenceyives o
rise to non-Gaussian distributions for this case. Since thé Shear and saddle effects in linear shallow water
case of saddle has been studied more extensively in previ- Lagrangian dynamics

ous works, Kuznetsov et al.2003 Salman et a).200§ we The specific dynamical system under consideration is the

put greater focus in this paper on the nqnlmear sh_ear pheéame as that used if\pte et al.(2008h, i.e., the follow-
nomenon. Both these are discussed and illustrated in greatér . .
detail in Sect2.1 ing two Fourier modes of the velocity, v)(x, y, ) and the

These nonlinear effects may be mitigated in two ways: (1)h§|ghth(x, y:1) .Of linear shallow water (LSW) equations
. . L . - ’with M Lagrangian floats.
if the frequency of observations is high enough, i.e., the time

between observations small enough, then the shear effect wi

; . ..u,,tz—ZSiI’IZ cogq2 +
be less pronounced, or (2) if the covariance of the prior is (.. 7 Sin(emx) CoS2my)uo

small enough, then it will be dominated by the (Gaussian) ob- cos(2r y)u (), .
servational likelihood. In both of these cases, the linear-based (x, y, ) = 2w coS2m x) Sin(2r y)ug+
approximations implicit in any Kalman filter scheme will be cos2ry)vi(t), (1)

effective. Th_e point is, however, that vv_orking with a specific h(x, y, 1) = SiN27x) SN2 y Yo+
system, a priori control of the observational frequency and/or .
the prior covariance may be lacking. In the former case, the SN2 y)ha (7).
issue is that the specifications for the needed observation
e kT e ., s ) and postlonss, ). (=1 ... of L
assimilation it will have been built up through repeated apfigrang|an drifters is given by the following set of ODE.
plications of the dynamics and assimilation steps, and there
is no guarantee that this will have any particular size.

In general, the role of data assimilation is not only to give
information about the observed variables but also about the'; (1) = u(x; (1), yi (¢),1),
unobserved ones. A novel phenomena that our studies illusy, (1) = v(x; (1), yi (1), 1), i=1....M,
trate is about the effects of nonlinearity on unobserved vari-
ables. In particular, we will see cases when the marginal poswhere the functions and v on the right-hand side are as
terior given by EnKF for the observed variables aodne of  given in Eq. (). The LaDA problem is to infer the ve-
the unobserved variablegyrees well with the exact marginal locity field (the Fourier modegug, 11, v1, k1) in the above
posterior for them, but the marginal posterior §mme of the  model) from the measurements of the positignsy;), i =

aILhe dynamics for the velocity field Fourier modes

ug=0, U1 =y,

vl = —u1—2mrhy, /’l.1=27Tvl’ 2)
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Fig. 1. Top panel shows the velocity field (arrows) and the height
field (shaded) of the linear shallow water equations for typical ini-
tial conditions used in this paper. We will focus on Lagrangian dy-
namics near the saddle@t y) = (0.5, 0) and the center gk, y) =
(0.25,0.25). The Poinca plot at the bottom shows a number of dif-
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3. Most importantly, the model shows the dynamical be-
havior of interest to our purposes — namely, presence
of saddles and centers. Figuteshows typical velocity
and height fields along with a representative Poieacar
plot of the Lagrangian trajectories. Note that the ve-
locity dynamics alone, i.e., the solutions of the first
four of Eq. @) are periodic in time with periofow =
27 /+/1+4r2 ~ 1 and the Poincérplot shows the po-
sitions of a number of drifters at times that are multiples
of Thow.

2.1 lllustrative examples

In order to understand the effects of shear and saddle on
ensembles of initial conditions, we start with a simple en-
semble of Lagrangian drifters along a straight line. Figure
shows the positions of these Lagrangian drifters after ev-
ery 0.05 time units (which is small compared to the pe-
riod of the velocity flowTjow = 1). The blue dots show the
positions of Lagrangian drifters after every 0.05 time step
for trajectories in the time-independent velocity flow (i.e.,
with ug =1, (u1, v1, k1) = (0,0, 0)), the red ones in a time-
dependent flow (with initial conditiongy = 1, (u1, v1, h1) =
(0.5,0.34,0.26)), and the black ones in an ensemble of
velocity flows (with initial conditionsug= 1,41 =0 and

(u1, v1) initial conditions chosen randomly to be uniform in
the interval(0, 1)). (Note that here and in the rest of the pa-
per, the dependence of, v1, 11 on time will be understood
and the plots show the values of these variables at the corre-
sponding time relevant to that discussion.)

