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Comparison and evaluation of several models for fitting the frequency
response of dispersive systems
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Using both simulated and experimental data, detailed comparisons are made between the different
physical interpretations and responses of several important models commonly employed for fitting
and analyzing conductive-system data sets, such as those for ionic glasses. Those considered are one
following directly from stretched-exponential temporal response, designated the Kohlrausch K0;
several ones indirectly associated with such stretched-exponential response: the original modulus
formalism ~OMF! model and corrected modulus formalism~CMF! ones; and the ZC model, one
whose real-part conductivity expression has been termed ‘‘universal dynamic response.’’ In
addition, several models involving dielectric dispersion, rather than resistive dispersion, are found
to be less appropriate for the present data than are the CMF ones. Of the four main
conductive-system models the CMF approach fits data for a wide variety of materials much better
than do the others. The OMF is shown to be both experimentally and theoretically defective and
leads to poor and inconsistent fitting results. The simple ZC model involves nonphysical
low-frequency-limiting real-part conductivity response and is usually less appropriate even than the
K0. High- and low-frequency expressions and fit results for the various dielectric elements are
presented, along with discussion of characteristic, peak, and mean relaxation times for the various
models, failing to confirm some proposed relations between these quantities suggested earlier.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1539092#
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I. INTRODUCTION

There are currently four main approaches for analyz
dispersive frequency response data of ionic materials.
these, three involve stretched-exponential correlati
function temporal response and lead to different types
Kohlrausch frequency-response models, all ultimately
rived from stretched-exponential correlation-function temp
ral response.1,2 The K0 model, conceptually the simplest,
just the Fourier transform of stretched-exponen
response.3–8 Next is the original modulus formalism~OMF!
of Moynihan and associates,9,10 and the third is the correcte
modulus formalism~CMF!.3,7,8,11–14The fourth model, the
ZC, involves complex power-law behavior with an expone
n, and it is often designated as ‘‘universal dynamic respon
~UDR! when only the real part of its conductivity is consi
ered~Ref. 6! and references therein, Ref. 15.

Although prior work indicates that the CMF is bot
theoretically and experimentally more appropriate than
OMF and ZC/UDR approaches,6–8,16both of the latter mod-
els continue to be widely used for data fitting and analy
The present work includes new comparisons between th
various models in order to help the reader pick the m
appropriate one for future use. The four models, as wel
several dielectric-dispersion ones, are defined and discu
in Sec. II, and some of their fitting results to experimen
data are illustrated in Sec. III. Finally, Sec. IV compar
formulas and fit results for mean values, peak values,
various dielectric constants calculable using these mode

a!Electronic mail: macd@email.unc.edu
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II. SUMMARY OF VARIOUS RESPONSE MODELS

A. Kohlrausch response models and the OMF and
CMF approaches

Electrode effects and possible nearly-constant-l
~NCL! behavior16–19 are included here as appropriate, t
gether with the basic fitting models discussed in the follo
ing. Let us use the subscriptk, taken equal toD, 0, 1, orZ, to
distinguish some of the different types of dispersive f
quency response models. HereD specifies bulk dielectric
response andZ designates the ZC model. Fork50, define
the stretched-exponential temporal response as

f0~ t !5exp@2~ t/to!b0#, 0,b0<1, ~1!

whereto is the characteristic relaxation time of the respon
The 0 subscripts are changed in Eq.~1! to D ones for dielec-
tric situations. In most of the literature involving Kohlrausc
~also designated by KWW or just K! response models, no
distinction has been made between theK5D, 0, and 1 val-
ues of the fractional exponentbk , and it has usually been
designated as justb, sometimes leading to ambiguity.

Next, define the normalized frequency respon
quantity2,3

I k~v![
Uk~v!2Uk~`!

Uk~0!2Uk~`!
5I k82 i I k9 , ~2!

so I k(0)51 andI k(`)50. For pure dielectric dispersion,2,20

UD(v)[e(v), where e~v! is the complex dielectric con
stant. For pure conductive-system dispersion setk50, 1, orZ
and Uk(v)[r(v), where r~v! is the complex resistivity,
equal to the inverse of the complex conductivitys(v)
8 © 2003 American Institute of Physics
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5s8(v)1is9(v). Note that for conductive systems, the CM
and the OMF have usually implicitly or explicitly assume
that the quantityr`[r(`) is zero, although the effects whe
it is small but nonzero have been discussed elsewhere3,14

For simplicity and becauser` cannot be determined by da
fitting unless the data extend to very high frequencies, it w
also be taken as zero herein.

For k5D or 0 but not 1, the normalized frequency r
sponse is given by2,10,13

I k~v!5E
0

`

exp~2 ivt !S 2
dfk~ t !

dt Ddt. ~3!

For the K0 Kohlrausch response model, thef0(t) used in
Eq. ~3! is that of Eq.~1! and is a conductive-system correl
tion function. Thek5D fD(t) quantity is proportional to the
dielectric transient response current, and theI D(v) fre-
quency response is that of the KD model.2,20 Note that Eqs.
~2! and ~3! should be applied only for a single dispersi
process.12 Thus, effects not directly associated with such d
persion are not then included in the response, and only o
arising entirely from mobile charge effects are involv
herein forkÞD.

