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Abstract

Nonabelian discrete groups are an attractive tool to describe fermion

masses and mixings. They have nonsinglet representations which seem par-

ticularly suitable for distinguishing the lighter generations from the heavier

ones. Also, they do not suffer from the extra constraints a continuous group

must obey, e.g. limits on extra particles. Some of the simplest groups are

the nonabelian discrete subgroups of SO(3) and SU(2), the so called dihedral

groups Dn and dicyclic groups Q2n, which both have only singlet and dou-

blet representations. After studying which vacuum expectation value (VEV)

directions of representations of dihedral and dicyclic groups preserve which

subgroups, we construct a simple model based on the group Q6 × Q6. The

model reproduces the masses and mixings of all quarks and leptons, includ-

ing neutrinos. It has a large mixing angle in the µ − τ neutrino sector, in

accordance with the recent SuperKamiokande results, while keeping a small

quark mixing in the bottom - charm sector. The reason is similar to the one

found in the literature based on the SU(5) group: the large left handed mixing

angle in the lepton sector corresponds to the large unphysical right handed in

the down quark sector. The large mixing is also responsible for the different

hierarchies of the two heaviest families in the up and down sector, and can be

summarized as the order of magnitude relation: ms

mb
∼ tan(θµτ )

√

mc

mt
.
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I. INTRODUCTION

The question of the origin of fermion masses and mixings is one of the most pressing
questions in the Standard Model. Namely, fermion masses and mixings are merely input
parameters and in order to get a handle on so many arbitrary parameters one has to go
beyond the Standard Model. One of the most promising ways to go there is to utilize flavor
symmetries so that one understands the mass couplings as parameters of flavor symmetry
breaking. The major hope of such approach is to minimize the number of input parameters
and therefore have verifiable predictions. Such approaches have been pursued for many years
with the quark masses and mixings and sometimes with charged lepton masses as well.

On the other hand, during the last couple of years we have seen a steady increase in
quantity and improvement in quality of neutrino data, and moreover the first compelling ev-
idence that neutrinos do have a mass. The SuperKamiokande atmospheric data [1] strongly
indicate that there is a large nonvanishing mixing of the muon neutrino. The same ex-
periment and several others [2] also indicate presence of neutrino mixing of the electron
neutrinos coming from the Sun, and there is further [3], though not nearly as strong [4],
evidence of other neutrino mixing phenomena.

The simplest explanation of such data is that neutrinos have a nonvanishing mass, and
similarly to quarks, mix with other neutrinos due to the misalignment of flavor and mass
eigenstates. The smallness of the overall scale of neutrino mass compared to other observed
fermions, can be understood by the see-saw mechanism [5]. On the other hand, the neutrino
mixing is generally explained quantitatively with different neutrino mass textures and many
such examples exist in the literature (for recent reviews see [6,7]).

It is thus an important question how to address all fermion masses and mixings, including
neutrinos, in a viable and simple flavor theory. One of the interesting questions that arises
is how to explain the large mixing in the neutrino sector between the second and third
generation1, when the corresponding mixing angle in the quark sector is very small. However,
the key is to observe that the observed quark mixing angles pertain to the left handed sector.
It might be that their right handed mixing angles are large but they are unphysical and hence
unobservable. However, in a larger, possibly unified theory, the right handed quark sector
might be related to the left handed lepton sector. Such is the case in SU(5) for example,
where the 5 representation contains a right handed quark and a left handed lepton. An
interesting set of textures exploring this left-right relation in SU(5) is found in [8], and still
other may be found in [9]. A particularly interesting aspect of this approach is that the
large mixing can come solely from the neutrino Dirac mass, regardless of the details of the
right handed Majorana mass matrix. Namely, if in the basis where the charged lepton mass
matrix is diagonal, the neutrino Dirac matrix is of the form (with left handed lepton doublets
multiplying from the left)

mν =







0 0 0
0 0 σ
0 0 1





 (1)

1We do not consider the possibility of more than three neutrino species.
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where σ is a number of order unity, and zeroes represent the much smaller neglected entries,
the resulting light neutrino mass matrix

mν
light = mνM−1

N mνT = 1/M33







0 0 0
0 σ2 σ
0 σ 1





 (2)

has only one nonvanishing eigenvalue, and a large mixing angle. Note that the result does
not depend on details of the right handed Majorana mass matrix M , so long as M33 6= 0.

