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Abstract.
We present an experimental, analytical and numerical investigation of the passage of electro-

magnetic signals through a device with voltage-dependent differential capacitance. This dependence
gives rise to the device’s nonlinear response, which can then be tuned by an externally applied
static electric field. The system is modeled with a wave equation for the current and the charge
density with continuity conditions at the boundaries between two linear regions and the nonlinear
medium they sandwich. We derive asymptotic formulae for transmission and reflection coefficients
of a monochromatic signal and its nonlinearity-induced second harmonics. Predictions based on this
analysis are then compared with numerical and experimental results, across a range of parameters
values, including those tuning the nonlinearity by means of an imposed voltage. The experiments
are carried out at microwave frequencies using 1cm2 devices consisting of a superconducting thin
film meandering waveguide on a nonlinear dielectric substrate.
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second-harmonic, differential capacitance, boundaries, method of characteristics, noise, numerical
solution.
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1. Introduction. In this paper we study transmission, reflection and generation
of harmonics when an electromagnetic signal passes through a finite-length region,
which represents a nonlinear medium coupled via realistic boundary conditions to
its environment. Our theory is developed with actual experimental devices in mind,
but is applicable to any system where waves pass through a medium with voltage-
dependent differential capacitance, i.e. the charge does not simply increase linearly
with voltage [1], and where losses are not so strong as to overwhelm nonlinear effects.
Of particular interest in this class of media is the consequence that the functional form
of nonlinearity is tunable: the device response can be controlled with an external bias
voltage, which enables exploration of dynamical behaviors characteristic of quadratic
and cubic nonlinear media within the same apparatus [2]–[11].

The experimental data we collect are obtained by sending electromagnetic signals
along an 8cm length meandering waveguide consisting of superconducting electrodes
on the surface of a 10mm×10mm×0.5mm nonlinear dielectric crystal of strontium
titanate [10]–[15]. Electromagnetic waves in the waveguide with wavelengths of a few
cm have frequencies of a few hundred MHz (microwaves). We model this experimental
set-up with a wave equation coupling the evolution of voltage and current through
a distributed capacitance that depends on voltage and temperature throughout the
nonlinear region. Section 2 formulates this model in its nondimensional form used for
analytical and numerical studies. After introducing the nonlinear wave equation and
the definition of differential capacitance, we express it in terms of its characteristic
variables and the corresponding Riemann invariants [16]. Because of the boundary
conditions, this form cannot be immediately used to provide closed form solutions.
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2 NONLINEAR WAVEGUIDE

We then proceed by carrying out an asymptotic expansion in these variables in the
limit of low amplitude incident signals, through a corresponding expansion of the
boundary conditions. The analysis is simplified by the absence of dispersion and dis-
sipation in the nonlinear wave equation, and produces closed form expressions for the
nonlinear contributions to experimentally measurable quantities, such as transmission
a reflection coefficients.

In Section 3, we study the concrete case of a sinusoidal input from the left of
the region. In the weakly nonlinear regime, we carry out an asymptotic expansion of
the characteristics solution in the parameter a/v∗, where a is the amplitude of the
input signal and v∗ is the characteristic voltage associated with the variation of the
differential capacitance in the nonlinear central region. The calculation of the second-
harmonic generated signal is given in some detail, in Section 3 and Appendix A, since
this establishes a basis for further research on this class of system. The analysis
yields explicit formulae that characterize the frequency-doubling response caused by
nonlinearity.

Section 4 reports on numerical simulations of the governing equations: two cou-
pled PDEs for the charge and current fields in three regions. The charge and current
fields are updated in such a way as to keep current and voltage continuous across
the boundaries, even though the charge-voltage relationship has a discontinuity. Si-
nusoidal signals and noise, band-limited or white, are continuously input from the
left. Fourier transforms of numerical time series in the steady state, at points in the
left and right regions, are used to evaluate the transmitted and reflected signals. We
find good quantitative agreement with analytical results. In particular, we are able
to predict the amplitude of the second-harmonic generated by the nonlinearity.

In Section 5 we compare the analytical and numerical results with experimental
data. These are collected for microwave signals and noise passing through a compact
device that operates at temperatures that are easily attained using liquid nitrogen
or helium, and whose response can be tuned with a bias voltage of a few Volts. The
waveguide is a patterned superconducting thin film; because its lateral dimensions are
much smaller than the wavelengths of the input signals, wave propagation is effectively
one-dimensional. The source of the nonlinearity is the nonlinear dielectric substrate
that the superconducting waveguide rests on[19, 20, 21]. We find very good agreement
with all the major measurable quantities of interest, while qualitative agreement is
achieved when effects neglected by our model, but known to become relevant in certain
regimes (like high frequencies), come into play.

2. The governing equations. The dynamics of wave propagation along the
transmission line is described by the wave equation for the current i(x, t) (Coulomb
s−1) and the charge density q(x, t) (Coulomb m−1)

∂q(x, t)
∂t

= − ∂i(x, t)
∂x

L
∂i(x, t)

∂t
=− ∂v(x, t)

∂x
,(2.1)

where L is the inductance per unit length. A relationship between q(x, t) and the
voltage v(x, t) is needed to close the set of equations (2.1). Let

q(x, t) = Q(v(x, t)).(2.2)



NONLINEAR WAVEGUIDE 3

The “differential capacitance” [1] is the derivative of Q(v):

Cd(v) =
dQ(v)

dv
.(2.3)

In a linear medium q(x, t) = Cv(x, t), where C is constant. Then the differential
capacitance is the constant C and the wave equation (2.1) is linear:

∂2

∂t2
v(x, t) = (LC)−1 ∂2

∂x2
v(x, t).(2.4)

The nonlinear wave equation we study in this work can be written as

LCd(v(x, t))
∂2

∂t2
v(x, t) + L

∂Cd(v(x, t)
∂v

∂v(x, t)
∂t

=
∂2

∂x2
v(x, t).(2.5)

Motivated by the configuration of the experiments, and by analogy with classi-
cal transmission-reflection problems, we study the propagation of waves through a
nonlinear region (region II, 0 ≤ x ≤ l) sandwiched between two semi-infinite regions
(region I, −∞ < x < 0 and region III, l < x <∞) where the wave equation is linear.
Current and voltage are continuous at the boundaries. The situation is illustrated in
Figure 2.1.

We shall assume that the relationship (2.2) is such that we can define its inverse:
v(x, t) = Q−1(q(x, t)). The inductance and differential capacitance per unit length
are as follows:

L =

{
LI

LII

Cd(v) =

{
CI regions I and III

Cm(v) region II,
(2.6)

where LI, LII and CI are constants. We assume that Cm(v) is a positive even function
with maximum at v = 0. See Figure 2.2. Since C ′

m(0) = 0 and C ′′
m(0) < 0 we define

the characteristic voltage associated with the differential capacitance curve by

v∗ =
(

2Cm(0)
|C ′′

m(0)|

) 1
2

.(2.7)

A constant “bias” voltage vb is applied across the three regions. The voltage
at time t and position x is thus the sum of vb and the time-dependent voltages due
to the input signals and their interactions. The input signals consist of one or more
sinusoidal signals and broadband noise. Noise effects are interesting in their own right
[11], but in this paper we shall use noise input as a technique to explore simultaneously
the response at numerous frequencies.