The situation is a bit more complex for the conductiv
system K1 Kohlrausch response model, that appropr
whenk51 and used for both the OMF and CMF approach
The OMF K1 analysis begins with thef0(t) quantity, de-
fined as a conductive-system correlation function for elec
field decay at constant dielectric displacement.10 This mac-
roscopic approach, which also involves a quantity equiva
to I 0(v), has come to be known as the original modu
formalism because it was first derived at the complex mo
lus level, where M (v)5 iveVr(v)5M 8(v)1 iM 9(v).
HereeV is the permittivity of vacuum. A microscopic mode
with formally equivalent frequency response to the K113,14

was also published in 1973;21 see further discussion in Se
III.

The corrected form of the K1 conductive-system mod
lus formalism, the CMF, when expressed at the modu
level, may be written as3–5,13,14

MC1~v!5 iveVr0I 1~v!5@12I 0~v!#/eC1` , ~4!

where I 0(v) follows from Eqs.~1! and ~3! with k50, r0

[r(0), andeC1` is the high-frequency-limiting value of th
conductive-system part of the dielectric constant,eC1(v)
51/MC1(v). Here the subscriptC is used to denote the
conductive-system response just asD has been used to des
ignate the bulk dielectric response, that present in the
sence of mobile charges. The corresponding high-freque
limiting bulk dielectric constant iseD` , and thus for
conductive materialse`[eC1`1eD` , wheree` is the high-
frequency-limiting value ofe~v! for either the experimenta
data or for the total CMF theoretical model.

It is important to recognize that although in the modu
formalism the I 0(v) appearing in Eq.~4! stems from
stretched-exponential temporal response involvingb5b0 ,
the I 1(v) of this equation differs in form fromI 0(v), and
thus its time-domain transform isnot of stretched-
exponential form,5,14 as is that of the K0 model. Therefore
when Eq.~4! is a part of a full K1 data fitting model withb0
Downloaded 11 Mar 2005 to 152.2.181.221. Redistribution subject to AIP
ll

-
es

-
te
.

c

nt
s
-

-
s

b-
y-

free to vary, fitting will lead to a different estimate of it tha
that which would have been obtained had the K0 mod
where MC0(v)5 iveVr0I 0(v), been used for fitting. The
new b estimate, arising from using the K1 model, is nat
rally termedb1 , and it is thus not appropriate to setk51 in
Eq. ~3!. Recent fitting results for CMFb1 temperature, and
ionic-concentration dependencies appear in Ref. 8 whereb1

is shown to be virtually independent of either variation.
Conductive-system analysis3,7,8,13,14leads to the follow-

ing important CMF general definitions ofeC1` , whose value
may be estimated from data fitting as illustrated later:

eC1`5s0to /^x21&1eV5s0to^x&01/eV

5@gN~qd!2/6kBeV#/T5A/T, ~5!

whereto is, as usual, the characteristic relaxation time of
dispersion. Herex[t/to , and so to^x&015^t&01 and
to

21^x21&15^t21&1 . The quantitŷ t& is the mean oft over
the distribution of relaxation times of the dispersed respo
model.2,12,13For the present Kohlrausch models, the 01 su
script indicates that̂x&01 is the mean ofx over the K0 dis-
tribution involvingb1 rather thanb0 , as implied by Eq.~4!.
The normalized means satisfŷx&0151/̂ x21&1 because of
the close relation between the K0 and K1 distributions
relaxation times.3,12,22HereN is the maximum mobile charge
number density;g is the fraction of charge carriers of charg
q that are mobile; andd is the rms single-hop distance for th
hopping entity. As usual we shall take the quantities in
square brackets of Eq.~5! temperature independent, so th
parameterA is then independent of temperature.8

Because there is always a contribution to the experim
tal high-frequency dielectric response from dipolar and
bronic bulk-material effects, it is insufficient to fit exper
mental data with a purely conductive-system respo
model, such as that of Eq.~4!. For the usual frequency rang
employed for most measurements on ionic materials, roug
1022– 106 Hz, bulk dielectric dispersion is negligible, and,
the absence of ionic conduction, bulk response is adequa
described by the frequency-independent dielectric cons
eD` . Although this quantity seems to increase somew
with an increase in mobile charge concentration,8 for sim-
plicity I shall follow common practice here and take it ind
pendent of frequency over the measured range as we
independent of ionic concentration.

The OMF equation corresponding to the CMF one of E
~4! is3,10,23

M1~v!5 iveVr0I 1~v!5@12I 0~v!#/e` , ~6!

differing only in the replacement ofeC1` by e` , wheree`

[eC1`1eD` . It thus accounts for the effects ofeD` by
implicitly combining conductive-system and dielectric r
sponses in Eq.~6!, improper because only the pur
conductive-system Eq.~4!-model follows directly from Eqs.
~1! to ~3!.

In contrast, the full CMF fitting approach must includ
the effect ofeD` in a way more satisfactory than that of th
OMF, and thus it needs to involve a nondispersive dielect
response addition to the K1 model. The simplest way is
include a separate free fitting parameter,ex5eD` ; the result-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ing composite model is denoted CK1. It thus involves t
conductive-system parameterss0 , to , and b1 , as well as
eD` , and Eq.~5! allows an estimate ofeC1` to be calculated
when the value of̂x&01 is known ~see Sec. IV C!.

A more general alternative model is to include in para
with K1 a constant phase element~PCPE!, defined at the
complex dielectric level as

ePC~v![APC~ iv!2gPC, ~7!

where 0<gPC<1.8,16,18,19 The resulting composite mode
which can also represent nearly constant loss effects w
present, is termed the PK1. Note that whengPC50, ePC is an
ordinary dielectric constant such aseD` , and whengPC51
ePC becomes a pure conductance. WhenePC is used to rep-
resent NCL behavior,gPC!1 andAPC'eD` .

