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Abstract:

The discovering of low-dimensional manifolds in high-dimensional data
is one of the main goals in manifold learning. We propose a new approach
to identify the effective dimension (intrinsic dimension) of low-dimensional
manifolds. The scale space viewpoint is the key to our approach enabling
us to meet the challenge of noisy data. Our approach finds the effective
dimensionality of the data over all scale without any prior knowledge. It
has better performance compared with other methods especially in the
presence of relatively large noise and is computationally efficient.
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1. Introduction

High-dimensional data sets can have meaningful low-dimensional structures hid-
den in the observation space. However, a data set can have different effective
dimensions at different scales in the presence of noise. Figure 1 shows two toy
data sets. Plot (a) shows the data randomly drawn from the well-known Swiss
roll. The Swiss roll is a 2-d submanifold embedded in a 3-d space and can be
thought of as curling a piece of rectangular paper. Plot (b) shows the data ran-
domly drawn from the same Swiss roll plus 3-d Gaussian noise. The noisy Swiss
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roll data can be viewed as either 2-d or 3-d depending on scale. At coarse scales
the noise is negligible, so the data are essential 2-d. At fine scales the 3-d noise
dominates, so no 2-d structure is present.

(a) Swiss Roll without noise (b) Swiss Roll with noise

Fig 1. Examples of 3-d data lying near the 2-d manifold. (a) data on the Swiss roll. (b) data
on the same Swiss roll plus 3-d Gaussian noise. The latter is particularly challenging for
conventional dimension methods but easily handled by our scale-space approach

In this paper, we will not endeavor to estimate the true dimension, but to
find an effective dimension (or intrinsic dimension as in many other literatures),
i.e., the dimension that will give a reasonable fit. We realize that the effective
dimension can be chosen by many other methods, such as generalized cross-
validation (GCV) and cross-validation (CV). However, they are computationally
intensive in practice and have some well documented poor realistic issues, see
Jones, Marron and Sheather (1996). Here we propose a simple direct estimate
which would serve as an input for many methods described later. This is done
through a set of hypothesis tests to extract the effective dimensions of data.
The challenge of noisy data is tackled using a scale space approach. The effective
dimensions of the data are estimated over all scales without any prior knowledge,
which allows a much larger amount of noise than earlier methods can handle.
The multi scale estimated effective dimensionality of the data not only gives
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information about the lowest dimension of the submanifold on which the data
lie closely, but also indicates the noise level present in the data.

In the past decades, Principal Component Analysis (PCA) and related meth-
ods have been workhorse approaches to data sets whose low-dimensional under-
lying structure is linear or can be approximated linearly. Several approaches
have been devised to address the problem of finding low-dimensional nonlinear
structure in data. Principal Curve Analysis (Hastie and Stuetzle 1989) mainly
focused on the 1-dimensional nonlinear structure. Two-dimensional surfaces are
investigated by Hastie (1984). LeBlanc and Tibshirani (1994) extended the idea
to higher dimension cases. In their paper, they pointed out that an important
aspect is the proper lowest dimension which the model was based on. They used
the generalized cross-validation with the backward stepwise pruning algorithm
to select the dimension.

Some methods of Nonlinear PCA have been also developed. Gnanadesikan
(1977) applied PCA to a vector of which components are polynomial terms gen-
erated from the data. The method has difficulty with high-dimensional data,
since the number of polynomial terms increases rapidly with the dimensional-
ity. Kernel PCA by Schölkopf et al. (1998) is widely developed. However, the
result is very hard to interpret and gain meaningful insight from. The Sandglass-
type Multi-Layered Perceptron by Irie and Kawato (1990) and by Demers and
Cotterell (1993) can construct adequate nonlinear mapping functions to ex-
tract a low-dimensional internal representation from given data. However, the
dimensionality of the internal representation is fixed and depends on previous
knowledge of data. Again, determining the intrinsic dimension is one of the key
points.