1. The figure clearly shows the strong shear effect — the
trajectories near the center rotate much faster than those

ferent orbits — some quasi-periodic orbits on invariant circles, some
periodic orbits, and some chaotic orbits near the two separatrices at
x = 0.5 andy = 0.5. This plot shows that some parts of the phase
space for the Lagrangian trajectories are chaotic, while some are
regular.

1,...,M of the M Lagrangian drifters. The following key
features of this model make it suitable for studying the ef-
fects of nonlinearity in data assimilation.

1. As with other Lagrangian data assimilation problems,
the dynamical model has a skew-product structure — the
drifter dynamics depends on the velocity field but not

the other way around — and only the drifter positions are 3

observed.

2. For the LSW the velocity dynamics is linear, while all
the nonlinearity is contained in the Lagrangian drifter
dynamics, which is observed. Thus the observed com-
ponent is highly nonlinear. This helps us in isolating the
precise nonlinear effects.

www.nonlin-processes-geophys.net/20/329/2013/

away from it, leading to strong distortion of the ini-
tial line of drifters. We will see later that this effect
leads to initial Gaussian distributions being distorted
into “annulus”-shaped non-Gaussian distributions (see,
e.g., Fig4).

2. The shear effect is the basic feature of the time-

independent flow, and the time-dependent flow modifies
it only slightly. Thus, trajectories near the center contain
information mostly about the first Fourier modg and
much less about the other modesg vy, 1. This will
again be revealed by the posterior distributions of these
variables.

The middle panel shows dynamics near the separatrix at
x = 0.5. We note that the origin of the saddle effect in
data assimilation is not just the divergence near the sad-
dle, which is a purely linear effect, but the “differential
divergence” (as shown by the distortion of the line of
initial conditions in the small inset at the top right). It is
the latter of the two that leads to non-Gaussian distribu-
tions.

Nonlin. Processes Geophys., 2033292013
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namics near the saddle @5, 0.5). (This is seen from

0s ; ; ; the fact that there is a large difference between the
oas| | medeponconon = ] blue, red, and black lines, which are the trajectories in

e time-independent, time-dependent, and an ensemble of
time-dependent flows, respectively.) Thus, the trajecto-
ries near the saddle contain information about precisely
those modes, v1, h1 Of the velocity about which the
trajectories near the center do not contain much infor-
mation. Thus, a judicious mix of the trajectories near
the centers and saddles will be required to get enough
knowledge of the full velocity field. This has implica-
tions for the so-called “drifter placement strategies”, as
discussed inSalman et al(2008.

L 5. The divergence near the different saddles leads to dras-

_ tically different dynamics of the drifters that are initially

0al el tne'of rter nearby, as shown in the panel at the bottom. This sen-
. sitivity to initial conditions poses problems for data as-

o TR similation methods in general, as discussed later. (For

2T W - R . . . . . .

ul 7%, eme Feapenont - clarity, the positions at different times are shown in dif-

' b ferent colors. Note also that the velocity flow is different

0 beemaiiiny I I s i . .

0.49 0.495 05 0505 051 0415 for each different drlfter.)

Time dependent flow ------=

0.5 —_—

0.4 -

03

We will see later in Sects}-5 the implications for data
049 05 051 0% o055 o5 0% 0% ob7 assimilation of all these basic facts about the dynamics of
: nonlinear systems. Before beginning that discussion, we will
describe the Bayesian formulation of data assimilation and
the ensemble Kalman filter in the following section.