Such models must in general use, additional global symmetries in order to get the desired
texture. The question then arises if one could use only discrete symmetries [10] and build
such textures. Such symmetries may be the only remnant of the grand unified or stringy
origin of an underlying theory. Especially suitable are non-abelian discrete symmetries,
which in general prove to be more restrictive and thus more predictive. Another advantage
of discrete symmetries is that one can explain their origin as remnants of a broken gauge
symmetry, or more generally, of a string theory. The permutation symmetry group S3 has
been often used for building neutrino mass matrices [11]. Other models based on nonabelian
discrete groups have, surprisingly, not been studied much in connection with quark mass
textures [12–15] and even less so for neutrino mass textures: the quaternionic group Q and
dicyclic Q6 has been studied in [16] in connection with the neutrino magnetic moment, and
∆(75), a discrete subgroup of SU(3) in [17].

In this paper we study flavor theories with nonabelian discrete subgroups of a gauged
SU(2) in order to obtain suitable textures for both quark and lepton mass matrices. Such
groups have other motivations as well: cosmological applications, i.e. such as Alice strings
[18]; also the SU(2) origin might be interesting alternative starting point for grand unifica-
tion.

In Section 2 we review and compare two sets of discrete groups: the dihedral groups Dm

which are subgroups of SO(3), and dicyclic groups Q2n which are subgroups of SU(2). As we
will see, just as the SU(2) is the spinorial generalization of SO(3), so are the Q2n spinorial
generalizations of D2n, and we argue why these groups should be taken seriously in model
building.

There are two reasons why Dm and Q2n groups are particularly interesting for building
flavor models. One is the presence of only singlet and doublet representations. This enables
one to accommodate the three generations minimally in such representations, and at the
same time somehow distinguish the heavy third family from the other two [13]. The second
reason is that these groups, even for small m or n, have a rich structure of subgroups, making
it possible to use the scales of symmetry breakings as the origin of fermion mass and mixing
hierarchies.

In Section 3 we enumerate the possible symmetry breaking directions of the vacuum
expectation values (VEVs). In Section 4 we present a model based on Q6 ×Q6 for which in
Section 5 we demonstrate desirable quark mass and mixing hierarchies and an acceptable
large neutrino mixing, in a similar way as in [8]. Finally, Section 6 is the conclusion.
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II. NONABELIAN DISCRETE SUBGROUPS OF SO(3) AND SU(2)

Dihedral groups Dm are the groups of rotations of a regular n-agon in three dimensions
(regarded as a two-faced entity - “dihedral”) and are discrete nonabelian subgroups of SO(3).
They can be defined as

Dm = {a, b|am = e, b2 = e, aba = b}. (3)

They are of order 2m. Simplest examples are D2 which has four elements and is isomorphic
to K = Z2×Z2 (the Klein group), D3 has six elements and is isomorphic to the permutation
group S3, D4 has eight elements and represents the symmetries of a square, etc.

Subgroups of Dm include a Zm (generated by a) and m Z2’s (each one generated by bal,
l = 0, 1, ..., m − 1) and further subgroups depending on whether m is prime or not. For
example, D2n has in addition two subgroups Dn (one generated by a2 and b, and the other
generated by a2 and ba) and n Klein (=Z2 × Z2) groups (each generated by an and one of
the bal, l = 0, ..., n− 1), and possible further subgroups if n is not prime.

Particularly useful matrix representation for the groups D2n is given by

a =







cos θ − sin θ 0
sin θ cos θ 0
0 0 1





 , b =







1 0 0
0 −1 0
0 0 −1





 (4)

where θ = 2π/m.
Dicyclic groups Q2n are spinorial generalizations of D2n and are subgroups of SU(2).