Recently, a variety of methods have been developed to deal with nonlin-
ear dimensionality reduction. Among them, they are Isometic Feature Mapping
(ISOMAP) (Tenenbaum, de Silva, and Langford 2000), Local Linear Embed-
ding (LLE) (Roweis and Saul 2000), Hessian-based Locally Linear Embedding
(Donoho and Grimes 2003), and others. Those methods focus on finding a low-
dimensional curved manifold embedding of high-dimensional data. The dimen-
sionality of the embedding is a key parameter; however, there is no consensus
on how such dimensionality is determined. The dimensionality has been heuris-
tically chosen from the curve of residual variance as a function of dimension.
Constructing a reliable estimator of the intrinsic dimension and understand-
ing its statistical properties will clearly improve the performance of manifold
learning methods.

The current dimension estimating methods can be roughly divided into two
groups, the eigenvalue methods and the geometric methods. Eigenvalue methods
are based on either PCA (Fukunaga and Olsen 1971) or local PCA (Bruske and
Sommer 1998). PCA can be very ineffective for nonlinear data. For example,
applying PCA to the data in Figure 1 will show that a 3-dimension representa-
tion is needed to represent them. Local PCA depends heavily on the choice of
local region and threshold. When the data with non-linear underlying structure,
the choice of the local region and threshold depends on the noise level. Without
any prior knowledge, it is hard for local PCA to get a reasonable estimation
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of true dimensionality of the data. The method developed in this paper serves
as an exploratory tool for discovering the dimensionality of the data without
any prior knowledge of the noise level. If the underlying structure of the data
is linear, our method is consistent with PCA. When the underlying structure is
non-linear, our method is more effective than local PCA when the noise level is
unknown.

The geometric methods are mostly based on fractal dimensions or nearest
neighbor distances. Details can be found in Grassberger and Procaccia (1983);
Camastra and Vinciarelli (2002); Costa and Hero (2004). The statistical prop-
erties have been studied in Levina and Bickel (2005). Smith (1992) discussed
how difficulty it is to estimate the fractal dimension in noisy chaotic time series.
In Section 4.3, we give examples to show that our method is more robust than
the methods of the standard fractal dimension estimation.

The method developed in this paper has been implemented in Matlab code,
which is also available from authors’ web1. For all the simulated examples and
real data examples in this paper, applying our method only takes less than
a minute on a simple personal computer. The Matlab program will generate
the estimated effective dimensions for all scale, which is straight forward to
interpret.

The paper is organized as follows. Since we compare our method mostly with
the estimated dimensionality by ISOMAP, we will first introduce ISOMAP in
Section 1.1. This is followed in Section 2 by the derivation of our procedure, in-
cluding the scale space idea. In Section 3, we define Vector Dimensionality which
is related to the population effective dimensionality, set up a set of hypothesis
tests, prove the consistency of the test statistic. Section 4 contains examples.
Section 5 gives summary and further discussion.

1.1. ISOMAP

Given the distances (similarities) of pairwise data points, Multidimensional Scal-
ing (MS) techniques try to find a representation of the data in low dimensions
such that the distances (inter-item proximities) in low-dimensional representa-
tion space nearly match the original distances (similarities). ISOMAP builds on
the MS algorithm but uses geodesic distance between all pairs of data points.
Figure 1 (a) shows that points far apart on the Swiss roll have short Euclidean
distances. The key point of ISOMAP is to capture the geodesic manifold distance
between all pairs of data points. ISOMAP estimates the geodesic distances for
neighboring points by their Euclidean distances and the geodesic distances for
far apart points by finding the shortest path in a graph with edges connecting
neighboring data points. In addition to giving a low-dimensional representation,
ISOMAP indicated potential estimated dimensionality of the data through an
interpretive error curve as a function of dimensionality.