0.1

Ensemble of flows ------ >

201 L L L L L I I I

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
! Fae ofa sragitine 3 Posterior distribution: exact sampling and ensemble
08 | =000 ‘:5 Kalman filter approximation
t=0.10 -
06T E §é§ . We will use the Bayesian viewpoint outlined in detailApte
04l }% 83? ; Bk et al.(2007, 20083. Here we will only state a few key points
_ :; 8122 . for reference. We will consider deterministic models
02 —0 S B
t=0.50 ﬁ dx
0+ " o n S .'-'_':. Ezf(xvt)v x(tO)ZxONCa (3)
02 T with solutionx () = @ (xg; g, t) for n-dimensional state vec-
oal = e tor x(z) € R" with initial conditions drawn from a prior with
M A probability density functiorp, (xo). The data, or the obser-
0 0.2 0.4

vations, are taken at discrete times and are subject to noise
whose statistical characteristics, or the probability densities,
Fig. 2. The effect of shear and saddle on an ensemble of ini-are assumed to be known. Thus, the observatioa R™ at

tial conditions of the Lagrangian drifter near a cente(aty) =  timez is modeled as a random vector

(0.25,0.25) (top panel) and near the saddle(at y) = (0.5,0.5)

with separatrices = 0.5 andy = 0.5 (middle panel). The diver- Yk = h(x (%)) +nx = h(P (xo; &) + 1k,

gence of trajectories starting near the saddle, within a time span of

0.50 in an ensemble of velocities, is shown in bottom panel. whereh : R" — R™.

Remark 1
4. The middle panel clearly shows that the trajectories

near the saddle are strongly affected by the time-For the specific dynamical model used in this paper — namely,
dependent flow since even small perturbations of thethe linear shallow water equations withf Lagrangian
time-independent flow lead to drastically different dy- drifters — the state vector or the control vectorxi§) =

Nonlin. Processes Geophys., 20, 32841, 2013 www.nonlin-processes-geophys.net/20/329/2013/
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(uo(1), u1(t), v1(t), ha (1), x1(2), y1(t), ..., xp1 (1), yma (1))-
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wherew,, are iid standard Gaussian random variables. Thus,

Since the observations are only of the drifter location, the obz* ~ N (1u(z,), ¥) with u(z) = z+a AV, Inm ()8, andX =

servation vector ig = (x1(tx), y1(te), - -, Xm (t), ymr (1)),
resulting in an observation operatb(x(t)) =[0 Ilx(),
which is a projection on the drifter position components
of the statex(z). In this section we will only discuss the
general setting, and hence in this section, instancesnof
refer to the state vector of the model and those o6 the

28, A. This has a distribution

[——IIZ _M(Z)||2j|

where||z||E =z ¥ ~1z. The standard Metropolis—Hastings
criterion is used for accepting or rejecting the proposed state:

q(z,7") cxcexp

observations, consistent with generally accepted notation inf o« = min{(w(z*)q(z*, z,)/7(20)q(zn,2¥)), 1} > u,, then

data assimilation literaturelde et al, 1997 In the rest of
the paper,(x, y) will refer to the positions of Lagrangian
drifters.

We concatenate the observations at various times. , tx
to write the total observational random vector =

(le,...,yIT() as
y = H(x0) +n, 4)
where

h(x(x)")

Hxo) = (h(x@))7, ...,

and

=l ... nh.

We assume that we are given the probability density func-

tion p,, : R"X — R of the random vectoy. Thus, for a given
set of the observations which area realizationof the ran-
dom vectory, the posterior probabilitPex(x (t10) |71, - - -, Y& )
for the initial conditionx, conditioned on observations up to
time rg is obtained from Bayes’ theorem:

. Yk) = p(xoly) 5)
_ py(y — H(x0)) pr (x0)

B PP

o py(y — H(x0)) pr (x0),

Pex(x(10) 131, - .-

where
p(y)= f Py (y — H(x0)) p¢ (x0)dxo

is a function of the observationsalone, and hencg(y) is
a constant for a given realizatign In particular the constant
of proportionality in Eq. §) does not depend upow. This
distribution can be pushed forward to obtain conditional dis-
tribution Pex(x(?)|31, ..., yk) for the state at any later time
t > 0. Note that when < ¢k, this is asmoothing distribution
whereasPex(x ()| 31, - .., yx) is thefiltering distribution

In this paper we have used Markov chain Monte Carlo
(MCMC) methods in order to get samples from this poste-
rior distribution (z) := Pex(x(t0)|31, ..., yx) for the initial
conditionz := xg. The details of the method are detailed in
Apte et al.(20088. Here we only give a brief description
of the Metropolis—Hastings algorithm we use. The Markov
chain is generated by using a proposal