They can be defined as

Q2n = {a, b|a2n = e, b2 = an, aba = b}. (5)

and are of order 4n. The spinorial generalization may be seen here from the property b4 = e
(compared to b2 = e in Dm). Smallest dicyclic groups include Q2 which has four elements
and is isomorphic to Z4, Q4 with eight elements and isomorphic to the quaternionic group,
etc.

Subgroups of Q2n are Z2n (generated by a) and n Z4’s (each generated by an and one of
bal, l = 0, ..., n− 1) and more subgroups depending on whether n is prime or not.

For Q2n the matrix representation (4) generalizes to

a =

(

eiθ/2 0
0 e−iθ/2

)

, b =

(

0 1
−1 0

)

(6)

where θ = 4π/2n.
Representations of both D2n and Q2n have four singlets and n − 1 doublets, while rep-

resentations of D2n+1 have 2 singlets and n doublets. As we wish to compare the dihedral
and dicyclic groups of the same order, we will not consider D2n+1 further. Let us denote the
four singlets 1, 1′, 1′′, 1′′′ and the doublets as 2i, 1 = 1, ..., n − 1. The multiplication table
for the representations of both Dm and Q2n can be found in [13,19] The behavior of the
odd-numbered doublets (i.e. 22i+1) is spinorial, and in the special case when n is odd, 1′′

and 1′′′ are spinorial too.
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It is useful to exhibit the decomposition of the SO(3) and SU(2) representations under the
D2n and Q2n. We start by identifying the 2 of SU(2) with the first spinorial doublet 21 of Q2n,
and then find the decomposition of other SU(2) irreps from the decomposition of products
of 2’s. For SO(3) it is necessary to identify 3 with 1′ + 21. Notice that the Q2n matrix
representation in (6) is the 2-dimensional representation 21 of Q2n, while 3-dimensional
representation (4) of D2n contains representations 1′ + 21 of D2n. The decomposition of the
lowest SO(3) and SU(2) representations under D2n and Q2n are as follows

SO(3) → D2n SU(2) → Q2n

2 → 21
3 → 1′ + 21 3 → 1′ + 22

4 → 21 + 23
5 → 1 + 21 + 22 5 → 1 + 22 + 24

6 → 21 + 23 + 25
7 → 1′ + 21 + 22 + 23 7 → 1 + 22 + 24 + 26

8 → 21 + 23 + 25 + 27
9 → 1 + 21 + 22 + 23 + 24 9 → 1 + 22 + 24 + 26 + 28

(7)

etc., for sufficiently high n. Of course, for a given D2n (or Q2n), there are only n − 1
doublets, and for the doublets with indices higher than n−1 one has to use the identifications
2n ≡ 1′′+1′′′, 2i ≡ 22n−i and 20 ≡ 1+1′. The odd-dimensional SU(2) representations cannot
contain spinorial doublets of Q2n, since they are vectorial. On the other hand, in D2n there is
no notion of spinors and all doublets appear in the representations of SO(3) which are all odd-
dimensional. Since the highest doublet representation is 2n−1 (and first appears in 2n− 2

of SU(2)) the decomposition along the T3 direction is actually mod(n), which correspond to
the subgroup Z2n for Q2n (because of the half-integer isospins in spinorial representations).
Similarly, the decomposition under T3 of SO(3) also shows the decomposition of irreps under
D2n as elements of the Z2n subgroup (notice that here the highest doublet 2n−1 first appears
in 4n− 4 of SO(3)).

We see that from model building viewpoint both groups have their advantages. Q2n

groups offer more choice in putting generations in complete SU(2) multiplets2 without going
to higher representations, where one has to worry about the constraints on extra matter or
anomaly cancellations. Namely, in order to cancel anomalies choosing to put the generations
of fermions in a complete SU(2) representations will satisfy the cancellation conditions linear
in SU(2). Other anomaly cancellation conditions do not have to be necessarily satisfied in
a low-energy effective theory because of the in principle unknown contributions from heavy
fermions [20]. Thus, we can put the three generations into 1 + 1 + 1 or 1 + 2 or a 3 of
SU(2), while in SO(3) we use only 1+ 1+ 1 or 3. On the other hand D2n groups have more
subgroups, and therefore more choice in symmetry breaking. It will then depend on the
underlying theory to decide whether to pick a SU(2) or SO(3) group.