When data points lie exactly on the manifold or have relatively little noise,
the neighboring points based on Euclidean distance are consistent with the

1The Matlab code is available at faculty.virginia.edu/xiaohui
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neighboring points based on the manifold geodesic distance. Balasubramanian
and Schwartz (2002) argued the topological instability of ISOMAP when data
have relatively large noise, since ISOMAP fails to give a proper estimation of
intrinsic dimension for the latter case. In 1974, Shepard addressed a method
which had the similar idea as ISOMAP. Shepard also pointed out that it was
feasible to find the intrinsic dimension of the data particularly in cases of rela-
tively noise-free data. One important drawback is that ISOMAP fails when the
underlying manifold is not isomophic to Euclidean space. For example, if the
underlying structure of the data is a circle, ISOMAP will fail to determine its
true dimension. This will be illustrated in Example 1 of Section 4.

2. Scale space approach

The notion of scale has been deeply studied in the field of computer vision. For an
introduction and detailed discussion, see Lindeberg (1993) and ter Haar Romeny
(2002). The problem of scale must be faced in any imaging situation. An inherent
property of objects in the world and details in images is that they only exist
as meaningful entities over certain ranges of scale. This is done by studying a
family of Gaussian window smooths of the image, indexed by the window width.
While smoothing of images has been done in many contexts, what distinguishes
the scale space approach is the idea of considering all scales, instead of trying to
choose a level of smoothing. This approach is very useful because often different
aspects of the underlying signal can be most clearly seen at different levels of
scale. We view the problem of finding meaningful low-dimensional structure
in high dimensional data as analogous to finding meaningful image properties.
When data have noise, the meaningful underlying structure depends on the
noise level. Studying a range of different scales helps to detect the meaningful
low-dimensional structure from the high-dimensional noise. In this section, we
introduce our notion of scale parameter. To fully understand the underlying
structure of the data, it is quite important to study useful statistics across all
scales.

Figure 2 shows three toy data sets which are uniformly generated on a line
segment (with length equal to 1) plus vertical Gaussian noise realizations with
different standard deviation (σ = 0.001, 0.03, 0.3 from left to right). The two
different circles are two different window sizes. In Figure 2, there are clear dif-
ferences among these three cases. The left panel shows data that are very close
to lying on a line, a 1-d submanifold (i.e., lower-dimensional structure). The
right panel shows data that are not close to a 1-d manifold but are much more
“2-dimensional”. The middle panel is between. All three toy data sets, as shown
in Figure 2, show different high-dimensional structures at the small scale with
respect to the different noise level. The clarity of the low-dimensional underlying
structure (the horizontal line) is affected in different ways by the noise at the
different scales. We will introduce a new parameter, scale s. Through it, we can
detect the effective dimension of the data even in the presence of noise.

In the presence of noise, none of these toy data sets lie exactly on a 1-d
manifold. However, it is clear that some are much closer than others to lying
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Fig 2. Three panels show toy data sets with each sample size equal to 100 generated uniformly
on a line segment with length equal to 1 plus different independent vertical noise realizations.
The co-centered circles represent the different scales. The 3 examples provide the different
challenges to the effective different dimensions at the scales.

on a 1-d manifold. To measure this closeness, we use the scale space idea. Two
candidate scales are illustrated by the big and small circles in Figure 2. Viewing
the data points through the big window, the data set in the left panel is close to
lying on a line, and the one in the middle panel is close to lying on a thick line.
Viewing the data points through the small window, we may still claim that the
data set in the left panel nearly lies on a line, but the one in the middle panel
is more “2-dimensional”. For both such window sizes, the data set in the right
panel is more like lying on the plane instead of a line. From this example, notice
that for a given data set with noise, whether it is close to a low-dimensional
submanifold or not depends on the window size.

