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1. Introduction

There has been much excitement over the recent precision electroweak measurements

at LEP and their implication for grand unification. In particular, this data shows that

with a given normalization, corresponding to grand unification of the standard model via

a simply laced group, the running coupling constants become equal at a GUT scale of the

order 1016 GeV[1–3].

In this paper, we are interested in the alternative possibility that the low-energy

physics is unified by a string theory. At first glance, string theory, which is perhaps the

only known consistent theory of gravity, does not predict any running of the couplings

since it is a finite theory. However, when we only look at the massless string modes, then

they can be described by an effective field theory. It is in this context that we talk about

running coupling constants in string theory[4,5].

Since the string scale is set by the Planck mass, it appears that string unification would

occur at the Planck scale. For the heterotic string, this seems to contradict the possible

evidence of unification at 1016 GeV. However, explicit calculations of threshold effects at

the string scale show that these contributions may be large enough to lower the unification

scale to a more phenomenologically acceptable regime. This is understood because, while

a single massive state alone may not give rise to a large threshold contribution, a string

theory has an infinite tower of massive levels, all of which will contribute.

Although previous investigations of string unification have focused on heterotic

models[6–13], we wish to carry out the analysis in the context of four dimensional type II

superstring models. Our reason for doing so is that one of the goals of string theory is

to find a theory with no or few parameters. While the heterotic string has a very rich

structure, it has perhaps too much freedom and gives rise to a plethora of possible vacuum

states. The type II models are a lot more economical (perhaps too much so[14]) and thus

furnish a simpler and more constrained “testing ground” for string theory. Even if type II

models turn out to be unrealistic, we feel it is an ideal testbed for working out techniques

of low-energy string phenomenology because of its relative simplicity.

In order to talk about running coupling constants, we describe the massless string

states by an effective field theory where the massive states have been integrated out. We are

then concerned with matching this low-energy theory with the fundamental string theory.

The tree-level relation between the low-energy coupling constants[15] is g2i = 2g2str/xi where

the factor of 2 arises because we choose a field theory normalization for the length squared
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of the longest roots equal to 1 and where xi is the level of the Kac-Moody algebra (KMA).

Using αi = g2i /4π, the one-loop formula for the running couplings is

1

αi(µ)
=

xi/2

αGUT
− bi

2π
log µ/Mstr +

∆i

4π
(1.1)

where bi are the β-function coefficients calculated in the effective field theory and ∆i are

threshold corrections arising from the matching conditions. Mstr is an effective string

unification scale and αGUT is an effective coupling which will be related to the string

coupling constant below.

In the following, we calculate the ∆i for general type II models which naturally include

KMA representations with xi > 1. We use the background field method[16] to calculate the

one-loop effects, and our calculation parallels that of Kaplunovsky[6]. Finally, we look at a

specific example and calculate the thresholds numerically for an N = 2 SU(3)×U(1)×U(1)

model. We find that the correction only amounts to a small shift of the unification mass

scale and conclude that thresholds may have a smaller effect in type II theories than in

heterotic models.

2. Background Field Calculation

We study the one-loop renormalization of the gauge coupling constants through the

background field method. This allows us to quantize the gauge field by treating it as a

classical background in which the strings propagate. We note that this approach is different

from that of the conventional “strings in background fields” work[17]. The standard work

focuses on studying the consistent propagation of strings in curved space and background

gauge fields. This is achieved when the string sigma-model β-functions vanish and the

model is conformally invariant. For that work, it is sufficient to look at the string tree

level. On the other hand, we are concerned with the space-time gauge coupling constant

β-function which we calculate at the string one-loop level.