In the next two sections we first list the symmetry breaking directions, and then we build
a model based on Q6 ×Q6.

2This flavor SU(2) group is not to be confused with the usual electroweak SU(2)W .
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III. SYMMETRY BREAKING

An interesting thing to note in (7) is that 5 of SO(3) (or SU(2)) contains a singlet under
any D2n or Q2n. Indeed, the VEV of the singlet in 5 written as a symmetric traceless 3× 3
matrix

< 5 >= vdiag(1, 1,−2) (8)

does leave invariant a larger group. This group is generated by the matrix representation
of D2n in (4), with any θ from 0 to 2π. This invariance group, loosely speaking, consists of
a SO(2) , generated by by the matrices a in Eq. (4) and a Z2, generated by b in Eq. (4).
These do not commute. More precisely, in the case of SO(3) the subgroup is O(2) with two
connected components: one consists of all rotations around the z-axis and is connected to
the identity of SO(3), and the other one has 180◦ rotation around an axis in the x-y plane.
This group is generated by elements from (4) for any θ between 0 and 2π. In the case of
SU(2) this generalizes to the so-called Pin(2) group (generated by elements from (6) for any
θ between 0 and 4π.) which has interesting applications for Alice strings in cosmology [18].

Next, notice that for a given n, the first SU(2) representation which contains a singlet of
Q2n but not of Q2n+2,Q2n+4,etc., is 2n+ 1, since the highest doublet in it, 22n, is identified
by 22n ≡ 20 ≡ 1 + 1′, and similarly 4n+ 2 of SO(3) for D2n. Thus

SO(3)
<4n+2>−→ D2n , SU(2)

<2n+1>−→ Q2n . (9)

We next identify the symmetry breaking directions within D2n and Q2n.

Symmetry breaking in D2n

The 1′ is part of the triplet in SO(3). The triplet is

3 =

(

21
1′

)

(10)

and as can be seen from (4), a VEV of 1′ preserves all transformations involving a =
R12(2π/2n) (but not the ones involving b) and therefore preserves Z2n. On the other hand
21 preserves one of the 2n Z2 subgroups generated by bal (l = 0, 1, ..., 2n − 1) depending

on the VEV direction. In particular < 21 >= (v, cos(2πl/2n)−1
sin(2πl/2n)

v)T preserves the Z2 generated

by bal ( (bal)2 = 1 for any l = 0, 1, ..., 2n − 1). Since this Z2 is not invariant under the 1′,
simultaneous VEVs of 1′ and 21 will break D2n completely.

The VEV of the next doublet 22 conserves one of the n Klein (=Z2 × Z2) subgroups
generated by an and bal since (an)2 = 1 and (bal)2 = 1). This can be seen from the
decomposition of 5 = 1 + 21 + 22 under D2n

5 =







v 0 0
0 v 0
0 0 −2v





+







0 0 v1
0 0 v2
v1 v2 0





+







w1 w2 0
w2 −w1 0
0 0 0





 (11)

The VEVs of the singlet and the doublet 21 were discussed above. The last term is the 22
of D2n. Its VEV is invariant under a Klein group generated by an = diag(−1,−1, 1) and
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bal (l = 1, 2, ..., n− 1), provided w2 =
cos(4πl/2n)−1
sin(4πl/2n)

w1. When there is no relation between w1

and w2, the VEV of 22 simply leaves invariant a Z2 subgroup generated by an.
So far we have shown which symmetry breaking directions are possible with 1′, and

the two doublets 21 and 22. In the same manner one can analyze other doublets 2i, with
i = 3, 4, ..., n − 1, however as we will concentrate in the next section on Q6 and D6 which
only have 21 and 22, we do not study further doublet VEVs here.

The only thing that remains is to show which symmetries remain unbroken when 1′′ or
1′′′ get a VEV. We have seen before that in multiplication tables for representations 1′′ +1′′′

behave as the (fictitious) doublet 2n of D2n or Q2n. Also, as we have seen before, 2n is in
the 2n+ 1 representation of SO(3) and corresponds to T3 = ±n. This tells us that they
preserve the symmetry Zn (generated by a2) of D2n. In addition, when the VEVs of both
1′′ and 1′′′ are equal, in D2n they will leave invariant also b, so that the total symmetry left
invariant by VEVs of 1′′ + 1′′′ in D2n is Dn.