To deal with different window sizes, a new scale parameter, s, is introduced,
which is the radius of the circle for the toy examples in Figure 2. If the data are
from d-space, the scale parameter s is defined as the radius of the d-dimensional
ball. The scale parameter s essentially measures the window size. Here the radius
of the circle is just one choice. Since the underlying structure of the noisy data
changes as the window size changes, any information used to detect the low
dimensional structure will be a function of s for 0 < s < ∞. The lesson we
learned from the examples in Figure 2 is: (i) data exhibit a high-dimensional
structure when the scale s is less than the noise level; (ii) when the scale s is
greater than the noise level, it is possible to find meaningful low dimensional
structure. However, a key issue is that the noise level is in general unknown.
Without any prior information about the data, useful insights can be obtained
from considering a range of scales. Therefore, we recommend studying the data
at all scales to get the whole picture.

2.1. Dimension test statistic

How can we characterize a data set that lies on a 1-d manifold? For any distinct
three points on the straight line (a 1-d linear submanifold) xi, xj and xk, the
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angle between the vector xj −xi and the vector xk −xi is either 0 or π. This is
in general not true when the 1-d submanifold is curved. However, if we consider
the two points which are near to xi for data lying on a curved 1-d submanifold,
the corresponding angle should also be close to either 0 or π.

x
i

x
(1)
s (x

i
)

x
(2)
s (x

i
)

s

θ
i
1(s)

Fig 3. Toy data set illustrating xi, x
s

(1)
(xi), x

s

(2)
(xi), and how the angle θ1

i
(s) is formed with

data points in 2-d space.

For each point xi, and a fixed value of scale s with 0 < s < ∞, first define
xs
(j)(xi) as the point which is the jth point closest to the sphere of the d-

dimensional ball with center at xi and radius equal to s, i.e.,
∣∣∣ s− ||xs

(1)(xi)− xi||
∣∣∣ ≤ · · · ≤

∣∣∣ s− ||xs
(j)(xi)− xi||

∣∣∣

≤ · · · ≤
∣∣∣ s− ||xs

(n−1)(xi)− xi||
∣∣∣ . (1)

Let p1
i (s) be the line which passes through the two points xi and xs

(1)(xi),

i.e., p1
i (s) =

{
y : y − xi = t1(x

s
(1)(xi)− xi), ∀ t1 ∈ R

}
. Let θ1i (s) be the angle

between the vector xs
(2)(xi)− xi and its orthogonal projection on p1

i (s). Hence

θ1i (s) only take values between 0 and π
2 .

Based on the collection of θ1i (s), i = 1, . . . , n over the whole data set, the
following heuristic is useful for any 1-d manifold. Since a 1-d manifold is a
topological space which is locally Euclidean, then θ1i (s) should be close to 0
for small values of s if the data lie on a 1-d manifold. When the data have
noise, the degree of tolerance of the noise for all window sizes depends on the
different noise levels. For the first toy example with small noise, both scales are
big enough to perceive the 1-d structure since the averages of θ1i (s) at the small

and big scales are both close to 0 (θ1(s) equal to 0.013 and 0.004 respectively).
For the second toy example, the value of θ1(s) = 0.599 is much larger at the
small scale, reflecting the virtually apparent 2-d structure, and θ1(s) = 0.112
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1
i
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(1)
(xi)−xi and xs

(2)
(xi)−xi,

always taken to be between 0 and π

2
.

is smaller for larger s, reflecting the less 2-d nature shown in Figure 2. θ1(s) of
the second toy example indicates more noise than the first one. For the third
toy example, both scales suggest 2-d manifold structure because their averages
are far from 0 (0.724 and 0.738).

Theoretically, we could have θ1i (s) for any scale s. Notice that for a given
data set, θ1i (s) for i = 1, . . . , n are the same when s ≤ smin and s ≥ smax, where
smin and smax are the minimum and the maximum pairwise distances among the
data points. Indeed, when s ≤ smin is considered, for each data point xi, θ

1
i (s)

will not be changed since the 2 nearest points are always the same. Similarly,
when s ≥ smax, θ

1
i (s) will not be changed for the same reason. Therefore, for a

given data set, we only need to concentrate on the scales s between smin and
smax. Divided by smax, we will have the standardized scale from 0 to 1.