=z, +aAV,In7(z,)8, + /20, Aw,,

www.nonlin-processes-geophys.net/20/329/2013/

Zn+1 = Z*; otherwisez,+1 = z,, whereu,, ~ U(0, 1) are iid
uniform random variables. The parameater 1 corresponds
to the Metropolis-adjusted Langevin algorithrRabert and
Casella 1999 Roberts and Rosentha001) while « =0
gives the usual random walk Metropolis—Hastingolert
and Casella1999. The appropriate choice of the proposal
covarianceA, step-size’,,, and their adaptation is discussed
in detail in Ref. Apte et al, 2008h Sect. (5.2)).
Continuing the study begun inApte et al. (2008h,
we argue in this paper that this Bayesian posterior density
Pex(x(1)|31. ..., &) — henceforth referred to asact pos-
terior — can be used as a key tool in understanding the ef-
fects of nonlinearity on data assimilation problenighdu
et al, 2006 The method we use for this purpose is to com-
pare this exact posterior with an approximation of it given
by theensemble Kalman filter (EnKRIgorithm Evensen
2009, which we also outline below for further reference in
this paper, using the same notation as the above discussion.
EnKF begins with an ensemb{e (t0), ..., xN(t0)} of N
samples of the state at initial time, drawn from the prior
density p; (xo). For each of the observational time instances
f1,...,tk, the following steps are performed:

1. Evolve the “updated” ensemble
{x,}(li_l),...,x,iv(ti_l)} from time ;,_1 to # to get
the “forecast” ensemble{x}(tl-),...,x}v(ti)}. l.e.,

x}(ti) = d>(x,{(ti,1); ti—1,t;) foreachj =1,...,N
. Calculate the
<Z£’le§ (t,»)) /N and ensemble covariance

N
e
k=1

where &, = (xgi(ti) —xf(t,-)). In practice, for large
system sizer, typical EnKF algorithms avoid calculat-
ing then x n covarianceP;(#;), by using appropriate
matrix identities involving the much smallerx N ma-
trix formed Withs’} as columns.

ensemble mean xr(#;) =

_ 1
Pr(ty) = N_1

. Find an updated ensemble at timdn such a fashion
that the ensemble mean(s;) and covarianceé, (¢;) of
this updated ensemble are the same as the mean and co-
variance given by the following equations, which are ba-
sically the update equations of the Kalman filter:

X (1) =Xp(1) + K (3i — Hxp (1)) (6)

Nonlin. Processes Geophys., 2033292013
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2. The ensemble drawn from the EnKF approximation of
kf,pr

‘ True traject . . NS A
os | '”g:squgz:§§:§§§§§§§ . this prIOl’.Pkf(X(t,)|y1,...,y,_l), denoted byp, ™" and
' u i a
a Initial position ~ m shown with magenta.
Final position

A,

Poincare section

T 3. The ensemble drawn from the exact posterior
Pex(x(t;)191, ..., 1), denoted by p;*° and shown
with red.

03
4. The ensemble drawn from the EnKF approximation of
this posterior Pk (x(t;)|y1, ..., yi;), denoted bypkf’po

| l
02 and shown with blue.

Note that the first two of these are obtained by push-
ing forward from timet_1 to time ; the ensemble of
01 02 03 04 05 samples drawn fromPex(x(fi-1)|1,...,3i—1) and from
Pi(x(ti—1)|y1,...,¥i—1), respectively. The EnKF is consid-
Fig. 3. The trajectory used to study the effect of shear on data as__ered. to “fail” when thePy¢ (x ()| J1. ... ’}A’i? IS @ poor approx-
similation imation of the Pex(x(#;)|y1, ..., ;). This is to be contrasted
with what is commonly known as divergence of EnKF (or fil-
tering/smoothing methods in general), which refers to com-
and paring the results with a “true” state of the system that is
known @Brett et al, 2011). We will later also comment on the

0.1

Pu(ti) = = KH) Py (1), (7) approximation of the “true” state both by the exact and the
where EnKF posteriors.