We can summarize the symmetry breaking chains as follows

D2n
<1′>−→ Z2n = {a} ,

D2n

<21>=

(

v
cl−1
sl

v

)

−→ Z2 = {bal} , l = 0, 1, .., 2n− 1 ,

D2n

<22>=

(

v
c2l−1
s2l

v

)

−→ K = Z2 × Z2 = {an, bal} , l = 0, 1, ..., n− 1

D2n
<1′′>=<1′′′>−→ Dn = {a2, b} ; < 1′′ > 6=< 1′′′ >−→ Zn = {a2}

(12)

where cl = cos 2πl/2n and sl = sin 2πl/2n.

Symmetry breaking in Q2n

In SU(2), the triplet can be represented as 2 × 2 traceless matrix ∆ that transforms as
∆ → U∆U †. The components of this triplet are

1′ =

(

f1 0
0 −f1

)

, 22 =

(

0 f2
g2 0

)

(13)

so that < 1′ >= diag(v,−v) is invariant under a from (6) (< 1′ >→ a < 1′ > a†), but not
b, and therefore also preserves Z2n This is also easily understood, since 1′ has a vanishing
third component of isospin, and the multiplication tables allow for isospin multiplications
up to mod(n). On the other hand, the vectorial doublet 22 of Q2n does preserve one of the
n Z4 symmetries of Q2n generated by bal, l = 0, 1, ..., n− 1 (since (bal)4 = (an)2 = 1 ), and
this is achieved when the VEV points in the direction

< 22 >=

(

0 v
−ve4πil/2n 0

)

(14)
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The 21 spinorial doublet of Q2n does not preserve any subgroup of Q2n so its non-zero
VEV breaks the group to nothing. However, one has to stress that spinorial couplings itself
often preserve further accidental discrete symmetries, and we will make use of those in the
next section.

Similarly to D2n, 1
′′ and 1′′′ break Q2n to Zn generated by a2, but cannot be left invariant

under b. To summarize,

Q2n
<1′>−→ Z2n =< a > ,

Q2n
<21>−→ nothing ,

Q2n

<22>=

(

v
−vei4πl/2n

)

−→ Z4 =< an, bal > , l = 0, 1, ..., n− 1 ,

Q2n
<1′′>,<1′′′>−→ Zn =< a2 > .

(15)

IV. THE MODEL

Several flavor models based on groups Q2n and D2n exist. Flavor theories based on Q6

and higher Q2n groups were studied in [13,14]. The quaternionic group and Q6 were also
used to study neutrino magnetic moments [16].

In building a model, we must be guided by simplicity, but at the same time by predic-
tivity as well. Building models on a single low order flavor group, such as Q6 or D6 will
inevitably require some fine tuning to explain all patterns of fermion masses and mixings,
simply because the number of parameters is too small. On the other hand, using a too
large group leads to many free parameters which defeats the purpose. A model which lies
somewhere between these two extremes based on D6 ×D6 was presented recently in [15]. It
is one of the purposes of this paper to present an alternative model based on group Q6×Q6.
This model utilizes the advantage of the Q2n groups over D2n’s: there are more possibili-
ties for dividing the three generations among the irreps so that the anomaly cancellation
requirements are trivially satisfied. We will also show that the smaller number of symmetry
breaking possibilities is enough to build a viable model.