In contrast, the OMF fitting model involves only thes0 ,
to , and b1 parameters, allowing no separate estimation
eD` andeC1` , but an estimate ofe` may be calculated from
the OMF analog of Eq.~5!3,7,9,10,14,23,24using the above-
given parameter estimates and

e`5eMa^x&01, ~8!

where

eMa[s0to /eV ~9!

is a Maxwell type of relation. In most applications of th
OMF, instead of using Eq.~8! directly, Eqs.~8! and ~9! are
used to estimates0 when an independent estimate ofe` is
available. Although the slightly greater simplicity of th
OMF compared to the CMF encourages its use, OMF fitt
invariably leads to inconsistencies in fitting experimen
data and thus to much less accurate fitting than does
CMF.6–8,14,16

In the past, there has been little direct fitting of Eq.~4! or
~6! to data because no analytical result for the integral of
~3! is available for arbitrary values ofb0 in Eq. ~1!. There-
fore, I 0(v) has had to be calculated numerically for ea
separate value ofv by a Fourier transform of Eq.~3!, a task
not amenable for data fitting with free model paramete
Luckily, an alternative exists and has been used in such
fitting by the author since 1996. Both the K0 and K1 fr
quency and temporal responses associated with such e
tions as Eqs.~4! and ~6! may be accurately calculated o
fitted using the freeLEVM complex-nonlinear-least-square
computer program.25 Further, unlike the Fourier transforma
tion approach,LEVM allows possible inclusion in the tota
fitting model of not only K0 or K1 response but also
effects associated witheD` , partial or full blocking at elec-
trodes, and nearly constant loss.3,8,16–19

The b0 , OMF b1 , and CMFb1 quantities associate
with Eqs. ~1!, ~4!, and ~6! are generally quite different an
should not be designated by justb. The high-frequency-
limiting log–log s8~v! slopes of the three basic Kk models
involving bk are (12bD), b0 , and (12b1).4 Thus for a
given conductive-system data set extending to sufficie
high frequencies we expect thatb0 and (12b1) should both
equal the ZC power-law exponentn. Some relevant fitting
results are included in Sec. III.
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B. The ZC response model

The ZC is probably the simplest useful response mod
Its historical background is discussed in Ref. 6. At the co
plex conductivity level it may be expressed as

sZ~v!5s0@11~ ivtZ!n#, ~10!

with 0,n<1. Although the ZC, particularly in a simplified
expression forsZ8(v), the UDR response model, has be
known and used for many years,6,15,26 both the power-law
low-frequency-limiting behavior of (sZ(v)2s0) and the
high-frequency limiting response ofsZ(v) are nonphysical.
Fitting of s8~v! data to thesZ8(v) model thus invariably
yields an inaccurate estimate ofs0 .6 See also the fit results
presented here in Sec. IV F.

The UDR form, defined at the real conductivity level,

sZ8~v!5s0@11~vtU!n#, ~11!

so it follows that tU5tZ@cos(np/2)#1/n, generally smaller
thantZ . In the past,tU has been identified as the inverse
the hopping frequency of the charge carriers,27–30 but this
interpretation was soon challenged26,31,32and does not seem
well justified either theoretically or experimentally. Furthe
recent work13,14 has shown that the Scher–Lax microscop
model21 mean time for a hop can be identified as the CM
mean relaxation timê t&015to^x&01 of the macroscopic
CK1 model; see Eq.~5! and the discussion of the isomo
phism of the microscopic and macroscopic models in S
III. Since there is no reason to believe thattU.^t&01, it
should not be identified as the hopping time. Further, si
the real and imaginary parts of Eq.~10! satisfy the Kronig–
Kramers relations, this equation should always be used
place of Eq.~11!.3,6,33

When the ZC is used to analyze conductive-system d
by means of complex-nonlinear-least-squares fitting, o
must include the termiveVe` in the full fitting model at the
complex conductivity level in order to account for the e
demic presence ofe` . Note, however, that such a term co
tributes nothing to thes8~v! part of the response. In th
absence of electrode and NCL effects, it is clear from E
~10! that the high-frequency-limiting log–log slope ofsZ8(v)
versusv is just the exponentn. But limited-range data may
not be sufficient to allow a good estimate ofn to be obtained
unless the data are accurately described by Eq.~10! at high
frequencies. If data are, as usual, well fitted by the CK1
PK1 models, it is clear that at the complex admittance le
the C of the CK1 approach should involve the ter
iveVeD` , not theiveVe` of the ZC and CK0 models.

III. COMPARISON OF SEVERAL FITTING MODELS

A. Preliminary comparisons

In the first version of the present work, detailed compa
son of fitting results of the same data sets using the OMF
CMF approaches was emphasized. A reviewer suggested
because ‘‘there is little doubt that there are electrical dipo
in ionic solids,’’ such comparisons should include dielectr
dispersion models as well as conductive-dispersion ones
cited the present Refs. 34–36 as illustrative of such comp
son. These works dealt with data for melts, glasses, and
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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uid ionic solutions and assumed that dielectric dispers
associated with ion pairs was dominant and that
conductive-system dispersion was present.