. We will see later that in many cases including those when
K =Pr(t)H" (pr(ti)HT n Ri) (8)  ENKF fails, the latter two distributions, i.e., the posteriors,

are approximately Gaussian. The main deciding factor for
and H = Vh(i/(t;)). Thus, it is clear that this update failure or success of EnKF will be seen to be the Gaussian-
process is nonunique since only the first two momentsity or the lack of it for the priorPys(x(t;—1)|31, ..., Yi—1)-
of this updated or “posterior” density are specified by This is the main reason for considering the above four dis-
the above two equations. This nonuniqueness gives ris#ibutions. Of course, if the dynamical system is linear,
to the many different versions of the EnKF available in @ GaussianPk(x (ti—1)|31, ..., yi—1) Will lead to Gaussian
the literature, such as the ensemble transform KalmanPki (x(#;)|31, ..., yi—1), and thus EnKF will not fail, as has
filter (ETKF) (Bishop et al. 2001 or the ensemble ad- been known to be the case.
justment Kalman filter (EAKF) Anderson 2001). In
our numerical experiments described below, we imple-
ment the perturbed observations EnKgufgers et al.
1998, (Evensen2009 pp. 41-44) with large enough
ensemble size. We also choose an ensemble size b

4  The shear effect near the center

In this section we will focus on comparison of ex-

w 16 and 16 | f th h bel Gict Bayesian posterior and the EnKF posterior for a
een an In many of th€ cases shown below trajectory, shown in Fig.3, that is near the cen-

and this is chosen so that increasing the ensemble sizg, ™ . (x,y) = (0.25,0.25). The true initial condition is
does not affect the results. Also note that because of th?u0 iy Ul’ hy.x y.) _ ('10 '05 0.8.0.7.0.23,0.33). In all

large ensemble size, the results are expected to be indgpose experiments, the observational error covariatide

pendent of the choice of Kalman filter such as perturbedtaken so that/R = diag(0.005, 0.003). For this specific tra-

observation EnKf or EAKF or ETKF. jectory, we will discuss the following three different numeri-
cal experiments.

3.1 Comparison between EnKF and exact sampling ] _ _
— In the first case, we choose a relatively large time

For any observation timg, we will consider the following between the observationgf = —#_1=0.1, and
four ensembles. these observations are shown by filled circles in

i Fig. 3. The prior in this case is Gaussian with mean
1. The ensemble of samples drawn from the exact prior (0.9,0.2,0.2,0.2,0.2,0.3) and broad covarianc&’

Pex(x(t)|¥1, ..., yi—1), i.e., distribution for state at time

#; conditioned on observations up to time1, denoted where /%[ =diag1.0,0.7,0.7,0.7,0.005 0.005).
by p; ", and shown consistently with black in all the Note that we have chosen the velocity covariance to
plots. be large but the drifter position covariance to be small.

Nonlin. Processes Geophys., 20, 32841, 2013 www.nonlin-processes-geophys.net/20/329/2013/
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ex,po
i

att = TOLbs (top row), and at the second observation 2 att = ZTOLbS (bottom row), withToLbsz 0.1. The scatter plots are féng, uq) (left
column),(vq, ~1) (middle column), andx, y) (right column) variables. Note that the observations are ofithe) variables. The distribution

at timer = 0 has a “broad” covariance (if{L with /ZgL = diag(1.0,0.7, 0.7, 0.7, 0.005,0.005).

Fig. 4. The four distributiongalkf’pr (magenta)piex’pr(black),p!.d’po (blue), andp (red) for the update step of the first observatiea 1

None of the remarks we make below about the posteriorthe first of the three cases described above, i.e., broad prior
are affected by this choice since the drifter positions arewith covariancezf at the initial time and infrequent obser-

observed with error covariance comparable to this prioryations with 7., = 0.1. Note that for the first observation,
covariance. p'f’pr = p; ™ since this is simply the distribution at time
— In the second case, we choose the same ﬂgggz 0.1 t = 0 pushed forward up to time= TOLbS. Since the posterior

between observations as in the first case (and also thafter incorporating the first observation using EnKF is differ-
kf,po

same realization of the observations), but choose a tighent from the exact posterior, i.z; 7 # py*°, the prior at
prior covarianc@:? with other observation times is different for EnKF and exact sam-

pling method, i.e.p £ p*" for i > 1.
It is clear from this figure that the main cause of the fail-