Let us first show why a single Q6 is not sufficient, unless a fine tuning is imposed.
Assuming there are no extra generations, we have three possibilites for the assignment of
fermions: 1+1+1, 1+21 and 1′+22. The left handed quark doublets Qi

L cannot be assigned
to 1 + 1 + 1 since then, if there is no fine tuning, the diagonalization of mass matrices will
require large left handed mixings and therefore lead to large nondiagonal entries in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. Suppose next that Qi

L are in 1 + 21. Then
the right handed up quarks ui

R cannot be in 1 + 21 since then all the up quark masses will
be of the same order because the product 21 × 21 contains a singlet. If ui

R is in 1′ + 22 then
masses of the up and charm quark transform as one of the representations 1′′ + 1′′′ + 21.
However, this would predict that the up and charm masses are equal or at least of the same
order. Namely the VEVs of 1′′ or 1′′′ couple with equal strength to both up and charm,
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and similarly for the VEV of a 22 (unless one fine tunes one of the components to have zero
VEV). Thus we can assign the up quarks only to 1 + 1 + 1. However, the down quarks
then cannot be in 1 + 1 + 1 since that would predict similar ratios of masses in both up
and down sectors in the absence of fine tuning. Down quarks cannot be assigned to 1′ + 22
either because of the same reason as the up quarks cannot, as explained above. Finally,
assignment of down quarks to 1 + 21 would give all the three down quarks the mass of the
same order. A similar discussion can be given for the last case when the Qi

L are assigned to
1′ + 22.

Therefore, we conclude that in the absence of fine tuning, a single Q6 group is not enough
to explain the quark masses and mixings, let alone the lepton sector. We are therefore led
to a bigger group, possibly a product of Q6 with another group. As a simple example we
look at the direct product of two Q6 groups.

The flavor model is based on the group Q6×Q6 where the Standard Model fermions (and
right handed neutrinos) are assigned into the following representations: Qi

L = (1 + 21, 1),
ui
R = (1, 1 + 21), d

i
R = (1, 1′ + 22), L

i
L = (1′ + 22, 1), e

i
R = (1, 1 + 21) and νi

R = (1, 1′ + 22).
There are no new fermions added to the SM field content, except for the right handed

neutrinos νc, which we assume get a large mass. We notice that, if the Q6 ×Q6 originated
from SU(2)×SU(2), the above assignment satisfies Witten’s requirement [21] of even number
of doublets in each SU(2) (corresponding to number of 21s in each Q6).

We assume the global symmetry Q6×Q6 (which is a subgroup of a gauged SU(2)×SU(2)
symmetry broken at a high scale by a pair of 7’s) itself gets broken at some very high scale
by a set of scalar fields, flavons, possibly through the Froggatt-Nielsen mechanism [22]. The
Standard Model Higgs is neutral under the Q6×Q6. We assume that all of the flavons with
“minimal” Q6 numbers exist: (1′, 1),(1, 1′),(22, 1),(1, 22),(21, 1) and (1, 21), but no combined
representations such as (1′, 1′).

We assume the following pattern of symmetry breaking

Q6 ×Q6
<1′>−→ Z6 × Z6

<22>−→ Z2 × Z2
<21>−→ nothing (16)

The important thing to notice is that although no remnant of the Q6 is left unbroken
after 21 gets a VEV, the first generation fermions will still be massless at the tree level. This
is because the Yukawa couplings coming from the product of two spinorial representations
carry an additional Z2 symmetry, so that only some linear combinations of fermion fields
get a mass. This symmetry is of course broken in other sectors of the theory, so that the
first generation masses will be generated through loop corrections. Thus the first generation
masses will in general be suppressed by some small loop factor, and the precise predictions
here will depend crucially on the flavon sector. In the next Section we concentrate on the
masses and mixings of the heaviest two generations while we only make general comments
about the first generation and leave more detailed analysis for a future publication.

V. FERMION MASSES AND MIXINGS IN THE MODEL

We assume that the flavon VEVs satisfy the following hierarchy:

(< 1′ >≡ v′) ≈ (< 22 >≡ (v′σ,−v′σ)) >> (< 21 >≡ (ǫ1M, ǫ2M)) (17)

9



with σ ∼ 1, ǫi ≪ v′/M ≪ 1.
We will assume that the VEVs in both Q6s are comparable for corresponding fields (i.e.

(22, 1) ≈ (1, 22)). This assumption is natural if one assumes a “left-right” symmetric theory
(Q6 ×Q6 or the primordial SU(2)× SU(2))3.