In Section 3 we consider the case where the input signal (the right-going wavetrain
in region I) is given by vin = a cos(2πf(t − x/u)). Our analysis is based on the
assumption that a/v∗ � 1. The bias voltage is not assumed small, but is fixed for
any one experimental or numerical run. Thus the voltage values attained in any one
experiment are in a small interval of the differential capacitance curve, but the full
catalog of nonlinear behaviors can be explored by performing runs at various values
of the bias voltage.

We define the dimensionless fields

V (x, t) =
v(x, t)

v∗
,
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Fig. 2.1. Schematic diagram for solution of the nonlinear wave equation in three one-
dimensional regions. A constant bias voltage vb is applied across all three regions and the right-going
wavetrain in region I is the input signal, vin. The late-time solution has the form of an incident
and reflected wavetrain in region I and a transmitted wavetrain in region III.

Cm(v)

v
v∗

Fig. 2.2. A typical graph of differential capacitance versus voltage. The voltage v∗ is defined
in (2.7).

Q(x, t) =
q(x, t)
CIIv∗

,(2.8)

I(x, t) =
(

LII

CII

) 1
2 i(x, t)

v∗
,

where

CII = Cm(0).(2.9)

In these variables, (2.1) is

∂

∂t

(
Q(x, t)
I(x, t)

)
= − (LIICII)

− 1
2

∂

∂x

(
I(x, t)
V (x, t)

)
,(2.10)
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where V (x, t) is given as a function of Q(x, t) by

V (x, t) =


LIICII

LICI

Q(x, t), regions I and III

1
v∗
Q−1(CIIv

∗Q(x, t)). region II,

We also nondimensionalize space and time by dividing by the length l of the
waveguide and the transit time at the velocity of light in a vacuum, c:

X =
x

l
T = t

c

l
.(2.11)

So region I is −∞ < X < 0, region II is 0 ≤ X ≤ 1 and region III is 1 < X < ∞.
Then (2.10) becomes

∂

∂T

(
Q(X, T )
I(X, T )

)
= −U

∂

∂X

(
I(X, T )
V (X, T )

)
,(2.12)

where

U =
1
c

(LIICII)
− 1

2 .(2.13)

The propagation speed of small-amplitude signals in region II, um(vb) is

um(vb) = (LIICm(vb))−
1
2 ;(2.14)

the constant U = um(0)/c is the dimensionless speed at zero bias. In our numerical
work, we solve the nonlinear PDEs in the form (2.12).

Our analytical work, using the method of characteristics, proceeds by rewriting
(2.12), using

dQ

dT
=

dQ

dV

dV

dT
,(2.15)

in the form

∂

∂X

(
I
V

)
= −U−1

(
0 G(V )
1 0

)
∂

∂T

(
I
V

)
,(2.16)

where the arguments (X, T ) for the fields V and I have been suppressed and

G(V ) =


Gl regions I and III

Gn(V ) region II,

where

Gl =
LICI

LIICII

,(2.17)

a constant, and

Gn(V ) =
Cm(v∗V )

CII

.(2.18)
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Fig. 2.3. The “initial times” functions. The two characteristic curves that cross at (1, S) follow
paths that intersect X = 0 at times τ+(S) and τ−(S).

As V → 0, Gn(V )→ 1− V 2 +O(V 4).
In order to use the method of characteristics [16] in Region II, we introduce the

fields Γ+(X, T ) and Γ−(X, T ), defined as

Γ± = H(V )± I,(2.19)

where

H ′(V ) = (Gn(V ))
1
2 .(2.20)

The fields Γ±(X, T ) are constants on two characteristic curves in the (X, T ) plane
defined by the solutions T±(X) of the equations

dT±
dX

= ±U−1(Gn(V (X, T+)))
1
2 .(2.21)

We shall impose conservation of the fields Γ±(X, T ) along characteristics using “initial
times functions”: given that a characteristic curve passes through X = 1 at time S,
the time at which it passes through X = 0 is

τ±(S) = T±(0)|T (1)=S .(2.22)

Then

Γ±(0, τ±(S)) = Γ±(1, S).(2.23)
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See Figure 2.3. At the boundary between region I and region II, X = 0, we denote

V (0, T ) = VI(T )
I(0, T ) = II(T ).(2.24)

At the boundary between region II and region III, X = 1, we denote

V (1, T ) = VIII(T )
I(1, T ) = IIII(T ).(2.25)

The conditions (2.23) can be rewritten

H(VI(τ±(S)))± II(τ±(S)) = H(VIII(S))± IIII(S).(2.26)

In Section 3, we evaluate the transmitted signal as a function of the input signal using
(2.26).

3. Transmission, reflection and harmonic generation: analytical re-
sults. Let the input signal be sinusoidal with amplitude a at frequency f , that is

vin(x, t) = a cos(2πf(t− x/u)),(3.1)

where u = (LICI)−
1
2 . We nondimensionalize the bias voltage and input amplitude:

A =
a

v∗
and Vb =

vb

v∗
,(3.2)

where v∗ is defined in (2.7). The solution of (2.16) can be expanded as

V (X, T ) = Vb + AV (0)(X, T ) + A2V (1)(X, T ) +O(A3).(3.3)

Thus

VI(T ) = V (0, T ) = Vb + AV
(0)
I (T ) + A2V

(1)
I (T ) +O(A3);(3.4)

II(T ), VIII(T ) and IIII(T ) will be written in a similar way.
The function H(V (X, T )) is expanded as

H(V (X, T )) = H(Vb) + H ′(Vb)(V (X, T )− Vb) +
1
2
H ′′(Vb)(V (X, T )− Vb)2 +O(A3)

= H(Vb) + Gn(Vb)
1
2

(
AV (0)(X, T ) + A2V (1)(X, T ) +

1
4
A2 G′

n(Vb)
Gn(Vb)

(V (0)(X, T ))2
)

+O(A3),

and the characteristic curves and initial times functions as

T±(X) = T
(0)
± (X) + AT

(1)
± (X) +O(A2),(3.5)

and

τ±(S) = τ
(0)
± (S) + Aτ

(1)
± (S) +O(A2).(3.6)
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Finally, the equality (2.26) is expanded as

Gn(Vb)
1
2

[
AV

(0)
I (τ (0)

± (S) + Aτ
(1)
± (S))

+A2

(
V

(1)
I (τ (0)

± (S)) +
1
4

G′
n(Vb)

Gn(Vb)
V

(0)
I (τ (0)

± (S))2
) ]

±
[
AI

(0)
I (τ (0)

± (S) + Aτ
(1)
± (S)) + A2I

(1)
I (τ (0)

± (S))
]

(3.7)

= Gn(Vb)
1
2

[
AV

(0)
III (S) + A2

(
V

(1)
III (S) +

1
4

G′
n(Vb)

Gn(Vb)
V

(0)
III (S)2

) ]
±

[
AI

(0)
III (S) + A2I

(1)
III (S)

]
+O(A3).

In Section 3.1, we shall impose (3.7) keeping only terms proportional to A. The
result is the classical transmission-reflection relation for finite-length linear media:
perfect transmission is found at frequencies such that the length of region II is a
multiple of half the wavelength of the input sinusoid. In Section 3.2, we shall also
keep terms proportional to A2 in (3.7).