Our starting point is the string sigma-model describing the propagation of strings in

a background gauge field. The string effective action in the presence of an Aµ background

can be represented as Γσ−model[X
µ, ψµ;Aµ] where X

µ and ψµ are the string fields. The

background field method[16] tells us that the effective action for the gauge field is given

by Γ[Aµ] = Γσ−model[X
µ = 0, ψµ = 0;Aµ] where Γ[Aµ] =

∫

d4xL(Aµ). In other words, the

gauge field effective action is given by the partition function of the string in the presence

of that gauge field.
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At tree level, the effective lagrangian L(Aµ) is simply the classical Lagrangian

Ltree(Aµ) =
∑

i

− 1

4g2i
F aµνF

µνa (2.1)

where i labels the subgroup. We are interested in the one-string-loop correction to this

tree level result. For simplicity, we examine each subgroup independently. For subgroup

i, we turn on a constant background field-strength, Aiµ(X) = −1
2
FµνX

ν , where Fµν is a

constant (Ajµ(X) = 0 for j 6= i). If the subgroup is nonabelian, it is sufficient to shift

only one of the gauge fields in the subgroup because of gauge invariance. We set all other

components in that subgroup to zero so Fµν above carries no internal gauge index and

is abelian. Although this background gauge field will induce a background gravitational

field via Einstein’s equations, since we are only interested in the gauge group dependent

thresholds, it is sufficient to calculate the two-point background gauge field amplitude[6].

The coefficient of −1
4F

2
µν in this amplitude is then the one-loop correction to the tree-level

gauge coupling 1
g2
i

.

The four dimensional type II string models[18–21] are constructed out of 20 left-

moving (2 space-time and 18 internal) and 20 right-moving light-cone gauge free fermions.

A particular model is described by a set of boundary conditions, Ω, for the 40 fermions. The

partition function is then given as a sum over the sectors (labeled by α and β) generated

by the set of ρα ≡ (ρα; ρ̄α) ∈ Ω

Z =
1

2K+1

∑

α,β

c(α, β)Trα[q
L′

0
−α0 q̄L̄

′

0
−ᾱ0(−1)Nβ ]

=
1

2K+1

∑

α,β

c(α, β)|η(q)|−24
20
∏

i=1

(

ϑ

[

ρiα
ρiβ

]

(q)

)1/2 20
∏

i=1

(

ϑ

[

ρ̄iα
ρ̄iβ

]

(q̄)

)1/2 (2.2)

where Ω is generated by K+1 independent vectors. The c(α, β) = δαǫ(α, β) are phases for

the (−1)Nβprojections as described in [19]. In the above, the prime denotes the omission

of the bosonic zero mode, p.

We work in the operator formalism in order to fix the various normalizations. The one-

loop two-point amplitude contribution to the effective lagrangian for the Aiµ background

can be written in this operator language as

L′(Aiµ) =
1

2K+1

∑

α,β

c(α, β)

∫

d4p

(2π)4
Trα[∆V

i(1, 1)∆V i(1, 1)(−1)Nβ ] (2.3)
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where the sum over sectors corresponds to a generalized GSO projection[19]. The closed

string propagator is

∆ =
α′

2π

∫

|z|≤1

dzdz̄

|z|2 z
L0−α0 z̄L̄0−ᾱ0 . (2.4)

Although this is written in the (NS,NS) sector where α0 = ᾱ0 = 1/2, other spin structures

are treated similarly. In general, α0 = −1/12−b/48+d/24 where (b, d) is the total number

of NS and R left moving fermions respectively in a given sector, and ᾱ0 is similarly defined

for right moving fermions.

The V i(1, 1) are conformal weight (1,1) background field vertices. They are created

from the ordinary type II vertex (in covariant gauge) for emission of a gauge boson with

state b̃a−1/2ǫ · b−1/2|k〉

V a(k, ǫ, z, z̄) = [ 1
2

√
2α′k · ψ̃(z)ψ̃a(z) − i

2
fabcψ̃

b(z)ψ̃c(z)]

ǫ · [iz̄∂̄XR(z̄)− 1
2

√
2α′ψ(z̄)k · ψ(z̄)]ei

√
2α′k·X(z,z̄)

(2.5)

by the substitution ǫµe
i
√
2α′k·X → Aµ(X) provided Aµ solves the equations of motion,