In the limit ǫi = 0 we get

mu ∼







0 0 0
0 0 0
0 0 1





 , md ∼







0 0 0
0 0 0

kdσ −kdσ 1





 , me ∼







0 0 heσ
0 0 −heσ
0 0 1





 ,

mν ∼







gνσ2 −gνσ2 hνσ
−gνσ2 gνσ2 −hνσ
kνσ −kνσ 1





 , MN ∼







0 gN hNλ
gN 0 hNλ
hNλ hNλ 1







(18)

where λ ≡ σv′/M ≪ 1, and g, h, k are some numbers of order one. In the quark sector at
this level only the top and bottom get their mass, while the CKM matrix is equal to the
unit matrix. Notice the large mixing of the second and third generations in the down quark
and charged lepton sectors, which is similar to SU(5) scenarios [8,24].

The ratio of the bottom to top mass is given by mb/mt = ( v′

M
)(v

v̄
), where v and v̄ are the

VEVs of the Standard Model Higgs doublets that couple to down and up sector respectively.
Since we do not know the ratio of the two electroweak Higgs VEVs, we can conclude only
that v′

M
= 1 ∼ 1/60. Similarly in the charged lepton sector only the tau lepton gets its mass

at this level, and it is of the order of the b quark mass.
The last two matrices are the Dirac neutrino and the right handed neutrino mass matrices

and we need to find the mass matrix of the light neutrinos. The inverse of the Majorana
mass matrix can be computed exactly

M−1
N

∼









(hNλ
gN

)2 1
fgN

+ (hNλ
gN

)2 −hNλ
gN

1
fgN

+ (hNλ
gN

)2 (hNλ
gN

)2 −hNλ
gN

−hNλ
gN

−hNλ
gN

1









(19)

where f ≡ 1/(1− 2(hNλ)
2/g2N) and an overall factor of f has been absorbed in the overall

mass scale. Then we find that the mass matrix for the light neutrino masses reduces to the
following form

mν
light = −mνM−1

N mνT ∼







gσ2 −gσ2 hσ
−gσ2 gσ2 −hσ
hσ −hσ 1 + kσ2





 (20)

where as before g, h, k are some numbers of order one. Notice that the orders of magnitude
in the light neutrino matrix do not depend on the details of the Majorana mass matrix, a
feature similar to those of abelian flavor theories with positive charges [25].

3In the usual left-right symmetric theory the parameters were chosen so that the left-right sym-

metry is broken maximally [23]. Here we assume that the parameters are such that the VEVs do

not break the symmetry between the sectors, so that their VEVs are equal in both sectors.
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A 45◦ rotation of the first two lefthanded leptons brings us to the following basis for the
charged leptons and the light neutrinos

me ∼







0 0 0

0 0 −
√
2heσ

0 0 1





 , mν
light ∼







0 0 0

0 2gσ2 −
√
2hσ

0 −
√
2hσ 1 + kσ2





 (21)

leading to two neutrino masses of the same order and one zero mass neutrino. These matrices
are next diagonalized leading to the maximal mixing in the νµ-ντ sector

tan θµτ ∼ σ. (22)

This is consistent with the results of SuperKamiokande.
Second generation fermion masses and mixing angles will be generated by factors of

order ǫ. When the VEV of 21 is turned on (i.e. ǫi 6= 0), it produces the following order of
magnitude entries for the mass matrices:

mu ∼







guǫ22 −guǫ1ǫ2 huǫ2
−guǫ1ǫ2 guǫ21 −huǫ1
kuǫ2 −kuǫ1 1





 ,

md ∼







gdσǫ2 −gdσǫ2 hdǫ2
−gdσǫ1 gdσǫ1 −hdǫ1
kdσ −kdσ 1





 ,

me ∼







geσǫ2 −geσǫ1 heσ
−geσǫ2 geσǫ1 −heσ
keǫ2 −keǫ1 1







(23)

where gi, hi, ki are some unknown couplings of order 1.
It is important to remember that all three matrices have still one zero eigenvalue because

of the accidental symmetry of the Yukawa couplings. However, this symmetry is broken in
other sectors of the theory, and so there will be small loop corrections to the Yukawa matrices
eventually generating the lightest mass eigenvalues. We will comment on this in a minute.