The problem of deciding whether a given dispersive f
quency response data set arises from mobile-charge ef
~conductive-system dispersion! or from dielectric dispersion
is an interesting one and was investigated in 1999 using
curate synthetic data.37 A K1 data set extending over a ver
wide frequency range was fitted with the DK0[KD model
~andvice versa!, where the ‘‘D’’ as usual denotes a dielectr
dispersion situation. Because conductive-system respons
volves a nonzeror(0)51/s0 dc value, adequate dielectric
system fitting of such data requires that a dc conductiv
quantity be included in parallel with a pure dielectric r
sponse model, as in Refs. 34–36. Such a KDe~v! model
involves the four parameterse` , De[e02e` , toD , and
bD , as in Eq.~2!. Let us denote the inclusion of a parall
conductivity parameter by ‘‘G’’; then an appropriate compo
ite model may be designated by GDK0. Further, let ‘‘S
indicate the presence of a CPE term representing elect
effects, the SCPE, in series with a conductive or dielec
model.8,16,18,19The number of free parameters in a compos
fitting model will be included in parentheses after the na
of the model, for example, GDK0S~7!.

The isothermal comparisons of Ref. 37 showed t
while one could generally well fit a conductive system
volving resistive dispersion with one involving dielectric di
persion, andvice versa, such fits were not exact, allowing th
different processes to be distinguished. When data are a
able for a range of temperatures, one would expect the a
vation energies ofs0 and to for a thermally activated con
ductive system to be the same or very nearly equal,8 while
such behavior is unlikely for leaky dielectric situation
Since the authors of Ref. 38 found nearly equal activat
energies using a dielectric-dispersion fitting model
lithium chloride solutions, it is likely that conductive-syste
analysis would have been more appropriate for their d
But this 1971 work was published before the OMF approa
had been developed.

It is always a good idea to investigate the appropria
ness of different fitting models when analyzing a new exp
mental data set. We shall here fit data for the single-cry
material 0.88ZrO2•0.12Y2O3 at T5503 K.8 We consider
conductive-system composite fits involving the ZC, K1, a
K0 models, and the dielectric-system ones GDK0, GDD
and GDEXP ones as well. These dielectric-dispersion mo
were also used in Ref. 37. Here DC denotes the th
parameter Davidson–Cole model, and EXP stands for
asymmetrical exponential distribution-of-relaxations-tim
model.LEVM fitting employed proportional weighting of th
complex data at the modulus level and led to values of
relative standard deviations of the fit residuals,SF . For the
ZC~3!, CZC~4!, and PZC~5! models, values found forSF

were 0.243, 0.0537, and 0.0543, respectively. All of the
values are poor, but the ZC one led to completely inadequ
parameter estimates.

Table I shows fitting results for 15 other models. N
convergence could be obtained for fitting with the K0~3!
model since it involves noe` parameter. Note that both th
Downloaded 11 Mar 2005 to 152.2.181.221. Redistribution subject to AIP
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OMF K1 model and the GDK1 one led to very poor fit
Further, although theSF values for the PK1S, PK0S, an
GDDCS models are small, all these fits involved at least t
free parameters with such large relative standard deviat
that their values were statistically undetermined.

Although it is surprising that the bottom three K0-mod
fits led toSF values nearly as small as the corresponding
ones, it is clear that the PK1 model provided the best fit,
found earlier for these data,8 one very appreciably better tha
those of the GDDC and GDEXP. In addition, fits of th
present data agree with the conclusion in Ref. 37 tha
DEXP model yields a somewhat better dielectric-dispers
fit than does a DK0 or DDC one.

Another significant result found was that fitting with th
GPK1 model led to essentially the sameSF value as that for
the PK1 but also to such a large uncertainty of the para
conductivity parameter that it could not be statistically d
tinguished from zero. As mentioned in Ref. 37, when suc
result appears it is a good indication that the data invo
conductive dispersion rather than dielectric dispersion. T
equality of the activation energies ofs0 and to for fits of
data for the present material over a range of temperatures8 as
well as the present results, clearly indicate that these d
sets involve resistive rather than dielectric dispersion. N
ertheless, some detailed comparisons between fittings by
two different approaches are included in the following.

B. Detailed fitting results

The results in Table I suggest that detailed GDEX
model fitting be compared to that obtained using the OM
K1 and the CMF PK1 models, but since the comparisons
Refs. 34–36 used the GDDC model, it will be employ
here rather than the GDEXP one. Instead of using accu
complex-nonlinear-least-squares fitting of data to estim
OMF parameters, it has been customary for those employ
the OMF approach to use the results of Table 2 in Ref. 10
relate the width at half height of curves ofM 9(v) data to
b(5b1). As discussed in the following, this procedu
yields inappropriateb estimates. Alternatively, one ma
readily employLEVM fitting to obtain accurate estimates o
all OMF model parameters, as illustrated here.

Some detailed results of PK1, K1, and GDDC fittings
the data used for generating Table I are presented in Fig

TABLE I. Comparison of values ofSF , the relative standard deviation of
fit, for 15 fits of experimental single-crystalM (v) data of 0.88ZrO2
•0.12Y2O3 at T5503 K. Numbers in parentheses denote the number of
fitting parameters present. Here an initial C in a model name indicates
presence of a capacitance or dielectric constant in parallel with the b
model; P indicates a parallel constant-phase-element; S indicates a s
constant-phase-element; and GD indicates the presence of a conducta
conductivity in parallel with a dielectric dispersion model~see Sec. III A!.