∂µF
µν = 0. For a constant Fµν corresponding to a given component of subgroup i, the

resulting background field vertex is

V i[Fµν ](z, z̄) =
i
4
Fµν

{

Ja(z)[2Xµ(z, z̄)z̄∂̄Xν
R(z̄)− ψµ(z̄)ψν(z̄)]

− i[ψ̃µ(z)ψ̃a(z)][z̄∂̄Xν
R(z̄)]

}

δai.
(2.6)

Here,

Xµ(z, z̄) =
xµ√
2α′ +

√
2α′pµ

4i
(ln z + ln z̄) +

i

2

∑

n6=0

1

n
α̃µnz

−n +
i

2

∑

n6=0

1

n
αµnz̄

−n

=
1

2
(Xµ

L (z) +Xµ
R(z̄))

(2.7)

and

Ja(z) = − i

2
fabcψ̃

b(z)ψ̃c(z) (2.8)

is the quark model current satisfying a KMA

Ja(z)Jb(w) =
kiδ

ab

(z − w)2
+

ifabc
z − w

Jc(w) + regular terms (2.9)

with ki = Cψ/2. Since the fabc are normalized by fabcfabe = Cψδce = 2δce, all ki = 1. This

value of ki is dependent on the root normalization whereas the level of the KMA, given by

xi = 2kih̃i/Cψ for h̃i the dual Coxeter number of a given subgroup defined by h̃ = Cψ/ψ
2
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with ψ2 being the length squared of the longest root in the subgroup (h̃ = N for SU(N)),

is independent of any normalization. This point is important when we wish to compare

the string theory results where Cψ = 2, corresponding to ψ2
i = 2/h̃i, with the conventional

field theory results which are given in a normalization with all roots ψ2
i = 1. Written in

this manner, the first line in (2.6) is identical to the heterotic background vertex[6] except

that Ja, given by (2.8), is no longer a level 1 representation. The additional term in (2.6)

is due to the gauge group being generated by a super KMA in the present case of the

type II string. The δai in (2.6) denotes that we only turn on a single component of the

background gauge field in each subgroup. Because of gauge invariance, it is unimportant

which specific component we choose.

Using standard operator methods, we rewrite (2.3) as

L′(Aiµ) =
1

2K+1

∑

α,β

c(α, β)(2α′π)2
∫

d4p

(2π)4

∫

Γ

d2τ

∫

0≤Imν≤Imτ

d2ν

Trα[V
i(z, z̄)V i(1, 1)qL0−α0 q̄L̄0−ᾱ0(−1)Nβ ]

(2.10)

where z = e2πiν and q = e2πiτ and we have restricted the modular integral over the

fundamental region Γ. The operator trace gives the two-point correlator 〈V V 〉 on the

torus

〈V i(z, z̄)V i(w, w̄)〉α,β ≡ Trα[V
i(z, z̄)V i(w, w̄)qL0−α0 q̄L̄0−ᾱ0(−1)Nβ ]

Trα[qL0−α0 q̄L̄0−ᾱ0(−1)Nβ ]

= − 1

16
FµνFρσ

{

〈J i(z)J i(w)〉

×
[

〈2Xµ(z, z̄)z̄∂̄Xν
R(z̄)2X

ρ(w, w̄)w̄∂̄Xσ
R(w̄)〉

+ 〈ψµ(z̄)ψν(z̄)ψρ(w̄)ψσ(w̄)〉
]

− 〈ψ̃µ(z)ψ̃i(z)ψ̃ρ(w)ψ̃i(w)〉〈z̄∂̄Xν
R(z̄)w̄∂̄X

σ
R(w̄)〉

}

.

(2.11)

After dropping total derivatives, we find that the last term above, which comes from the

additional term in (2.6), does not contribute to L′(Aiµ). Performing the p integration then

gives

L′(Aiµ) =
1

4
F 2
µν

1

16π2

1

2K+1

∑

α,β

c(α, β)

∫

Γ

d2τ

τ2

∫

d2ν

τ2
〈J i(z)J i(1)〉α,β

× 2
[

〈ψ(z̄)ψ(1)〉2α,β − 〈XR(z̄)z̄∂̄XR(1)〉2
]

Trα[q
L′

0
−α0 q̄L̄

′

0
−ᾱ0(−1)Nβ ]

(2.12)
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which is similar to the expression for the heterotic case where we have corrected several

numerical factors in [6].