We would like to explore the “tendency of a data set to lie on or nearly to
lie on a 1-d submanifold” by analyzing the set of angles, θ1i (s). However, these
quantities are not very interpretable. A sensible summary of θ1i (s) is the average
of θ1i (s). A more interpretable statistic T1(s) can be defined as a re-scaling of

θ1(s),

T1(s) = 1 +
1

a1
× θ1(s) (2)

where a1 = π
4 . Such an a1 value is chosen to match T1(s) as the dimension of

the data. Details are explained later in this section.

Theorem 2.1. Assume that Y = {X1, . . . , Xn } is a random sample and the
density function is absolutely continuous with respect to Lebesgue measure over
an appropriate manifold. Then the following are true.

• if Y is from a 1-d linear space, P(θ1i (s) ≡ 0) = 1, from a 1-d manifold,
P(θ1i (smin) = 0) → 1 as n→ ∞;

• if Y is from a 2-d manifold, θ1i (smin)
L

−→ (the uniform(0, π2 ) distribution)
as n→ ∞. Further E(θ1i (smin)) →

π
4 as n→ ∞;

• if Y is from a k(k > 2)-d manifold, limn→∞ E(θ1i (smin)) increases as k
increases, with limit equal to π

2 as k → ∞.
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Therefore, T1(s) can be used to distinguish a data set from a manifold with
dimensionality ≤ 2 or > 2. This idea can be generalized to distinguish a data
set with dimensionality ≤ k + 1 or > k + 1, where k > 1. The idea of an-
gles can be extended by considering (k + 2)-tuples. For each point xi and a
fixed value s, consider the k + 1 points which are closest to the sphere of
the d-dimensional ball with center at xi and radius equal to s, denoted as
xs
(1)(xi), . . . ,x

s
(k+1)(xi) as in (1). Let pk

i (s) be the hyperplane determined by the

points xi, x
s
(1)(xi), . . . , x

s
(k)(xi). Then the angle θki (s) is formed by the vector

xs
(k+1)(xi)−xi and its orthogonal projection on pk

i (s). Therefore, for a data set
with n points, from a d-dimensional space, we can consider effective dimensions
k = 1, . . . , m based on the angles: Θ(s) = { θji (s), i = 1, . . . , n; j = 1, . . . ,m },
wherem = min (d−1, n−2). Again all of these angles are defined to be between
0 and π

2 .

Each set θ
k(s) = { θki (s), i = 1, . . . , n} will help to determine whether the

data are close to a manifold with dimensionality ≤ k + 1 or > k + 1. Corre-
spondingly, we can define the more interpretable statistics T(s) = {Tk(s), k =
1, . . . ,m} as follows

Tk(s) = k +
1

ak
θk(s), (3)

where for a fixed point xi, ak is the mean of the limit distribution of θki (smin)
as n → ∞ for the data from the (k + 1)-d manifold. Denote ηk be the random
variable with such a limit distribution, so ak = E

(
ηk

)
. For example, a1 = π

4 .
The limit distributions of all θki (smin) (k > 1) are given in Chapter 5 of [27].

3. Effective dimensionality

In the previous section, we studied the statistics Θ(s) and T(s) which are both
based on the data. In this section, we are going to define the definition for a
population X analogue to T(s), denoted as D(s). We call this D(s) the Vector
Dimensionality of the population. Under some general conditions, we will show
the consistency of the statistic T(s) for D(s). Finally, we will set up hypothesis
tests to extract the effective dimensionality of data based on T(s).