3.1. Lowest order. To order A, the characteristic curves (2.21) and (2.21) are
straight lines:

T
(0)
± (X) = T

(0)
± (0)± X

Um
,(3.8)

where the normalized speed of propagation in region II is

Um = Gn(Vb)−
1
2 U =

1
c

(LIICm(Vb))−
1
2 .(3.9)

Thus the initial times functions at order A are simply

τ
(0)
± (S) = S ∓ U−1

m .(3.10)

To order A, the invariant functions along the characteristics are

Γ(0)
± (X, T ) = Gn(Vb)

1
2 V (0)(X, T )± I(0)(X, T )(3.11)

and the condition (2.26) is

Gn(Vb)
1
2 V

(0)
I

(
S ∓ U−1

m

)
± I

(0)
I

(
S ∓ U−1

m

)
= Gn(Vb)

1
2 V

(0)
III (S)± I

(0)
III (S) .(3.12)

Notice that (3.8) and (3.12) apply to the following linear wave equation:

∂

∂X

(
I(0)

V (0)

)
= −U−1

(
0 G(Vb)
1 0

)
∂

∂T

(
I(0)

V (0)

)
.(3.13)

The function G(Vb) is piecewise constant, so the speed of propagation in region II
depends on bias voltage.

With a continuous sinusoidal input, (3.1), the solution of (3.13) after a transient
has the form of an incident and reflected wavetrain in region I and a transmitted
wavetrain in region III. In region I, as T →∞, let

V (0)(X, T )=
1
2

(
exp

(
iΩ(T − X

UI

)
)

+R(0)(Ω) exp
(

iΩ(T +
X

UI

)
)

+ c.c.
)

,

and(3.14)

I(0)(X, T )=
(

LIICI

LICII

) 1
2 1

2

(
exp

(
iΩ(T − X

UI

)
)
−R(0)(Ω) exp

(
iΩ(T +

X

UI

)
)

+ c.c.
)

,
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where c.c. indicates complex conjugate and we have used the freedom to set the origin
of T . The normalized speed of propagation in region I is

UI =
1
c

(LICI)
− 1

2 ,(3.15)

and the normalized signal frequency is

Ω = 2πf
l

c
.(3.16)

Similarly, in region III, let

V (0)(X, T ) =
1
2

(
T (0)(Ω) exp

(
iΩ

(
T − (X − 1)

UI

))
+ c.c.

)
,

and(3.17)

I(0)(X, T ) =
(

LIICI

LICII

) 1
2 1

2

(
T (0)(Ω) exp

(
iΩ

(
T − (X − 1)

UI

))
+ c.c.

)
.

Notice that the phase at X = 1 is absorbed into T (0)(Ω).
The lowest-order transmission and reflection coefficients T (0)(Ω) and R(0)(Ω) are

found by imposing the condition (3.12). Using (3.10), (3.14) and (3.17) gives explicit
expressions for the functions V

(0)
I (T ), I

(0)
I (T ), V

(0)
III (T ) and I

(0)
III (T ) introduced in

(2.24) and (2.25). Thus (3.12) is

1 +R(0)(Ω)± β
1
2

(
1−R(0)(Ω)

)
= e±iΩU−1

m T (0)(Ω)
(
1± β

1
2

)
,(3.18)

where

β =
LIICI

LICm(vb)
=

LIICI

LICII

1
Gn(Vb)

.(3.19)

In the experimental system β � 1 because the impedance in Region II is higher than
that in Regions I and III.

The pair of equations (3.18) can be solved to yield

R(0)(Ω) = −
(1− β) sin( Ω

Um
)

(1 + β) sin( Ω
Um

)− 2iβ
1
2 cos( Ω

Um
)

= −
(1− β2) sin2( Ω

Um
)− 2iβ

1
2 (1− β) sin( Ω

Um
) cos( Ω

Um
)

(1 + β)2 sin2( Ω
Um

) + 4β cos2( Ω
Um

)
,(3.20)

T (0)(Ω) = − 2iβ
1
2

(1 + β) sin( Ω
Um

)− 2iβ
1
2 cos( Ω

Um
)

= −
4β cos( Ω

Um
) + 2iβ

1
2 (1 + β) sin( Ω

Um
)

(1 + β)2 sin2( Ω
Um

) + 4β cos2( Ω
Um

)
.(3.21)

These coefficients, also found in the quantum-mechanical problem of a potential step
[17], satisfy the energy constraint |R(0)(Ω)|2 + |T (0)(Ω)|2 = 1. Perfect transmission,
i.e. |T (0)(Ω)| = 1, is found at resonant frequencies Ω satisfying

sin
(

Ω
Um

)
= 0.(3.22)
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3.2. Next order. In order to impose the equality (3.7) to order A2 we write

AV
(0)
I (τ (0)

± (S) + Aτ
(1)
± (S))

= AV
(0)
I (S ± U−1

m ) + A2V ′
I (S ± U−1

m )τ (1)
± (S) +O(A3),(3.23)

where V ′
I (T ) = d

dT
V

(0)
I (T ). The current I

(0)
I (τ (0)

± (S) + Aτ
(1)
± (S)) is expanded in the

same way. To find the solution at order A2, we therefore need an explicit form for the
initial times function to order A. The relationship that gives the initial times for the
two characteristics that cross at (1, S) is

S = τ±(S)± 1
U

∫ 1

0

(Gn(V (X, T±(X)))
1
2 dX

= τ
(0)
± (S) + Aτ

(1)
± (S)

± 1
Um

∫ 1

0

(
1 +

1
2

G′
n(Vb)

Gn(Vb)
AV (0)(X, T

(0)
± (X))

)
dX + . . . .(3.24)

Using (3.10) yields

τ
(1)
± (S) = ∓1

2
U−1

m

G′
n(Vb)

Gn(Vb)

∫ 1

0

V (0)(X, T
(0)
± (X))dX.(3.25)

In Appendix A, we construct the explicit form of V (0)(X, T
(0)
± ) and perform the

integral in (3.25), leading to the expansion (A.8) of (3.7) to order A2.
The only sinusoidal terms on the right-hand side of (A.8) have frequency 2Ω,

so there is a transmitted second-harmonic signal with amplitude proportional to the
square of the input amplitude [11]. We therefore let the non-constant terms of order
A2 in the expansion (3.4) be

V
(1)
I (T ) =

1
2

[
R(1)(Ω) e2 iΩT + c.c.

]
, I

(1)
I (T ) = −

(
LIICI

LICII

) 1
2 1

2

[
R(1)(Ω) e2 iΩT + c.c.

]

V
(1)
III (T ) =

1
2

[
T (1)(Ω) e2 iΩT + c.c.

]
, I

(1)
III (T ) =

(
LIICI

LICII

) 1
2 1

2

[
T (1)(Ω) e2 iΩT + c.c.

]
.