Using (2.9), we find that

〈J i(z)J i(1)〉 = −ki
(

z
∂

∂z

)2

log ϑ1(z, q) + 〈J i0J i0〉. (2.13)

As pointed out in [6], the first term yields a gauge group independent (apart from the ki)

term which can be combined with the induced gravitational background term. We thus

drop this piece and concentrate on the group dependent charges 〈J i0J i0〉. For the space-time

correlators, both 〈ψψ〉2 and 〈XRz̄∂̄XR〉2 have double poles in the ν plane and are related

to the Weierstrass P function. As a result, the difference is finite, so the ν integral can be

performed to get

L′(Aiµ) =
1

4
F 2
µν

1

16π2

1

2K+1

∑

α,β

c(α, β)

∫

Γ

d2τ

τ2
2〈J i0J i0〉α,β

× 2q̄
d

dq̄
log

(

ϑ

[

ρ̄1α
ρ̄1β

]

(q̄)

/

η(q̄)

)

Trα[q
L′

0
−α0 q̄L̄

′

0
−ᾱ0(−1)Nβ ].

(2.14)

Since all space-time fermions are moded identically, we have arbitrarily picked the bound-

ary condition of the first fermion.

At this stage, the expression is equivalent to that for the heterotic string. However,

for the type II string, we can now use the explicit realization (2.8) of the Ja(z) in terms

of free fermions in order to evaluate 〈J i0J i0〉 explicitly. For a symmetric subgroup, both

fermions generating Ja0 are moded identically, and the result is

〈J i0J i0〉 = 1
2f

i
cdf

i
cd 2q

d

dq
log ϑ

[

ρcα
ρcβ

]

(q) (2.15)

(no sum on i). The spin structure is that of fermion c (or equivalently d). Using the form

of the partition function, (2.2), we finally arrive at the expression

L′(Aiµ) = −1

4
F 2
µν

1

16π2

∫

Γ

d2τ

τ2
2Bi(q, q̄) (2.16)

where

Bi(q, q̄) = − 1

2K+1

∑

α,β

c(α, β)|η(q)|−23ϑ

[

ρ1α
ρ1β

]

(q) 2q̄
d

dq̄

(

ϑ

[

ρ̄1α
ρ̄1β

]

(q̄)

/

η(q̄)

)

×
20
∏

j=3

(

ϑ

[

ρjα
ρjβ

]

(q)

)1/2 20
∏

j=3

(

ϑ

[

ρ̄jα
ρ̄jβ

]

(q̄)

)1/2

1
2
f icdf

i
cd 2q

d

dq
logϑ

[

ρcα
ρcβ

]

(q).

(2.17)
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Recall that the one-loop renormalization to 1
g2
i

is the coefficient of −1
4F

2
µν . We now

want to match this string theory result to that of the low-energy effective field theory of

the massless particles in four dimensions[6,22]. In order to match the normalizations for

nonabelian groups, we have to convert from the type II string normalization of Cψ = 2 to

the field theory convention of ψ2
FT = 1. This gives an overall factor of ψ2

FT/ψ
2
str = h̃i/2 =

xi/2 for subgroup i. For abelian groups, the level is undefined. In this case, we can choose

xU(1) = 2 which corresponds to using the same normalization for the U(1) charges in field

theory and string theory. Equating the bare couplings then gives

16π2

g2i
+ bi

∫ ∞

0

dt

t
CΛ(t) =

xi
2

[

16π2

g2str
+

∫

Γ

d2τ

τ2
2Bi(q, q̄) + Y

]

(2.18)

where CΛ(t) is a field theory ultraviolet cutoff. Y is the gauge group independent terms

that we have not evaluated. The effect of Y is to shift the string coupling constant and

can be absorbed by a redefinition of the unified coupling constant1

1

αGUT
=

4π

g2str
+
Y

4π
. (2.19)

The bi are the field theory β-functions and agree with the string calculation

bi = lim
q→0

xiBi(q, q̄) = −11

3
TrV(Q

2
i ) +

2

3
TrF(Q

2
i ) +

1

6
TrS(Q

2
i ) (2.20)

(in field theory normalization). Here, the traces are over two-component fermions and real

scalers.