— In the last case, we choose the broad prior covariancé!'® of EnKF in this casekfis the highly non-Gaussian nature
L Ypr

L as in the first case, but choose a smaller time be-Of the prior distributionp, ™. Clearly, a Gaussian approxi-
tween the observationg=. = 0.01. These frequent ob mation of this prior will have a mean that is near the center
. obs — " (x,y) = (0.25,0.25), which is a very low probability state
servations are shown by open triangles in Big. Y e L AN
yop g 9 Of course, since the drifter position is observed with high ac-
We will see that in the first case, the EnKF fails to approxi- CUracy, the EnKF posterior in the position variables is very

mate the posterior, whereas in the latter two cases, it provide§/0Se 10 the exact posterior. But the EnKF fails in the update
a pretty accurate representation of the posterior. We will se@f theunobservedelocity components —the EnKF posterior
in Sect.4.1 that this is precisely because of the shear nearn the velocity variables is a poor approximation of the exact
the center. The above choice of the specific trajectory is onlyPOSterior. We also see that since the shear around the cen-
representative of this phenomena, which is observed in all th&€" is mainly affected by the time independent medeand
trajectories that show qualitatively the same feature, namely!ot much by the time-dependent modes, v1, 1), the up-
the shear. Our studies so far do not lead to quantifying thelat€ inuo is the worst for EnKF, whereas the update in other
effect of varyingTops or the prior covarianc&,, but we are velocity components is reasonably good.
currently working on this aspect. In the case of infrequent observations v\m,ﬁ,sz 0.1 but
with a prior that is also broad in the drifter position com-
4.1 The failure of EnKF update steps due to shear effect ponents, e.g.,,/%, =diag(1.0,0.7,0.7,0.7,0.5,0.5), the
above discussed distributions (not shown) are almost identi-
Figure4 shows the exact and EnKF priors and the posteriorscal to those shown in Figt, except those at the first observa-
pPT (black), pki-Pr (magenta)p®*P°(red), andpkpo (blue) tion timer = TE S (where the prior in position variables have
(see Sect3.1for the notation) for the update step involving a very large covariance). This is because the large prior in
the first and second observation, i.e., at times0.1, 0.2, for position components only affects P, which is very broad

. /25 = diag(0.1,0.07,0.07,0.07, 0.005,0.005).
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0.2

0.3

0.28
0.26 0.28 0.3 0.32

Fig. 5. Same as Fig.4, except that the prior distribution at time =0 has a “narrow” covariance with/E?:
diag(0.1,0.07,0.07,0.07, 0.005, 0.005).

> 032

Fig. 6. Same as Fig4, except thatrosbs= 0.01 and distributions at only the first observation time T(fbsz 0.01 are shown.

in this case. But by assimilating the observation of the posi-Zupanski et al(2007),
tion that has a much smaller error covariance, the posterior
p1"°is seen to be identical to that shown in the above figure 4 (1) = tr [I - E(p(t))(E;)‘l] . 9)

In contrast, Fig.5 shows the prior and posterior distri-
butions for the second of the three cases, i.e., still with in-Here, =, is the covariance of the prior distribution at time
frequent observations WitﬁoLbsz 0.1 but using a prior that ¢ = 0, while X (p) is the covariance of the distributiop§%P",
is narrow in velocity components. We see that even at thep.Po pkipr o pkiPO The Jarger the value af,, the more
first observation time, the priqr'f’pr is not as severely non- information is gained through assimilation and it asymptotes
Gaussian as in the previous case, leading to a good approxio ¢r(l). This is shown in Fig.7 for both the broad prior
mation of the posterior, i.eps ™ ~ pS*P° Because of this ~ (top row) and the narrow prior (bottom row). The left column
the EnKF posterior gives a much better approximation of theshows the degree of freedom for the distributions on all the
exact one at later timeS, as seen in the second row. six variables of the model, while the I’Ight column shows it