Then (A.8) becomes

(1± β
1
2 )T (1)(Ω)− (1∓ β

1
2 )R(1)(Ω)e∓2iΩU−1

m

=
1
8

G′
n(Vb)

Gn(Vb)
T (0)(Ω)2

[
(cos

Ω
Um

− iβ
1
2 sin

Ω
Um

)2e∓2iΩU−1
m − 1

∓ i
(

(1± β
1
2 )2

Ω
Um

+ (1− β)
1
2
(sin(2

Ω
Um

)± i(1− cos(2
Ω

Um
)))

) ]
.(3.26)

Explicit expressions for T (1)(Ω) and R(1)(Ω) can now be obtained by inverting
the pair of complex equations (3.26). The result simplifies considerably at resonant
frequencies, (3.22), when (3.26) reduces to

(1± β
1
2 )T (1)(Ω)− (1∓ β

1
2 )R(1)(Ω) = ∓ i(1± β

1
2 )2

1
8

G′
n(Vb)

Gn(Vb)
Ω

Um
.(3.27)
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The solution of (3.27) is

T (1)(Ω) = − 1
16

i
β

1
2

G′
n(Vb)

Gn(Vb)
Ω

Um
(1 + 3β),(3.28)

R(1)(Ω) = − 1
16

i
β

1
2

G′
n(Vb)

Gn(Vb)
Ω

Um
(1− β).(3.29)

Note that G′(0) = 0 and G′(V ) < 0 when V 6= 0. A relatively simple form is also
found in the limit Ω

Um
� 1, when

(1± β
1
2 )T (1)(Ω)− (1∓ β

1
2 )R(1)(Ω)e∓2iΩU−1

m

= ∓T (0)(Ω)2i(1± β
1
2 )2

1
8

G′
n(Vb)

Gn(Vb)
Ω

Um
.(3.30)

The solution of the system (3.30) is

T (1)(Ω) = − i
8
T (0)(Ω)2

G′
n(Vb)

Gn(Vb)
Ω

Um

(1 + 3β) cos 2 Ω
Um

+ i(3β
1
2 + β

3
2 ) sin 2 Ω

Um

2β
1
2 cos 2 Ω

Um
+ i(1 + β) sin 2 Ω

Um

,

(3.31)

R(1)(Ω) = − i
8
T (0)(Ω)2

G′
n(Vb)

Gn(Vb)
Ω

Um

1− β

2β
1
2 cos 2 Ω

Um
+ i(1 + β) sin 2 Ω

Um

.

At the nth resonance, Ω
Um

= nπ, so (3.31) is a rather good approximation in typical
experimental situations where n ≥ 4.

The factors on the right-hand-side of (3.31) have simple interpretations. The fac-
tor T (0)(Ω)2 means that the amplitude of the second harmonic is maximized when
the frequency of the input signal is at resonance. The factor G′

n(Vb)/Gn(Vb) gives the
explicit dependence on bias voltage; because G′

n(0) = 0 there is no second harmonic
generation at order A2 for zero bias. The factor Ω = 2πfl/c means that the second
harmonic amplitude is proportional to the “effective length” of the waveguide: the
number of wavelengths over which the nonlinearity has time to act. The final fac-
tor involving transcendental functions is complicated. However it can be seen that
the dependence on 2Ω/Um will produce secondary maxima in the second-harmonic
amplitude at frequencies halfway between resonances of the input signal. Finally, we
remark that the constant terms (zero-frequency “DC-component ”) of amplitude A2,
also generated by the quadratic component of nonlinearity, can always be absorbed
into the bias voltage and hence their effects are already accounted for by Vb-variations.

4. Comparison with numerical solutions. The response of a finite-length
nonlinear device was modeled by dividing the space into three one-dimensional re-
gions. In the central region (region II) the wave equation, two coupled PDEs for
the charge and current fields (2.12), is nonlinear. The numerical runs described in
this Section used values of the capacitances and inductances, length of region II and
input frequencies, chosen to be similar to those found in the experiments described in
Section 5 below [23].

In the interior of each region, timestepping is performed according to the Lax-
Wendroff method described in Appendix B.1. At the boundaries between region I
and II and between regions II and III, we impose continuity of voltage and current.
In Appendix B.2 we describe how this is made consistent with the different relations
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X

Fig. 4.1. Numerical voltage field as a function of X for T = 1000. In regions I and III (X < 0
and X > 1) the wave equation is linear; in region II (0 ≤ X ≤ 1), the wave equation is nonlinear.
A sinusoidal signal was input at f = 250MHz with a = 0.1V. The parameters are LICIc2 = 9 ,
LIICIIc2 = 2500 and l = 6cm, vb = 1V and v∗ = 10V. The partial differential equations (2.12) were
solved with ∆X = 0.001 and ∆T = 0.001.

between charge and voltage functions that hold to the left and to the right of the
boundary. In the numerics, we can examine the whole configuration of current and
charge at any time. An example numerical configuration (a“snapshot” at one instant
of time) is shown in Figure 4.1.

Regions I and III, semi-infinite in the PDE (2.12), are of finite length in the
numerical scheme. In Region I, which stretches from X = −L to X = 0, there is a
prescribed input signal; the update employed at the left-most extremity for producing
it is derived in Appendix B.3. Fourier transforms of numerical time series at points
in the regions I and III are used to evaluate the transmitted and reflected signals.
Sinusoidal input signals may be accompanied by noise, either white or with constant
power in a window of frequencies. The latter “band-limited” noise is generated either
by filtering white noise or by explicitly constructing a signal as a sum of Fourier
components with constant power in the frequency window.

Our analytical and numerical methods are not altered by changes in the form of
the function C(V ), assuming that it is a positive even function with maximum at 0.
In the numerical runs producing the results displayed in Figures 4.1 to 4.5, we used
the following form:

Cm(v) = CII

(
1 +

( v

v∗

)2
)−1

,(4.1)

giving the convenient explicit form V (x, t) = tan(Q(x, t)) in region II and

Gn(V ) =
1

1 + V 2
.(4.2)

The parameter values used in the numerical runs reported in this Section were



NONLINEAR WAVEGUIDE 13

0.01

0.1

1

0 50 100 150 200 250 300 350

amplitude
/Volt

f

transmitted
incident plus reflected

Fig. 4.2. The solid lines are modulus of the transmission coefficient T (0)(Ω) and of 1+R(0)(Ω)
as a function of frequency at (3.21). The dots are the Fourier transforms of numerical time series
with white noise input.
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Fig. 4.3. Transmission and second-harmonic generation as a function of input frequency. The
transmitted amplitudes at f and 2f are shown on a logarithmic scale. Numerical results are shown
as solid circles and analytical results as lines. In particular, the dashed line corresponds to the high
frequency limit (3.31), and, as seen, it becomes accurate past frequencies of about 50MHz.

as follows. The length of Region II was taken to be l = 6cm and the characteristic
voltage v∗ = 10V. The L and C constants in the Regions were given by LICIc

2 = 9,
LIICIIc

2 = 2500. Thus the speed of light in regions I and III was one third of that in a
vacuum, c. The corresponding speed in region II and the factor β are bias-dependent;
at zero bias the speed was c/50 and β = 0.0036.
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Fig. 4.4. Transmission and harmonic generation as a function of bias voltage. In the upper
graph the output amplitudes at f , 2f and 3f are shown on a logarithmic scale. In the lower graph
the amplitude at 2f is shown on a linear scale. Numerical results are shown as solid circles. The
solid lines use (3.21) and (3.26). The dotted line, using (3.31), differs visibly from (3.26) only at
low frequencies. In each case f = 150MHz and a = 0.1V.