Using αi = g2i /4π and following [6] in converting (2.18) into an expression for the DR

couplings, we finally arrive at the matching formula, (1.1), for the running couplings

1

αi(µ)
=

xi/2

αGUT
− bi

2π
log µ/Mstr +

∆i

4π
. (2.21)

The thresholds are

∆i =

∫

Γ

d2τ

τ2
[xiBi(q, q̄)− bi] (2.22)

1 Strictly speaking, modular anomalies arise in the above expressions because the first term

of (2.13) has double poles on the world-sheet and must be regulated[7]. However, the differences

between the gauge couplings, which are our main interest, are indeed modular invariant. As a

result, αGUT itself should only be viewed as a formal expression.
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and the string unification scale is

M2
str =

2e(1−γ)√
27πα′ (2.23)

where γ is the Euler constant. Because of the string relation, κ = 1
2gst

√
2α′, the scale Mstr

can be related in the DR scheme to the string coupling constant with the result[6,8]

Mstr = 0.7× gstr × 1018 GeV. (2.24)

Such a constraint on the unification scale is an additional feature of string unification that

is not found in conventional grand unification.

3. An N = 2 model

For an explicit example of how this formalism works, we now turn to specific type II

models. For the original N = 4 models with dimension 18 gauge groups SU(2)6, SU(4) ×
SU(2) or SU(3) × SO(5), eight right-moving fermions are moded identically, and the β-

functions and thresholds both vanish by N = 4 supersymmetry as in [6]. This result is

easily interpreted by realizing that N = 4 gives a finite supersymmetric gauge field theory.

While as of yet there are no realistic type II string models, the N = 2 SU(3)×U(1)×
U(1) model of [19] has some interesting features. This model is given by K = 2 and is

generated by the basis[19]

ρb0 =
(

(1)12, (1)8; (1)4, (1)8, (1)4, (1)4
)

ρb1 =
(

(1)12, (0)8; (1)4, (1)8, (0)4, (0)4
)

ρb2 =
(

(1)12, (1)8; (0)4, (1)8, (1)4, (0)4
)

.

(3.1)

The massless states come from the sectors with four or less Ramond fermions on each

side. These are given by the boundary conditions ∅, b0b1, b0b2 and b1b2. The states from

the bosonic and the fermionic sectors combine to form an N = 2 supergravity multiplet

with helicities (±2, 2(±3/2),±1), an N = 2 super-Yang-Mills multiplet with helicities

(±1, 2(±1/2), 2(0)) in a singlet and adjoint representation representation of the gauge

group, and N = 2 matter with helicities (2(±1/2), 4(0)) in the SU(3) × U(1) × U(1)

representations

[1, 0,± 1]⊕ [3,−1/
√
3, 0]⊕ [3̄, 1/

√
3, 0]

⊕ [1,
√
3/2,±1

2 ]⊕ [1,−
√
3/2,±1

2 ]⊕ [3, 1/(2
√
3),±1

2 ]⊕ [3̄,−1/(2
√
3),±1

2 ].
(3.2)
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This model arises from the N = 4 SU(4)×SU(2) model by considering the symmetric

subgroups SU(3) × U(1) and U(1) of SU(4) and SU(2) respectively. As a result, the

SU(3) is in a level 4 representation of the KMA so xi = (4, 2, 2) where we have used the

natural normalization that arises from the string theory for the U(1) factors. The field

theory β-functions, (2.20), are easily calculated from the massless spectrum. The result is

bi = (0, 12, 12). Since the SU(3) β-function vanishes at one-loop, it actually vanishes at all

orders because this is a sufficient condition for finiteness of the N = 2 super-Yang-Mills

coupled to N = 2 matter theory[23].