K1 models SF K0 models SF GD models SF

K1~3! 0.071 K0~3! ¯ GDK1~5! 0.094
CK1~4! 0.021 CK0~4! 0.035 GDK0~5! 0.019
CK1S~6! 0.0090 CK0S~6! 0.011 GDDC~5! 0.0133
PK1S~7! 0.0050 PK0S~7! 0.0057 GDDCS~7! 0.0101
PK1~5! 0.0049 PK0~5! 0.0083 GDEXP~5! 0.0116
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. ~a! M 8(n) and M 9(n) data and fit results for the PK1 and K1 models.~b! Real (r 8) and imaginary (r 9) relative residuals, each defined here
~data—model prediction!/~model prediction!, for PK1, K1, and GDDC model fits. The residual lines are included here solely to guide the eye. Her
hereafter,nn51 Hz. Note that the K1-fit residuals are shown here at one-tenth of their actual size.
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Although the GDDC-fit points are omitted in Fig. 1~a! be-
cause they would not be well distinguishable, the differen
between the three fit predictions are made clear by the
sidual plots of Fig. 1~b!. These results, consistent with th
correspondingSF values, show that the PK1 model is appr
ciably superior to the GDDC one, especially at low and m
frequencies, and both are far superior to the K1 model
fitting the present data.

Particularly important is the difference between theb1

estimates shown. It arises from the absence of aneD` param-
eter in the OMF K1 fit. ItseC1` estimate of 28.88 is identi
fied, as usual in this approach, ase` , and we see that i
agrees quite well with the value from the GDDC fit. Noe`

estimate is shown for the PK1 fit because the presence o
PCPE term in this model, applying for all frequencies, p
hibits the accurate determination of such a quantity. If, ho
ever, we approximateeD` by the APC524.78 PK1 fit esti-
mate, not unreasonable since the associatedgPC estimate is
only 0.0039, we obtain the valuee`.29.65, somewha
Downloaded 11 Mar 2005 to 152.2.181.221. Redistribution subject to AIP
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larger than the CK1S fit estimate of 28.29 where theb1

estimate is 0.319. An improved PK1-like NCL approach
discussed in Ref. 8, and related work in progress that
places the PCPE term by an effective-medium model d
lead to a physically realizable expression foreD` .

Aside from the more accurate fit of the CMF, true ev
when any CPE element is omitted, why should one prefer
CMF to the OMF? Further reasons are summarized in
following, but Fig. 2 makes the difference in fitting resul
graphic. Here we have plotted full CK1S and K1M 9(n) fit
results for comparison with the K1-only part of the CK1
and PK1 fits. The vertical dashed lines, plotted atno

[1/2pto , clearly occur beyond the peaks of the curve
showing that the sometimes-used identification ofno with
the peak frequency39 is inappropriate. Further, as shown he
and hereafter, OMF estimates ofto are always much large
than are CMF-fit ones.

Although the K1 parameter estimates obtained from
CK1S and PK1 fits are in close agreement, the sligh
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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higher peak of the K1 part of the PK1 fit shown in Fig. 2
associated with the lack of an exacteD` value for the PK1
fit, as discussed earlier. Nevertheless, the present result
dicate that rather than just being arbitrary fitting mod
CK1S and PK1 fits allow one to closely estimate a K1-mo
description, one describing significant and meaningful phy
cal response.

The difference between the CMF and OMF K1 curves
particularly large for the present data whereeD`@eC1` , but
the widths at half height of the top K1 curves of the figu
nevertheless lead, on using Table 2 of Ref. 10, tob1 esti-
mates in close agreement with the direct-fit CMF ones
0.319 and 0.318 for the CK1S and PK1, respectively. Re
ence 10, Table 2 actually applies only for the K1 model a
should therefore never be used with experimentalM 9(v)
data because such data always include the effects ofeD` .
Remember that the conductive-system K1 model and Eq~4!
are associated entirely with mobile-charge effects, andeC1`

thus should not involveany bulk dipolar effects, such a
those leading toeD` .

Recent K1 CMF data analysis for different ioni
conducting materials has indicated thatb1 is virtually inde-
pendent of both temperature and mobile-ion concentra
and is close to 1/3 in value.7,8,16 This result is in agreemen
with an earlier study yielding (12n).0.33 estimates for a
wide variety of materials, a study that also showed that O
estimates ofb1 were quite different and of the order o
0.58.40 Reference 40 also states that (12n).0.33 values are
typically observed for mechanical losses in ionic glass
Furthermore, nuclear spin relaxation results for a Li ch
roborate glass analyzed by Eq.~1! with k50 led to a value
of b0 of 0.35, which was compared with an OMF electric
conductivity relaxation estimate of 0.50.41 These results be
gin to suggest that a K1 value ofb151/3 may possibly be a

FIG. 2. Comparison of full OMF K1 and CMF CK1S fits of Fig. 1 data wi
the K1-response parts of the CMF CK1S and PK1 fits. The fit parame
were used to generate and extrapolate these results to higher freque
The vertical dashed lines show the positions ofno[1/2pto for the OMF
and CMF curves.
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nearly universal result for various types of relaxation a
materials.

The effect of limited frequency range onb0 estimation
was investigated starting with data for Li0.18La0.61•TiO3 at
T5150 K kindly provided by Dr. C. Leo´n. LEVM fitting us-
ing the CMF approach led to parameter estimates that w
then used to generate a virtually exact K1-modelM (v) data
set withb151/3 for the range 0.1<v<108 r /s. For this set,
eC1`52/3. Since no value ofeD` was included, the OMF
and CMF approaches were formally equivalent. The d
were then fitted with the CK0 model, one including a freeex

parameter. It was needed to model the nonzeroeC1` of the
data since for the K0eC0(`)[eC0`50.