The results of one numerical experiment are shown in Figure 4.2. The input
was broad-band white noise with small amplitude, so that all frequencies have equal
average amplitude in the input. The solid lines are the predictions obtained from
(3.21). Assuming a flat input spectrum, we obtain the transmission coefficient T (0)(Ω)
as the Fourier transform of the time series in region III, showing resonances when
Ω/Um was a multiple of π. (With l = 6cm, resonant frequencies are at multiples
of 50MHz.) The numerical results, shown as dots, fluctuate about the theoretical
line as expected. In region I, the time-dependent voltage is the sum of incident
and reflected signals; the Fourier amplitude in this case, shown in the figure, is 1 +
R(0)(Ω). At resonant frequencies (3.22), there is perfect transmission and R(0)(Ω) =
0. Halfway between resonant frequencies, at frequencies satisfying sin

(
Ω

Um

)
= ±1,

we find minimum transmission

|T (0)(Ω)|2min =
4β

(1 + β)2
(4.3)

and

R(0)(Ω) = −1− β

1 + β
= −1 + 2β +O(β2);(4.4)

at these frequencies R(0)(Ω) ' −1, the reflected and incident signals almost cancel
each other out. This feature is clearly visible in the numerical results. No nonlinear
effects are displayed in Figure 4.2, but the run serves as a stringent check on the
numerical algorithm over several orders of magnitude in voltage.

The effect of the nonlinearity in generating an output at twice the input frequency
is shown in Figure 4.3, which summarizes the results of a series of numerical runs,
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each with a single sinusoidal input. The input amplitude a = 0.1V was fixed and all
runs were performed with bias voltage vb = 2.01; the frequency f of the input signal
was changed from run to run. At the chosen bias voltage, resonant frequencies are
multiples of 51MHz. The Figure shows the transmitted amplitude at frequencies f
and 2f , along with the analytical predictions. The amplitude at f is given by (3.21).
The prediction at 2f , obtained by inverting (3.26), is remarkably accurate over many
orders of magnitude in the transmitted amplitude. The asymptotic formula for high
frequency (3.31), shown in this figure as a dashed line, is indistinguishable from the
full inversion of (3.26) and the numerical data past frequencies of about 50MHz.

The features of the second-harmonic amplitude predicted by (3.31) are clearly
evident in the numerical results. The amplitude of the second harmonic is maximized
when the frequency of the input signal is at resonance. Local maxima of the sec-
ond harmonic amplitude are also found at frequencies halfway between resonances
of the input signal. The height of the maxima coinciding with the nth resonance is
proportional to n because the second-harmonic amplitude is proportional to Ω.

A similar series of runs was used to produce Figure 4.4, this time with all param-
eters except bias voltage held fixed. The input frequency is chosen to be at resonance
at zero bias. The top graph shows the transmitted amplitude at f , 2f and 3f on a
logarithmic scale. (We have not attempted to calculate the 3f amplitude, but con-
jecture that is is proportional to C ′′(Vb), and hence nonzero at Vb = 0.) In the lower
Figure we plot the transmitted second-harmonic (2f) amplitude and the approxima-
tion (3.31) on a linear scale. At zero bias voltage, it is zero at order A2 because
C ′(0) = 0. The second-harmonic amplitude at first increases with bias voltage, then
decreases as the bias voltage is further increased, as the resonant frequency is shifted
away from the input frequency. For sufficiently large bias voltage, the shift in resonant
frequencies is such that the input frequency can once again be at resonance.

The convenient analytical forms (3.31), for the amplitudes and phases of the trans-
mitted and reflected second harmonic at order A2, give several intriguing possibilities
if the input signal consists of two or more sinusoids. For example, in addition to a
sinusoidal input at frequency f , another at frequency 2f can be chosen so that the
total transmission at 2f is zero to order A2, by cancellation of the second harmonic
produced by the nonlinearity with the transmitted signal at 2f . This cancellation
can be produced for any input frequency and will be explored further below in the
case where f is a resonant frequency. Alternatively, for an input frequency slightly
off resonance, it is possible to choose a combination such that the reflected signal is
free of harmonics to order A2.

In Figure 4.5 we show the transmitted amplitude at f and 2f , as a function of
the phase φ, when the input signal is given by

vin = a cos(2πft) + b cos(4πft + φ),(4.5)

where f is chosen to be the lowest resonant frequency at a non-zero bias voltage. At
lowest order, the transmitted signal is equal to the input signal, since 2f is also a res-
onant frequency. There is another source of transmitted power at 2f : the generated
second-harmonic signal with amplitude, given by (3.28), proportional to a2/v∗. We
choose b in (4.5) to be equal to that amplitude. (With the parameters in Figure 4.5,
|T (1)(Ω)| ' 1.3 so b = |T (1)(Ω)|a2/v∗ ' 0.000013.) According to (3.28), the phase of
the generated 2f signal is 1

2π. Thus when φ = − 1
2π, the generated and directly trans-

mitted outputs have equal amplitude and opposite phase; the result is to eliminate the
total transmitted 2f signal to order A2. (Also shown in Figure 4.5, as a dotted line,
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Fig. 4.5. Transmitted amplitude at f and 2f versus phase φ, logarithmic scale. The input
signal is given by (4.5), with the amplitude b chosen to be equal to that of the the second harmonic
generated by the nonlinearity from the input at frequency f with amplitude a. The parameters were
vb = 2.01V, f = 51MHz and a = 0.01.

is the transmitted amplitude at f , which is independent of φ and indistinguishable
from the input amplitude.)

The procedure of producing a pure transmitted signal with frequency f from
a mixed input can in principle be carried to nth order, using an input signal with
amplitudes and phases chosen to eliminate n multiples of f from the transmitted
signal. The result would be a unique multi-frequency input that gives a pure single
frequency transmitted signal through a given device. This uniqueness property, and
its dependence on the external bias field, might have encoding implications in signal
transmission protocols.

5. Comparison with an experimental system. In this section we report on
experimental results. Microwave signals and noise were passed through a small device
whose properties depend on operating temperature and applied voltage. A schematic
diagram is shown in Figure 5.1. The devices are 1cm×1cm×0.5mm, consisting of
0.4µm-thick superconducting YBa2Cu3O7 (YBCO) film on single-crystal substrates
[22]. They are manufactured with two parallel meandering gaps (width 15µm) pat-
terned into the superconducting thin film. The result is a waveguide with a narrow
meandering centerline (length l ' 8cm and width 20µm) and two groundplanes (the
rest of the superconducting film).

A constant voltage difference, the “bias” voltage, is maintained between the cen-
terline and the groundplane. Because the lateral dimensions of the waveguide are
much smaller than the wavelengths of the input signals, wave propagation is effec-
tively one-dimensional. In the superconducting state, below the transition tempera-
ture Tc ' 85K, resistive losses of the YBCO film are negligible. Working temperatures
were in the range 20K–60K. The source of the nonlinearity in the experiment is the
substrate that the superconducting waveguide rests on: a single crystal of strontium
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Fig. 5.1. Device top view and schematic diagram. The input circuitry, device, and output
circuitry are modeled as regions I, II and III. The time-dependent voltage in region I is a sum of the
incident and reflected sinusoidal signals, Vin and Vre. In the central region, region II, the wave equa-
tion is nonlinear. Signals travel along the meandering waveguide patterned into a superconducting
thin film. The transmitted signal in region III, Vtr, is measured and analyzed.

titanate, SrTiO3 (STO) with large permittivity. Due to the nonlinear dielectric prop-
erties of STO [19, 20], the shunt capacitance per unit length of the waveguide depends
on temperature and on voltage. The resulting voltage-dependent differential capac-
itance produces behavior that combines resonance effects with harmonic generation
and frequency mixing. More details can be found in [3], [10] and [11].