Using the explicit form of the SU(4) × SU(2) structure functions, we see that the

fermions generating the gauge group are either both moded like the first twelve or the

last eight left-moving world-sheet fermions. As a result, we find that BSU(3)(q, q̄) =

3/4BA(q, q̄) + 1/4Bα(q, q̄) and BU(1)(q, q̄) = Bα(q, q̄) where A refers to the first, and

α refers to the last set of boundary conditions. Both U(1) β-functions and thresholds are

identical at the string level.

In order to calculate BA(q, q̄) and Bα(q, q̄), we expand the ϑ-functions in (2.17)

in terms of q and perform a numerical integration over the fundamental region. Since

τ2 ≥
√
3/2 in the fundamental region, |q| ≤ e−

√
3π ≈ 0.0043, so the series expansions con-

verge rapidly. While only sectors with massless particles contribute to the β-functions, all

sectors contribute to the massive string thresholds. We numerically evaluate each sector

independently taking care to combine differences of ϑ-functions analytically to minimize

numerical errors in the limit τ2 → ∞. The actual double integration is performed by open

Romberg integrations in τ1 and τ2. Because Bi(−τ1, τ2) = Bi(τ1, τ2)
∗ where ∗ denotes

the complex conjugate, it is sufficient to integrate twice the real part of Bi over half of

the fundamental region. The thresholds are, of course, real. The result of this numerical

integration is the thresholds ∆i = (−2.35, 0.144, 0.144).

Since there are only two independent running couplings, we define the effective unifica-

tion scale, MU, to be where the string theory normalized couplings meet, i.e. 1/αi(MU) =

(xi/2)/αGUT. The difference, ∆SU(3) − ∆U(1) = −1.32 (in string theory normalization),

then corresponds to an increase of the effective unification scale over Mstr of

MU/Mstr = exp

(

1

2

∆SU(3) −∆U(1)

bSU(3) − bU(1)

)

= exp

(

1.32

24

)

= 1.06 . (3.3)

This 6% increase is rather small compared to estimates made for some heterotic models[9].

It is difficult to interpret this result physically since this is not a particularly realistic
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model. However, this leads us to believe that thresholds may play a smaller role in type II

string unification than it does in the heterotic case.

4. Conclusion

In general orbifold models of the heterotic string, any N = 4 and N = 2 orbifold

sectors will lead to compactification moduli. In these models, the thresholds, ∆i, can be

expressed roughly in terms of the moduli from the N = 2 sectors as[7,10,11]

∆i(T, T̄ ) ≈ −bi log[(T + T̄ )|η(T )|4] (4.1)

where the complex modulus, T , is composed of the radius and an internal axion field of the

2-torus fixed in an N = 2 sector. This expression is pretty much fixed by the requirement

of target space modular invariance. By absorbing this threshold into a redefinition of MU,

we can interpret (4.1) as indicating that the effective coupling constants, gi, only start

running below a radius dependent scale, MU[4,24].

On the other hand, for these type II models, all moduli are fixed to be at the point

where the gauge symmetry is enlarged. As a result, there are no free parameters in the

thresholds that can be adjusted to give large corrections. This feature of type II models

would seem to indicate that the effective unification scale cannot easily be lowered much

below (2.24). However, this should not be viewed as a drawback since the couplings are

no longer required to meet at a point at the unification scale.

We have examined the running of the effective coupling constants and one-loop thresh-

old effects in four-dimensional type II string theory as a possible first step towards relating

strings to low-energy phenomenology. Our interest in studying the type II models is that

it provides a simpler framework than the heterotic string where the fundamental ideas of

unification can be understood. Work is in progress to develop more realistic type II models.

When this is completed, it would be a simple matter to compute the gauge β-functions,

bi, from the massless particle spectrum and the thresholds, ∆i, from (2.22). This would

then be sufficient for predicting the low-energy parameters sin2 θW and αs at the Z
0 mass

which may eventually lead to some testable results of string theory.

This work is supported in part by the U.S. Department of Energy under Grant No. DE-

FG05-85ER-40219.
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