Fit results for both proportional and unity weightin
should lead tob052/3 if the relationb0512b1 were ap-
plicable. In fact, proportional-weighting fitting led to th
largeSF value of 0.073 and to the estimateb0.0.59. With
unity weighting, which emphasizes large data values, the
at and near the peak was better and led tob0.0.61. Better
estimates of the limiting value were obtained by fitting ju
thes8~v! data. Then, proportional and unity weighting led
estimates of 0.617 and 0.656, respectively. When the d
range was extended to 109 r /s, these estimates were im
proved to 0.628 and 0.667, respectively.

As the above-mentioned results show,b0 estimates from
fits of synthetic K1 data are sensitive to the range of the d
and to which immittance level is used in the fitting. For fi
of experimental data with a CMF approach involving the K
model, there is much lessb1 sensitivity for data with small
random errors, and none of course when the data have
ishingly small random errors and are of K1 character.

In recent composite CMF K1 fits of limited-range da
for several different materials,7,8,16 most b1 estimates were
again found to be close to 1/3 for complex fits at any of t
four immittance levels or for fits of any of the eight ind
vidual real or imaginary parts of the data. Such comparis
using the OMF K1 model for fitting were, however, inco
sistent, and fits ofM (v) or M 9(v) yielded b1 estimates
much larger than the corresponding CMF ones. Incon
tency also appeared when OMFb1 estimates fors8~v! fits
were compared with results for any of the other immittan
level OMF fits. Sinces8~v! data values are independent
the presence or absence ofeD` effects, OMF and CMF fits of
data at this level should yield closely the sameb1 estimated
values. Such results were indeed observed, verifying the
propriateness of the CMF and the inappropriateness of u
the OMF for parameter estimation at the modulus level,
illustrated in Fig. 2 and in Sec. IV F.

A final inconsistency of the OMF approach appea
when the formal results of the conductive-system mic
scopic continuous-time random-hopping model of Scher
Lax21 are compared to those of the macroscopic modu
formalism.13,14 The Scher–Lax model involves a@1
2I 0(v)# term in its response, just as in Eq.~4!. TheeC19 (v)
expressions following from the two models are of exactly t
same form, but theeC18 (v) expressions differ by the absenc
of a nonzeroeC18 (`)5eC1` in the microscopic model. Note
that with the present stretched-exponential expression

rs
ies.
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TABLE II. Fitting results using row-1 syntheticM (v) data derived from fitting single-crystal 0.88ZrO2•0.12Y2O3 at T5503 K. In row 1,eD`523, and it
is zero for row 2. The dimension ofs0 is S/cm and that of allt-related quantities is seconds. Rows 3 and 4:M (v) fits; rows 5–7:s8~v! fits. See Eqs.
~23!–~22! for ^x&[^t&/to expressions.

No. Model 100SF bk 108s0 100M p9 104to 104tp 104^t&01 104^t&k

1 CMF:CK1
Data

¯ 1/3 1.845 1.035 0.0400 1.212 0.2400 2.400

2 K1 data ¯ 1/3 1.845 3.738 0.0400 0.0598 0.2400 2.400
3 OMF:K1 fit 2.87 0.5460 1.850 1.017 0.8101 1.069 1.395 3.443
4 CK0 fit 1.28 0.5233 1.841 1.020 1.096 1.186 ¯ 2.023
5 CK0 s8 fit 0.98 0.5402 1.865 ¯ 1.017 ¯ ¯ 1.781
6 ZC s8 fit

s0 free
1.75 0.3898 1.716 ¯ 1.093 ¯ ¯ 3.905

7 ZC s8 fit
s0 fixed

3.68 0.3492 1.845 ¯ 0.8967 ¯ ¯ 4.544
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f0(t) no overt Coulomb interactions appear in the mic
scopic~or macroscopic! K1 response model.

Unfortunately, the Kronig–Kramers relations do not le
to clarification of the above-mentioned difference in the t
models, a difference ascribed by Scher~private communica-
tion! as arising from the inapplicability of the microscop
approach at very high frequencies. It has been shown, h
ever, that a distribution of relaxation times estimated us
LEVM from specificeC19 (v) K1 response alone may be em
ployed to estimate the correspondingeC18 (v) response.12,14

The resulting eC18 (v) response agreed well with th
macroscopic-model response and included a proper non
value of eC1` , showing that when the real and imagina
parts of the microscopic response are made consisten
two models are fully isomorphic. Since these calculatio
and responses involve only mobile-charge effects, the O
is intrinsically nonisomorphic because its limiting dielectr
constant involves dipolar as well as monopolar effects
the model is thus not isomorphic to the Scher–Lax mic
scopic response theory as claimed earlier.42,43

The above-mentioned CMF isomorphism provides an
structive microscopic interpretation of the K1 conductiv
system model. The Scher–Lax approach is that of stocha
hopping transport of charge involving a continuous-time r
dom walk on a lattice. The excellent fits of experimental d
using such macroscopic CMF models as the CK1, the CK
and the PK1 suggest that not only is one dealing with
conductive system but the physical processes associated
charge motion in the material investigated are well descri
by those of the microscopic Scher–Lax model.