3.1. Definition of Vector Dimensionality

Assume that a population, X , is from a d-dimensional space, Rd, and has a
probability distribution P(x). For a random point x ∈ X , if we use polar coor-
dinates and set the origin of the coordinate system at x, then for every y ∈ X ,
we will have polar coordinates (ρ, ξ1, . . . , ξd−1), simply denoted as (ρ,Λ) where
Λ = (ξ1, . . . , ξd−1). For any scale s ∈ ( 0, ∞ ), let Y|(x,s) be the conditional
population of points y on the surface of the ball Sx,s, i.e., y ∈ Y|(x,s) satisfies
||y−x|| = s. For every y ∈ Y|(x,s), y will have polar coordinates (s,Λ). And the
distribution of points in the population Y|(x,s) will be a conditional probability
measure of Λ given ρ = s and the point x, denoted as Px(·|ρ = s).
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For any two random points y1,y2 ∈ Y|(x,s), let L1
x be the line determined

by x and y1, then θ1
x
(s) will be the angle between the vector y2 − x and its

projection on L1
x. In fact, θ1x(s) is a function only of Λ1 and Λ2, denoted as h1,

i.e., θ1x(s) = h1(Λ1,Λ2). Define the moments:

ψ1
x(s) =

∫
h1(Λ1,Λ2) dPx(Λ1|ρ = s)dPx(Λ2|ρ = s).

Further more, in general we can define the moments:

ψk−1
x

(s) =

∫
hk−1(Λ1, . . . ,Λk) dPx(Λ1|ρ = s) · · · dPx(Λk|ρ = s), for k < d.

In order to get properties of the whole population, we need to consider every
point, i.e., we need to consider

∫
ψ1
x
(s)dP(x), . . .,

∫
ψd−1
x

(s)dP(x). To make
them more interpretable, we will re-scale

∫
ψ1
x
(s)dP(x), . . .,

∫
ψd−1
x

(s)dP(x)
to a series D1(s), . . . , Dd−1(s) so that: when the population is contained in a
d′-dimensinal linear space, we have D1(s), . . . , Dd−1(s) as in Table 1.

Table 1

Values of Dk(s) for linear spaces

d′ D1(s) D2(s) · · · Dk(s) · · · Dd−2(s) Dd−1(s)
1 1 2 · · · k · · · d− 2 d− 1
2 ≥ 1 2 · · · k · · · d− 2 d− 1
k ≥ 1 ≥ 2 · · · k · · · d− 2 d− 1

d− 1 ≥ 1 ≥ 2 · · · ≥ k · · · ≥ d− 2 d− 1

Now we have the following definition of the population version of the sample
statistic T(s).

Definition 3.1. Vector Dimensionality D(s) of a population X in Rd with a
probability P is defined asD(s) = {D1(s), D2(s), . . . , Dd−1(s) }, where for any
fixed value s ∈ (0,∞)

D1(s) = 1 +
1

a1

∫
ψ1
x(s)dP(x), (4)

· · ·

Dd−1(s) = d− 1 +
1

ad−1

∫
ψd−1
x

(s)dP(x). (5)

where a1, . . ., ad−1 are defined as before.

3.2. Consistency of the statistic T(s)

The natural statistic for D(s) is D̂ = T(s) = {T1(s), T2(s), . . . , Tm(s) }, where
m = min(d − 1, n − 2). In this section, we are going to prove that for any
k = 1, . . . m, Tk(s) is a consistent estimate for Dk(s) for any fixed value of s.

The following lemma is useful in proving the consistency of T(s). The idea of
the proof is similar to the proof of Lemma 5.1 in Section 5.2 in Devroye, Györfi,
and Lugosi (1996).



X. Wang and J.S. Marron/Intrinsic dimension in manifold learning 137

Assume X1, X2 . . . is a random sequence from a population X with a proba-
bility measure P on it. Let Sx,ǫ,s be the set { y ∈ Sx,ǫ,s : s−ǫ ≤ ‖y−x‖ ≤ s+ǫ },
for any ǫ < s. Because the probability measure P has a continuous density func-
tion f , it follows that P (Sx,ǫ,s) > 0 for any x ∈ X , ǫ > 0, and s > 0. For
X1, X2, . . . , Xn, order |‖Xi − x‖ − s| and define analogues of order statistics
Xs

(k)(x) such that

∣∣∣‖Xs
(1)(x)− x‖ − s

∣∣∣ ≤
∣∣∣‖Xs

(2)(x)− x‖ − s

∣∣∣ ≤ · · · ≤
∣∣∣‖Xs

(n)(x)− x‖ − s

∣∣∣ .