Our quantitative studies begin with a measurement of the differential capaci-
tance as a function of temperature and voltage. We assume that the inductance per
unit length, LII, is unaffected by changes in temperature and voltage. (The value
LII = 505.7pH/mm is deduced from measurements of the capacitance and resonant
frequencies of the devices [11].) Measurement of the differential capacitance is con-
veniently carried out using a small-amplitude broadband noise input at various tem-
peratures and bias voltages. The dominant feature of the transmitted spectrum is a
series of maxima at resonant frequencies. The resonant frequencies at bias voltage vb

are fn(vb), where

fn(vb) =
n

2
um(vb)

l
, n = 0, 1, 2, . . . ,(5.1)

and the propagation speed for small-amplitude signals, um(vb), is given by (2.14):
um(vb) = (LIICm(vb))−

1
2 .

Experimental results for the transmitted signal as a function of input frequency
are shown in Figure 5.2. The input in each case was broad-band white noise and
the operating temperature was 40K. Because Cm(vb) is a decreasing function on vb,
the distance between resonant peaks increases when a bias voltage is applied. The
theoretical curve accurately gives the position of the resonant peaks in transmission,
but does not predict their decreasing height as a function of frequency. The reason is
that the model PDEs (2.12) do not include losses whose effect is to reduce transmission
by a factor that increases with frequency.

The decreasing height of resonant peaks does not prevent us from accurately
determining their position. Using (2.14) determines the differential capacitance as
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Fig. 5.2. Experimental and theoretical results: transmission vs frequency. The experimental
results were obtained at operating temperature 40K. In the upper graph, bias voltage = 0. In the
lower graph, bias voltage = 10V. The solid lines are the theoretical curve (3.21), for linear lossless
transmission. The parameters are LICI/LIICII = 9/2500 and l = 7.8cm. The positions of the
resonance peaks are well predicted, but successive experimental peaks are of reduced height due to
losses in the device.

a function of voltage; Cm(vb) is related to the frequency fn, of the nth peak in the
transmission-vs-frequency curve by

LIICm(vb) =
(

n

2
1
l

)2

f−2
n (vb).(5.2)

The upper plot in Figure 5.3 is the position of the third resonance as a function of
bias voltage at operating temperature 40K. The function used to obtain the fit shown
as a solid line is

f(vb) = f(0) + c1vb tanh(c2vb);(5.3)

where the two parameters c1 and c2 are adjusted once to obtain a fit through all the
experimental points. The lower plot in Figure 5.3 is the ratio Cm(vb)/CII, deduced
from the upper curve using (5.2). In Figure 5.4, similar results are shown for operating
temperature 20K. At this lower temperature, differential capacitance is a more rapidly-
varying function of bias voltage. As the figures show, the functional form (5.3) appears
quite suitable for the purpose of modeling the medium’s nonlinear response within
the range of voltage amplitudes we have considered.

Figure 5.5 summarizes experimental data taken at 40K using an input signal of
fixed amplitude at f = 215MHz. The frequency is chosen to be at the sixth resonance
peak for zero bias voltage. The upper part of the plot shows the transmitted amplitude
at f , normalized to its value at zero bias. As bias voltage increases away from zero,
there is a shift in the resonance frequency (compare Figure 5.2) so that the input
frequency is no longer a resonant frequency and the transmitted power decreases.

Fig. 5.2. Experimental and theoretical results: transmission vs frequency. The experimental
results were obtained at operating temperature 40K. In the upper graph, bias voltage = 0. In the
lower graph, bias voltage = 10V. The solid lines are the theoretical curve (3.21), for linear lossless
transmission. The parameters are LICI/LIICII = 9/2500 and l = 7.8cm. The positions of the
resonance peaks are well predicted, but successive experimental peaks are of reduced height due to
losses in the device.

a function of voltage; Cm(vb) is related to the frequency fn, of the nth peak in the
transmission-vs-frequency curve by

LIICm(vb) =
(

n

2
1
l

)2

f−2
n (vb).(5.2)

The upper plot in Figure 5.3 is the position of the third resonance as a function of
bias voltage at operating temperature 40K. The function used to obtain the fit shown
as a solid line is

f(vb) = f(0) + c1vb tanh(c2vb);(5.3)

where the two parameters c1 and c2 are adjusted once to obtain a fit through all the
experimental points. The lower plot in Figure 5.3 is the ratio Cm(vb)/CII, deduced
from the upper curve using (5.2). In Figure 5.4, similar results are shown for operating
temperature 20K. At this lower temperature, differential capacitance is a more rapidly-
varying function of bias voltage. As the figures show, the functional form (5.3) appears
quite suitable for the purpose of modeling the medium’s nonlinear response within
the range of voltage amplitudes we have considered.

Figure 5.5 summarizes experimental data taken at 40K using an input signal of
fixed amplitude at f = 215MHz. The frequency is chosen to be at the sixth resonance
peak for zero bias voltage. The upper part of the plot shows the transmitted amplitude
at f , normalized to its value at zero bias. As bias voltage increases away from zero,
there is a shift in the resonance frequency (compare Figure 5.2) so that the input
frequency is no longer a resonant frequency and the transmitted power decreases.
The decrease is less rapid in the experiment (empty circles) than in the theoretical
curve (dotted line) because losses have the effect of widening (as well as reducing
the height of) resonant peaks. Dielectric losses are also known to decrease with bias
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Fig. 5.3. Experimental results at operating temperature 40K and best fit using (5.3). Upper
graph: frequency at the n =3 peak as a function of bias voltage. Lower graph: Differential capaci-
tance as a function of bias voltage divided by CII = Cm(0).
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Fig. 5.4. Experimental results at operating temperature 20K and best fit using (5.3). Upper
graph: frequency at the n =4 peak as a function of bias voltage. Lower graph: Differential capaci-
tance as a function of bias voltage divided by CII = Cm(0).

voltage [22, 24]. The solid line and filled circles show the transmitted amplitude at
2f as a function of bias. The reason for the initial rapid increase with bias is that the
amplitude of the second harmonic signal is proportional to C ′

m(vb) and C ′
m(0) = 0.

The subsequent decline is due to the decrease of the transmitted power at frequency
f (compare (3.31)). Also shown is the third harmonic power, which has a nonzero
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Fig. 5.5. Experimental results and theoretical curves: transmitted amplitudes at f (empty
circles), 2f (filled circles) and 3f (crosses) versus bias. The input is of fixed amplitude and frequency
f = 215MHz. The lines are the theoretical curves using asymptotic analysis of the lossless nonlinear
PDE (2.12). The dotted line is the transmission coefficient from the linear equation. The solid line
shows the order A2 second harmonic amplitude (3.31).

value at zero bias voltage and then decreases slowly [11].

6. Conclusion. A few points emerge from our side-by-side modeling and experi-
mental investigation of electromagnetic propagation in a class of nonlinear waveguides.
First, our simple voltage-current model seems to capture most of the physical features
of the experimental device, including the tunable nonlinearity via an externally ap-
plied electric field. We find quantitative agreement with most measurable quantities.
Some effects we neglect, such as dissipation, do show up in the data, but at least for
the experimental regimes we have focused on they can be considered secondary.

Second, transmission of sinusoidal signals through a linear medium is maximized
when the length of the region is equal to a multiple of half the wavelength. This
remains the dominant feature in transmission through the nonlinear region we stud-
ied, because the signal amplitude is small enough and the nonlinear region is short
enough that nonlinear and dispersive effects have a subdominant role. The main ef-
fect of the nonlinearity is to produce a second-harmonic output, with amplitude that
is well predicted by an expansion that assumes that the input signal is sufficiently
weak. The explicit and, especially near resonance, relatively simple formulae we have
derived using an asymptotic approach perform well against both numerical solutions
of our model equation and experimental results, thus giving us confidence that the
theoretical building blocks we have established can be used in other studies of this
class of materials.