The major problem with the OMF approach, the unw
ranted replacement ofeC1` by eD` or e` , was first pointed
out in 1994.11 As already mentioned, in 1995 Sidebottom
Green, and Brow40 showed that UDR power-law data anal
sis for a wide variety of materials yielded (12n) values of
about 0.33, quite different from their larger OMFb1 esti-
mates of about 0.58, but no explanation of the difference
presented. Since then, the OMF and CMF data fitting
proaches have been compared in detail.3–8,12,14When elec-
trode and/or nearly-constant-loss effects are properly
counted for, the OMFb1 is found to increase with
temperature, quite different from CMF-fit constant estima
of about 1/3.8
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IV. COMPARISONS OF MEAN-VALUE AND
DIELECTRIC-CONSTANT EXPRESSIONS AND FIT
RESULTS

A. Background

Because all dispersed-response models lead to rela
such as Eqs.~5! and ~8! that involve averages over the
distributions of relaxation times, it is important to compa
means for various models as well as the resulting express
that relate limiting dielectric constants and dc conductivi
We shall start with general relations for limiting dielectr
constants and then show explicit forms and fitting results
the present models of interest. Denote the normali
relaxation-time distribution asG(x). Then, generally2–6,12,13

^tm&k5to
m^xm&k5to

mE
0

`

xmGk~x!dx

5@to
m/G~m!#E

0

`

um21fk~u!du, ~12!

whereu[t/to and G(m) is the Euler gamma function. Fo
Kk conductive-system models,G1(x)5(x/^x&01)G0(x).3

Unfortunately, for thek5Z ZC model with its nonphysica
limiting responses,̂t&Z , for example, does not exist unles
GZ(x) is cutoff at both extremes. All the following result
involve no cutoffs,5 appropriate for the data set used for t
present comparisons. The quantityex is a free dielectric pa-
rameter used in fitting with some of the following models

B. CKO model

eC00/eMa5^x&05b0
21G~b0

21!, ~13!

eC0` /eMa51/̂ x21&050, ~14!

e`5ex , e05eC001e` . ~15!

C. CK1 CMF model

eC10/eMa5^x&15@^x2&01/^x&01#5G~2b1
21!/G~b1

21!,
~16!

eC1` /eMa51/̂ x21&15^x&015b1
21G~b1

21!, ~17!

eD`5ex , e`5eC1`1eD` , e05eC101eD` . ~18!
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Downloaded 11 Ma
TABLE III. Results for various dielectric quantities calculated from exact data~rows 1 and 2! and fits to the
row-1 data~rows 3–7!. HereeMa is the Maxwell-type quantity of Eq.~9!. See Eqs.~13!–~23! for calculation
formulas employed. TheeCZ0 results are discussed in the text.

No. Model ex eMa eCk` e` eCk0 ek0

1 CMF: CK1 23 5/6 5 28 50 73
2 K1 ¯ 5/6 5 5 50 55
3 OMF:K1 fit ¯ 16.93 29.15 29.15 71.94 71.94
4 CK0 fit 28.76 22.79 0 28.76 42.06 70.82
5 CK0 s8 fit

s0 free
¯ 21.42 0 ¯ 37.51 ¯

6 ZC s8 fit
s0 free

¯ 21.21 ¯ ¯ 74.44 ¯

7 ZC s8 fit
s0 fixed

¯ 18.46 ¯ ¯ 91.37 ¯
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D. K1 OMF model

e10/eMa5^x&15@^x2&01/^x&01#5G~2b1
21!/G~b1

21!,
~19!

e1` /eMa51/̂ x21&15^x&015b1
21G~b1

21!, ~20!

e`5e1` , e05e101e` . ~21!

Although the right-hand sides of Eqs.~16! and ~17! are the
same in form as those of Eqs.~19! and~20!, large differences
between theto and b1 estimates obtained from CMF an
OMF fits of the same data ensure that theireC10 and eC1`

estimates will also differ substantially, as illustrated in S
IV F. Note that the conductive-system ‘‘C’’ subscript is omit-
ted here from the above-mentioned OMF dielectric-cons
designations because the OMF approach is a combinatio
both conductive and dielectric responses, as already
cussed.

E. ZC model with bZÆ1Àn¶b0

eCZ0 /eMa8^x&05E
0

`

f0~u!du5E
0

`

exp~2ubZ!du

5bZ
21G~bZ

21!, ~22!

e05eCZ01e` . ~23!

Equation ~22! for eCZ0 , involving a Kohlrausch respons
approximation, is discussed in the following.

F. Synthetic data fitting results

In the following two tables, results are presented for
of the various models to an exact CK1 data set. This
which involved 81 points logarithmically distributed over th
range 100<v<106 r/s, was derived by starting with th
CK1S fit parameters, adjusting the values of those involv
the CK1 part of the response slightly, and then using them
LEVM to generate the data. Thus, the resulting data set
represents the response of single-crystal 0.88Z2

•0.12Y2O3 at T5503 K with electrode or nearly-constan
loss effects removed. BecauseLEVM yields the most accurat
response forb151/3 and because many fit results well a
proximate this value, it was used, along withr055.421
3107 V cm.
r 2005 to 152.2.181.221. Redistribution subject to AIP
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Table II presents values of various quantities for the
act data in rows 1 and 2 and for fit results in rows 3–7. H
M p9(vp) is the peak value of theM 9(v) data or fit andtp

[1/vp is the corresponding tau value, wherevp is the mode
of the response curve. Thetp column has been include
because it was stated some years ago that for condu
systems tp and the ^t& defined by tpb21G(b21)
5eVe` /s0 were in close agreement.39 But because the re
sults in Table II show thattpÞto , this definition of^t& is
incorrect and unequal to that following from Eqs.~8! and
~19! for the OMF,^t&015to^x&01.