Another Way by which the effect of shear in producing f0r the marginal diStributionS on Only the Velocity Variables
the non-Gaussianity is suppressed is obviously by decreago. u1, v1,h1). We notice that in the case of a broad prior,
ing the time between the observations, as shown in &ig. the exact posterior has more information than the prior at
The prior chosen is the same as the first case presented abo@l the times. In fact, in our numerical experiments, at time
but the time between the observationgjg,= 0.01. There- ¢ = 5.0, the value ofi; for the posterior approaches 6, which
semblance with Fig5 is quite striking. In fact, the posterior is the theoretical maximum, as shows in Tahl®n the other
and prior distributions at the second observation time are nofand, the EnKF posterior is unable to gain such information.
qualitatively different from those shown in Fi§.and hence  As indicated before, when the prior is narrow, the EnKF pos-
not shown. terior has as much information as the exact posterior.

In order to quantify this effect, we will compare the so-
called degree of freedom (DOF) for signal, denotg¢),
which in the case of data assimilation has the form from
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For exact prior
/ For exact posterior ——
o / For EnKF prior
/ For EnKF posterior =

0.3 0.4
time

0.2

For exact posterior ——
o For EnKF prior
For EnKF posterior =

For exact prior —— |

0.3 0.4
time

0.2
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For exact prior ——
For exact posterior —— |
For EnKF prior
For EnKF posterior &

0.1

0.2 0.3

0.4 0.5
time

For exact prior —+—
For exact posterior —s— |
For EnKF prior
For EnKF posterior =

0.1

0.2 0.3

0.4 0.5
time

Fig. 7. The degree of freedom EQ)(for various distributions described in the text. Left column is for the full distributions on all the six
variables of the modelug, 11, v1, k1, x, y), while the right column is for the velocity variablésg, u1, v1, h1). Top row is for the case of

broad prior (see Figl), bottom row for narrow prior (see Fi§).

Table 1. The degree of freedom E)(for various distributions described in the text.

Time \ Broad prior Narrow prior
‘ pex,pr pex,po pkf,pr pkf,po ‘ pex,pr pex,po pkf,pr pkf,po

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 4.559 2.930 1.478 1.478 2.568 0.940 0.931 0.931
0.2 4.510 4.940 1.791 1.791 2.568 2.948 0.940 0.940
0.3 4.891 5.218 1.650 1.650 2.948 3.226 0.945 0.945
0.4 5.164 5.317 0.861 0.861 3.226 3.325 0.949 0.949
5.0 5.980 5979 4.143 4.143 3.980 3.979 2549 2.549

4.2 Effect of nonlinearity on assimilation over longer
time periods

EnKF does produce distributions whose covariance is com-
parable to that of the exact distributions but the mean is sys-
tematically biased compared to the exact distribution.

Figure 8 shows the posterior distributions at time= 5.0,

conditioned on 50 observations in the first two of the above

three cases WitEFOLbsz 0.1 (top and middle rows, with broad

and narrow priors at = 0, respectively) and conditioned on 5 Saddle effect

500 observations in the last of the three cases \l(;ﬁ;:

0.01 (bottom row). We see that in the last of the three casesThe nonlinear divergence of trajectories, as illustrated in
when the prior is broad and the time between the observaFig. 2, poses a challenge for data assimilation methods in
tions is short, the EnKF approximates the posterior very well.general. In this section we describe the comparison of the
At the other extreme, when the prior is broad and the time beEnKF and the exact posteriors in order to understand in de-
tween the observations is long, the EnKF gives a very poottail the origin of the saddle effect, using a chaotic trajectory,
approximation of the posterior. In the case when the priorshown in Fig.9, which is near the saddle point &t, y) =

is narrow but the time between the observations is long, thg0.5,0). The true initial condition iSug, 11, v1, h1, x,y) =
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> 01865 .

0.186

0.995 1 1.005 1.01 0.43 0.435 0.44 0.445 0.45 0.1855
U v 0.2175 0.218 0.2185 0.219 0.2195

x

Fig. 8. The four posterior distributionﬁ:.(f’pr (magenta)pf."‘x’pr(black),p!.(f’po (blue), andp?x’po(red) for the first two of the cases described

above, withToLbs: 0.1, for the update step of the last observatiea 50 atr = 50ToLbs: 0.5: broad prior (top) and narrow prior (middle

row). The bottom row is for the third case wmagbs: 0.01, but for the update of the 500th observation, thus at the saﬂfEOOTOSbsz 0.5.