Third, the numerical simulations in which we mix the input signal with a second
harmonic show that it is possible to achieve transparency (or total reflection) at
second order in the input amplitude. In principle the expansion we have set up
could be carried out to higher orders, thus eliminating all higher harmonics from
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the transmitted signal. Such transparency, and its dependence on the external bias
field, might be exploited for technological applications, such as signal transmission
protocols.

The main difference between our system and optical systems [25] is the absence of
frequency dispersion. Future work will apply and extend the tools we have developed
in this paper to study arrays of similar devices, where the longer effective length will
permit nonlinear pulses of permanent form (or “solitons”) because of the dispersive
effects that such configurations generate. Distributed (or, spatially-extended) non-
linear arrays have intrinsic broadband capability (at least several hundred GHz) in
contrast to electronic circuits based on discrete elements, and high-dimensional com-
plexity, governed by PDEs or coupled ODEs, in contrast to low dimensional systems
whose dynamics are governed by ODEs. Thus, distributed nonlinear arrays have the
potential to handle wider data bandwidth at a high level of security in communication.
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Appendix A. The initial times function.
In this appendix we find the explicit lowest-order solution for the voltage in region

II, evaluate the integral (3.25) that gives the initial times function and explicitly
expand (3.7) to order A2.

Consider a point (T,X) in region II. It is the intersection of the two characteristics
that intersect X = 0 at (T±(0), 0) where

T
(0)
± (0) = T ∓ X

Um
.(A.1)

Now the solution is constructed using

V (0)(X, T ) = (2Gn(Vb)
1
2 )−1

(
Γ(0)

+ (X, T ) + Γ(0)
− (X, T )

)
.(A.2)

Using the property of the characteristics, Γ±(X, T ) = Γ±(0, T±(0)), and the explicit
forms,

V
(0)
I (T ) =

1
2

(
(1 +R(0)(Ω))eiΩT + c.c.

)
,

I
(0)
I (T ) =

(
LIICI

LICII

) 1
2 1

2

(
(1−R(0)(Ω))eiΩT + c.c.

)
,

V
(0)
III (T ) =

1
2

(
T (0)(Ω)eiΩT + c.c.

)
,

I
(0)
III (T ) =

(
LIICI

LICII

) 1
2 1

2

(
T (0)(Ω)eiΩT + c.c.

)
,(A.3)

we obtain

V (0)(X, T ) = Gn(Vb)−
1
2
1
2

[
Gn(Vb)

1
2 V

(0)
I (T − X

Um
) + I

(0)
I (T − X

Um
)
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+ Gn(Vb)
1
2 V

(0)
I (T +

X

Um
)− I

(0)
I (T +

X

Um
)
]

=
1
2

[
exp

(
iΩ(T − X

Um
)
)

+R(0)(Ω) exp
(

iΩ(T − X

Um
)
)

+β
1
2

(
exp

(
iΩ(T − X

Um
)
)
−R(0)(Ω) exp

(
iΩ(T − X

Um
)
))

+exp
(

iΩ(T +
X

Um
)
)

+R(0)(Ω) exp
(

iΩ(T +
X

Um
)
)

−β
1
2

(
exp

(
iΩ(T +

X

Um
)
)
−R(0)(Ω) exp

(
iΩ(T +

X

Um
)
)

+ c.c.
]

.

=
1
2

[
eiΩT

(
(1 +R(0)(Ω)) cos(

Ω
Um

X)− iβ
1
2 (1−R(0)(Ω)) sin(

Ω
Um

X)
)

+ c.c.
]

.

Thus

V (0)(X, T ) = |1 +R(0)(Ω)| cos(
Ω

Um
X) cos(ΩT + φ1)

− β
1
2 |1−R(0)(Ω)| sin(

Ω
Um

X) sin(ΩT + φ2) ,(A.4)

where φ1 = arg(1 + R(0)(Ω)) and φ2 = arg(1 − R(0)(Ω)). In the case of resonance,
Ω = Um nπ, R(0)(Ω) = 0 and the solution in region II is simply

V (X, T ) = Vb + A
(
cos(nπX) cos(ΩT )− β

1
2 sin(nπX) sin(ΩT )

)
.(A.5)

To evaluate the integral in (3.25),we need the quantity V (0)(X, T
(0)
± (X)). Insert-

ing

T
(0)
± (X) = S ∓ 1−X

Um
(A.6)

and using (3.18) gives

V (0)(X, T
(0)
± (X)) =

1
4

[
eiΩ(S∓U−1

m )
(
1 +R(0)(Ω)± β

1
2 (1−R(0)(Ω)) +(

cos(2
Ω

Um
X)± i sin(2

Ω
Um

X)
) (

1 +R(0)(Ω)∓ β
1
2 (1−R(0)(Ω))

) )
+ c.c.

]
=

1
4

[
eiΩST (0)(Ω)

(
1± β

1
2 + (1∓ β

1
2 )e∓2i Ω

Um (cos(2
Ω

Um
X)± i sin(2

Ω
Um

X))
)

+ c.c.
]
.

Thus, the next-to-lowest order term in the initial times function is explicitly

τ
(1)
± (S) = ∓U−1

m

1
8

G′
n(Vb)

Gn(Vb)

[
eiΩST (0)(Ω)

(
1± β

1
2

+
1
2

Um

Ω
(1∓ β

1
2 )e∓2i Ω

Um (sin(2
Ω

Um
)± i∓ i cos(2

Ω
Um

))
)

+ c.c.
]
.(A.7)
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The full expression for (3.7), up to order A2 with (3.14) and (3.17), is

AGn(Vb)
1
2

(
1± β

1
2

) 1
2

(
T (0)(Ω)eiΩS + c.c.

)
+ A2Gn(Vb)

1
2 V

(1)
III (S)±A2I

(1)
III (S)

+ A2Gn(Vb)
1
2
1
8

G′
n(Vb)

Gn(Vb)

(
|T (0)(Ω)|2 +

1
2
(T (0)(Ω)2e2iΩS + c.c.)

)
= AGn(Vb)

1
2
1
2

[
eiΩ(S∓U−1

m )
(
1 +R(0)(Ω)± β

1
2 (1−R(0)(Ω))

)
+ c.c.

]
+ A2Gn(Vb)

1
2 V

(1)
I (S ∓ U−1

m )±A2I
(1)
I (S ∓ U−1

m )

+ A2Gn(Vb)
1
2
1
8

G′
n(Vb)

Gn(Vb)

(
|1 +R(0)(Ω)|2 +

1
2

[
(1 +R(0)(Ω))2 e2iΩ(S∓U−1

m ) + c.c.
])

+ A2Gn(Vb)
1
2
1
2
Ω

[
ieiΩ(S∓U−1

m )
(
1 +R(0)(Ω)± β

1
2 (1−R(0)(Ω))

)
+ c.c.

]
τ

(1)
± (S).