The masses and mixings are to the leading order

mµ

mτ
≈ (ge − heke)σ

√

ǫ21 + ǫ22 ∼ σǫ ,
ms

mb
≈ (gd − hdkd)σ

√

ǫ21 + ǫ22 ∼ σǫ ,
mc

mt
≈ (gu − huku)(ǫ21 + ǫ22) ∼ σǫ2 ,

θµτ ∼ O(1) , θcb ∼ ǫ

(24)

More quantitative relations are obtained if one makes further assumptions that the order
one constants gi, hi, ki perhaps vary by a factor of two or so. Also, the VEVs in the two
different Q6s do not have to be equal in both sectors. For example, if the VEVs in < (21, 1) >
and < (1, 21) > differ by a factor of 3 we get relations

mµ

mτ
∼ σǫ , ms

mb
∼ σǫ

3
, mc

mt
∼ ǫ2

3

θµτ ∼ O(1) , θcb ∼ ǫ/3 ≈
√

mc

3mt

(25)
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The relation between the masses of charged leptons and down quarks is the usual Georgi-
Jarlskog relation. However, notice the additional factor of

√
3 in the θcb expression which

makes it in better agreement with data. However, one has to stress again the uncertainty
with factors of order one at this level of predictivity.

Let us remark on the size of parameters ǫ ∼< 21 > /M , which characterizes the size of
the VEVs of the spinorial doublets 21, and v′/M , which characterizes the size of the VEVs
of the singlets 1′ and doublets 22. Relations (24) ( or (25) ) tell us that ǫ is of order 1/20 or
so, using our assumption σ ∼ O(1). This then tells us that v′/M is somewhere between 1
and 1/20, and does not have to be small. However, since we want to control the size of the
first generation masses (see next paragraph), we do not want this number to be too close to
1.

Finally, let us comment on the first generation masses and mixings. Such terms can be
generated at the tree level only by higher dimensional terms and will be suppressed. Also,
the first generation masses and mixings are not strictly zero at the loop level either since
the flavor symmetries of Q6 and its subgroups are completely broken by the VEVs of the 21
doublets. This will generate masses at the loop level, which will however be suppressed by
the loop factors. This will be for example notable in the down and charged lepton sector
where the VEVs of the components of the 22 doublet will not be in general exactly equal to
the negative of each other. Thus, we expect all first generation fermion masses, including
light neutrinos, to be smaller compared to second and third generation masses. We also
expect suppressed mixing angles involving first generation fermions, including neutrinos,
which seems to favor the small angle MSW solution. We leave more precise statements
concerning the first generation for a future publication.

VI. CONCLUSIONS

Nonabelian discrete groups are an attractive tool to describe fermion masses and mixings.
They have nonsinglet representations which seem particularly suitable for distinguishing the
lighter generations from the heavier ones. Also, they do not suffer from the extra constraints
a continuous group must obey, e.g. limits on extra particles (gauge or pseudogoldstone,
depending on the continuous group being local or global). One of the simplest groups are
the nonabelian discrete subgroups of SO(3) and SU(2), the so called dihedral groups Dn

and dicyclic groups Q2n, which both have only singlet and doublet representations. Such
groups have also a rich structure of subgroups which makes it possible to use the hierarchies
in the symmetry breaking chain as the origin of hierarchies in fermion masses and mixings.
Equations (12) and (15) summarize which VEVs break dihedral and dicyclic groups to which
subgroups.

As an example, we constructed a simple model based on the group Q6 ×Q6. The model
reproduces the masses and mixings of all quarks and leptons, including neutrinos. It has a
large mixing angle in the µ − τ neutrino sector, while keeping a small quark mixing in the
bottom - charm sector. The reason is similar to the one found in the literature based on the
SU(5) group [8]: the large left handed mixing angle in the lepton sector corresponds to a the
large unphysical right handed in the down quark sector. The large mixing is also responsible

12



for the different hierarchies of the two heaviest families in the up and down sector, and can
be summarized as the order of magnitude relation

ms

mb
∼ tan(θµτ )

√

mc

mt
. (26)
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