Table II also shows that there are no equalities betw
the estimates ofto , tp , and^t&01 obtained from the same fi
results. Leo´n, Lucia, and Santamaria found excellent agre
ment, however, between their ZCtZ5to and^t&01 estimates
from fits of data for the same material as that considered h
but one with a slightly smaller Y2O3 concentration.33 Such
close agreement suggested to them that the two quan
might be the same. As in the present work, their^t&01 esti-
mates involved the OMF K1 model, but theirb(5b1) and
other parameter estimates were derived by a series of
proximations rather than directly as here. Here, the co
sponding estimates for comparison aretZ>1.09331024 s
and ^t&01>1.39531024 s. Interestingly, much closer agree
ment is apparent here between thetZ estimate and the OMF
K1 tp>1.06931024 s one. Accurate fitting of data from dif
ferent materials and at different temperatures is neede
order to assess the generality of these results although
more significant comparisons are those involving CM
rather than OMF fitting results.

Table II showss8~v! fit results in rows 6 and 7 for the
ZC model. These results therefore are also ones that w
be obtained from a UDR-model fit using Eq.~11! except for
the difference betweentZ and tU estimates already men
tioned. The results in rows 6 and 7 differ becauses0 was, as
usual, a free fitting parameter for the row-6 fit and was h
fixed at the exact row-1 value for the row-7 fit. HerebZ is
defined as (12n), so its row-6 value corresponds ton
.0.61, a common value for UDR fits for materials and te
peratures where electrode and NCL effects
negligible6,15,26,41 or properly accounted for in complex
nonlinear-least-squares fitting. The row-6 estimate ofs0 is
the worst of those in Table II, and when it is held fixed at t
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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proper value, as in row 7,SF is far larger. The row-6s0

estimate is poorest because ZC low-frequency-limiting
havior is physically improper. For this reason, in the abse
of physically realizable cutoff,eZ(v) increases indefinitely
asv→0 and^x&Z is infinite.

Now it is clear that the ZC model is more comparable
the K0 rather than to the K1 one. For illustrative purpos
only, I make the approximation of using ZC fit parame
estimates in the K0 expression of Eq.~22! in order to calcu-
late the^t&Z8^t&0 results of rows 6 and 7. It is clear tha
they are appreciably larger than the other values in Table
perhaps in part because thebZ5(12n)5b0 relation is too
approximate.

When one carries out as8~v! OMF K1 fit of the present
data, the fit is perfect and leads, as expected, to the re
shown in row 2. Note that the row-2 data and parameters
very close to those of the CMF top K1 curves of Fig.
Comparison of the row-2 and row-3 results thus illustra
the inconsistency of the OMF approach at its starkest, as
the Fig. 2 curves. Such inconsistency also leads to the l
row-3 SF value. Comparison of the CK0 results of rows
and 5 indicates that although the comparable parameter
mates and̂ t&0 values are not exactly the same, they a
reasonably close, and theSF values are much smaller tha
that of the row-3 OMF fit. The K0 model is thus appreciab
more applicable here than is the OMF one, and differen
between the parameter estimates of rows 4 and 5 are as
ated with the systematic errors arising from fitting CK1 da
with a CK0 model, not from a basic inconsistency like th
of the OMF model.

The results shown in Table III used those of Table II a
Eqs. ~13!–~23!. Comparison of the values shown in rows
and 3 makes it clear that although the OMF K1 approa
leads to estimates ofe` ande0 in reasonable agreement wit
those of the input CMF CK1 model, these quantities
formed in different ways. In particular, note that the OM
estimate ofe` arises entirely from theeC1` estimate of the
fit but includes theeD` value in this estimate, thus improp
erly combining both conductive and dielectric system qu
tities in this conductive-system parameter. Similar diff
ences appear for theeC10 estimates.

It is evident that although the K0 fit cannot lead to sep
ration of eC1` andeD` values becauseeC0` is zero or neg-
ligible, M (v) K0 fits nevertheless yield a better estimate
eC10 than do such fits using the OMF K1 model. Sinces8~v!
fits lead to noe` estimates, noek0 values are shown for row
5–7, but it is clear that the present analysis of ZC-fit d
using a K0 expression yields very pooreC10 estimates and
would yield far too large estimates ofe0 . Finally, it is worth
emphasizing that the conventional use of Eq.~20! of the
OMF K1 model for estimation ofs0 when a value ofe` is
known ~or sometimesvice versa!, is inappropriate for two
reasons. First, data rarely extend to such high frequen
that an accurate, limiting frequency-independent estimat
e` is available. Second, the inconsistent, theoretically
proper OMF approach should be superceded by the C
approach, one that, through the use ofLEVM or an equivalent
fitting procedure, yields simultaneous accurate estimate
all pertinent parameters:b1 , to , s0 , andeD` , and so it then
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allows the calculation of valid estimates ofeC1` andeC10.
Unfortunately, all publications dealing with the CM

have been largely ignored so far, and the OMF continue
be widely employed. For example, Ref. 41 provides a list
20 OMF papers, many appearing after 1995, and many
ers continue to be published. Because science involves
search for truth, continuing users of the OMF should eith
accept the CMF or show where and why it is incorrect. Sin
neither has happened in the last seven years, it seems h
probable that the basic premise of the CMF is unlikely to
false and thus the CMF is a far more appropriate idealiza
of the actual conductive-system physical situation than is
OMF.
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