To order A we regain (3.18). With (A.7), we obtain the following expression for (3.7)
at order A2:

V
(1)
III (S)±Gn(Vb)−

1
2 I

(1)
III (S)− V

(1)
I (S ∓ U−1

m )∓Gn(Vb)−
1
2 I

(1)
I (S ∓ U−1

m )

=
1
16

G′
n(Vb)

Gn(Vb)

[(
− |T (0)(Ω)|2 − T (0)(Ω)2 e2iΩS + |T (0)(Ω)|2(cos2

Ω
Um

+ β sin2 Ω
Um

)

+T (0)(Ω)2(cos2
Ω

Um
− iβ

1
2 sin2 Ω

Um
)2e2iΩ(S∓U−1

m ) + c.c
)

∓ Ω
Um

(1± β
1
2 )

((
1± β

1
2 +

1
2

Um

Ω
(sin(2

Ω
Um

)± i(1− cos(2
Ω

Um
)))

)
iT (0)(Ω)2e2iΩS + c.c.

) ]
.

(A.8)

Appendix B. Numerical techniques.

B.1. Lax-Wendroff finite-difference method. The fields Q and I are up-
dated on a grid with spacing ∆X. In the first-order Lax-Wendroff method, the values
at T + ∆T are obtained from those at T using [18]:

Q(X, T + ∆T ) =
1
2

(Q(X + ∆X, T ) + Q(X, T ))

−1
2
U

∆T

∆X
(I(X + ∆X, T )− I(X −∆X, T )) ,(B.1)

I(X, T + ∆T ) =
1
2

(I(X + ∆X, T ) + I(X, T ))

−1
2
U

∆T

∆X
(V(Q(X + ∆X, T ))− V(Q(X −∆X, T ))) .(B.2)

We use the following second-order adaptation [18]:

Q(X, T + ∆T ) = Q(X, T )− 1
2
U

∆T

∆X
(I(X + ∆X, T )− I(X −∆X, T ))
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+
1
2
(U

∆T

∆X
)2 (V(Q(X + ∆X, T )) + V(Q(X −∆X, T ))) ,(B.3)

I(X, T + ∆T ) = I(X, T )− U
∆T

∆X

[
V

(1
2
(Q(X + ∆X, T ) + Q(X, T ))

−1
2
U

∆T

∆X
(I(X + ∆X, T )− I(X, T ))

)
−V

(1
2
(Q(X, T ) + Q(X −∆X, T ))

−1
2
U

∆T

∆X
(I(X, T )− I(X −∆X, T ))

)]
.(B.4)

B.2. Discretized boundary conditions. At the interface between different
media it is important to implement numerical boundary conditions that are of the
same order of the scheme and do not produce artificial reflections[26]. Consider the
boundary between regions I and II. Let Q1(n∆X, T ) and I1(n∆X, T ) be the values of
the last point in region I; let Q2(0, T ) and I2(0, T ) be the values of the first point in
region II. We cannot immediately implement the Lax-Wendroff scheme because the
neighboring points to the boundary points are in different regions, where the equation
of motion takes different forms: V(Q) = Vl(Q) and V(Q) = Vn(Q).

Because Q1(n∆x, T ) and Q2(0, T ) correspond to the same position,

I1(n∆x, T ) = I2(0, T ) and Vl(Q1(n∆x, T )) = Vn(Q2(0, T )),(B.5)

with Vl and Vn as defined in (2.11). As (B.5) is true for any T , we also have the
equalities

∂

∂T
I1(n∆x, T ) =

∂

∂T
I2(0, T )(B.6)

and
∂

∂T
Vl(Q1(n∆x, T )) =

∂

∂T
Vn(Q2(0, T )).(B.7)

Therefore, from the equation of motion (2.12),

∂

∂X
Vl(Q1(n∆x, T )) =

∂

∂X
Vn(Q2(0, T ))(B.8)

and

V ′
l (Q1(n∆x, T ))

∂

∂X
I1(n∆x, T ) = V ′

n(Q2(0, T ))
∂

∂X
I2(0, T ),(B.9)

where

V ′
l (Q) =

∂

∂Q
Vl(Q) V ′

n(Q) =
∂

∂Q
Vn(Q).(B.10)

The discrete approximation to the partial derivatives on the right-hand side of
(B.9) is

∂

∂X
I1(n∆x, T ) = (2∆x)−1 (3I1(n∆x)− 4I1((n− 1)∆x) + I1((n− 2)∆x)) ,(B.11)

∂

∂X
I2(0, T ) = (2∆x)−1 (−3I2(0) + 4I2(∆x)− I2(2∆x)) ;(B.12)
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the derivatives in (B.8) are evaluated similarly. The discretized version of (B.8)-(B.9)
is therefore

Vl(Q1(n∆x, T )) = Vn(Q2(0, T ))

=
1
6

(
4Vl(Q1((n− 1)∆x, T ))− Vl(Q1((n− 2)∆x, T ))

+ 4Vn(Q2(∆x, T ))− Vn(Q2(2∆x, T ))
)
,

I1(n∆x, T ) = I2(0, T )

=
1
3

(
1 +

V ′
n(Q2(0, T ))

V ′
l (Q1(n∆x, T ))

)−1(
4I1((n− 1)∆x)− I1((n− 2)∆x)

+
V ′

n(Q2(0, T ))
V ′

l (Q1(n∆x, T ))
(4I2(∆x)− I2(2∆x))

)
.

B.3. Input signal. At the left-hand extremity of region I, X = −L, the solution
of the field equation (2.12) can be written as a superposition of two fields: a prescribed
incident wave Qin(X − cT ), Iin(X − cT ), and an (unknown) outgoing wave Qout(X +
cT ), Iout(X + cT ) (c > 0). Thus, the incoming field satisfies the unidirectional wave
equation

∂

∂T

(
Qin

Iin

)
= −c

∂

∂X

(
Qin

Iin

)
,(B.13)

while the outgoing field satisfies

∂

∂T

(
Qout

Iout

)
= +c

∂

∂X

(
Qout

Iout

)
.(B.14)

Hence, for the total field Q(X, T ), I(X, T ),

∂

∂T

(
Q
I

)
=

∂

∂T

(
Qin

Iin

)
+

∂

∂T

(
Qout

Iout

)

=
∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Qout

Iout

)

=
∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Q−Qin

I − Iin

)
.(B.15)

Using (B.13), the governing equation of the total field in the left linear region can
then be rewritten as

∂

∂T

(
Q
I

)
= 2

∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Q
I

)
;(B.16)

this is used with one-sided spatial derivatives to construct the field at X = −L from
the knowledge of the field at the previous time step.

For example, consider a sinusoidal input signal, as in (3.1). Then, using (3.2),

Vin(X, T ) = A cos(Ω(T −X/UI)).(B.17)
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The incident Q and I fields are given by

Qin(X, T ) =
CI

CII

A cos(Ω(T − X

UI

)),(B.18)

Iin(X, T ) =
(

LIICI

LICII

) 1
2

A cos(Ω(T − X

UI

)).(B.19)

Thus the (lowest-order) increments at the left extremity of region I are

Q1(−L, T + ∆T ) = Q1(−L, T ) + ∆T
(
2

d
dt

Qin(−L, T )

−UI(2∆x)−1
(
3Q1(0)− 4Q1(−L + ∆x) + Q1(−L + 2∆x)

))
,

I1(−L, T + ∆T ) = I1(−L, T ) + ∆T
(
2

d
dt

Iin(−L, T )

−UI(2∆x)−1
(
3I1(0)− 4I1(−L + ∆x) + I1(−L + 2∆x)

))
.
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