Note that the true values of the variables at this time(ageu 1, vq, 11, x, y) = (1.0,0.539 0.442 0.946,0.21862 0.18650, shown by the
cyan dot in the figures.

T—— EnKF as well as using exact sampling. The broad conclu-
SRR N5 sions we can draw from these are the same as in the case of
the center, except that the cause of these effects is different.
In particular, the prior at each observational time is still non-
Gaussian in the case when the time between the observations

is Iarge:TOLbsz 0.1 and the prior has a broad prior covari-

ance zg with /25 =diag(1.0,0.7,0.7, 0.7, 0.005,0.005)
(first and second row of FidLO for assimilation of first and

ook ._: ol
08
07
06 [
05

04 f

. ,"'_'."1'”££23322¥§§§E§§ﬁ§£§ . ) second opservations, respectively). In contrast W?th the da'ta
Initial position SR for the trajectory around the center, the observations in this
02 Poincare section A case do contain information about the time-dependent modes
04 b N (u1,v1, h1), as noted in SecR.1l Thus, the exact posteriors
. R S R i Sy in all the components are much more narrow compared with
05 -04 03 02 01 0 01 02 03 04 05 assimilation of trajectory near a center. Hence, we see here

an example of how information about different aspects of ve-

alocity flow is obtained through different trajectories, either
near the saddle or near the centers. Similar conclusions have
been discussed and used to propose different drifter place-
ment strategies iBalman et al(2008.

Recall that in the case of trajectory near the center, we
(1.0,0.5,0.8,0.7,0.458 0.4), and the observational error co- 0oked at the effect of assimilating observations over long
variancer is fixed so that/R = diag(0.005, 0.003). time periods, on both the exact and the EnKF posteriors. In

As in the case of the center, Fifj0 shows the posterior ~contrast, for chaotic trajectories such as the one shown in
and prior distributions when assimilating frequent and infre- Fig. 9, it becomes exceedingly difficult to effectively sample
quent observations with a broad and a narrow prior using théhe posterior distributions on initial conditions, conditioned

Fig. 9. The trajectory used to study the effect of saddles on dat
assimilation. Note that the Poinéaplot, shown by black dots, of
this trajectory shows that it is a chaotic trajectory.
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Fig. 10.Same as Fig< (broad prior and infrequent observations, top row is update step at the first observation, second row at second obser-
vation) ands (narrow prior and infrequent observations, third row is update step at the first observation, bottom row at second observation),
except that the observations from the trajectory near the saddle are assimilated.

on more than a few observations. This is clearly because 06 Discussion and future directions
the sensitive dependence of such trajectories on initial con-

ditions. It is known that assimilation of such trajectory data This paper discusses the effects of nonlinearity on data as-
may lead to the divergence of EnKF — the so-called saddl&similation. Adopting the Bayesian framework, we work with
effect (Kuznetsov et a).2003 — in the sense that the EnKF  two different DA methods — namely, the exact Markov chain
estimates and the true trajectory diverge from each other. Ougonte Carlo sampling of the posterior distribution for the
current work or other previous studies of the Lagrangian datanitial conditions of the model conditioned on observations
assimilation problem haveotyet given sufficientindications  over a given time period, and the ensemble Kalman filter
about the conditions under which the EnKF distribution con- (EnkF) approximation of this distribution. Since the EnKF
verges to the exact distribution in the case of trajectories neajipdate step is exact only when the prior distribution at each
the saddle, though there are previous results proving convelstep is Gaussian, the comparison of the exact posterior and
gence of the EnKF distribution to the exact distribution when the EnKF posterior gives us information about which aspects
the dynamics is linear, but to a distribution that may not beof nonlinearity play a significant role in DA. Some of the
the exact Bayesian distribution in the case of nonlinear dy-main conclusions we draw from this comparison are summa-
namics. (e Gland et al.2011) rized below.
The flow near an elliptic fixed point, or center, in a nonlin-
ear dynamical systems generically has a shear or differential
speed of rotation. Specifically, the initial conditions near the
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