So Xs
(k)(x) is the point among X1, X2 . . . , Xn, which is the k-th closest to the

surface of the closed ball centered at x with radius s(> 0). Then we have the
following lemma.

Lemma 3.1. For any x ∈ X and any fixed value of k,
∣∣∣‖Xs

(k)(x)− x‖ − s
∣∣∣ → 0

with probability 1 as n→ ∞. If X is independent of the data, then
∣∣∣‖Xs

(k)(X)−X‖ − s

∣∣∣ → 0

with probability 1 whenever n→ ∞.

Theorem 3.2. Assume a random sample Y = {X,X1, . . . , Xn } from the
population X ⊂ Rd, and θkX(s) defined as above, then E θkX(s) converges to
ψk
X(s) as n → ∞. Further more, for any fixed value s and any fixed integer k,

limn→∞ ETk(s) = Dk(s).

Lemma 3.3. Suppose the observations {Xi, i = 1, . . . , n } are independent,
identically distributed in d-dimensional space with a twice continuously differ-
entiable density f . Define Tk(s) as (3), then for any fixed value of scale s and
any fixed integer k, where 1 ≤ k ≤ m, Var(Tk(s)) → 0 as n→ ∞.

Theorem 3.4. For any fixed value of scale s and fixed integer k, where 1 ≤
k ≤ m,

Tk(s)
P
−→ Dk(s), as n→ ∞

The proof of the above lemmas and theorems in this section are given in [27].

3.3. Hypothesis test

D(s) is a theoretical construction that allows understanding of our approach
and estimating effective dimensionality. However, we generally do not know the
distribution of the true population. Instead, we use the sample statistic T(s). A
set of hypothesis tests is used, each one based on one element of T(s). Each test
is performed separately. Here, the hypothesis test is a mechanism to extract
the effective dimensionality of the data. A simple approach to the multiple
comparison issue would be a Bonferroni method. More sophisticated multiple
comparison tests for effective dimensionality are interesting topics for the future
work.
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For the typical k-d data, we will assume the k-dimensional standard nor-
mal distribution as the distribution under the null hypothesis. Since analytical
calculation of Dk(s) of the (k + 1)-d standard normal distribution seems to
be intractable, we use a simulation approach. For example, for D1(s) of the
2-d standard normal distribution, denoted as D2

1(s), we generated 1000 random
samples with each sample of size equal to the sample size of the testing data,
and calculated T1(s) for these 1000 random samples. We use the average of these

1000 T1(s) as an estimate of D2
1(s), denoted as D̂2

1(s), and use the 2.5% and

97.5% percentiles of these 1000 T1(s), denoted as ̂D2
1,2.5%(s) and

̂D2
1,97.5%(s), as

the critical value at the 5% significance level. Since D1(s) ≡ 1 for any 1-d linear

data, by comparing whether T1(s) of the data less than ̂D2
1,2.5%(s) or not, we

will conclude for the fixed scale value s, whether the effective dimension of the
data is less than 2-d at the 2.5% significant level or not. If T1(s) of the data

is greater than ̂D2
1,2.5%(s) and less than ̂D2

1,97.5%(s), then the effective dimen-

sion for that scale s is 2 at the significant level of 5%. The steps, to investigate
the effective dimensionality of data at all scales, follow. For each s ∈ S, or in
particular a discrete subset of S,

1. For k = 1, 2, . . ., test

H0 Tk(s) of the data is significantly equal or less than ̂
Dk+1

k (s) for
s ∈ S at level α

vs. H1 otherwise
2. stop when H0 is accepted for this scale s, and record the corresponding
Tk(s) of the data as the effective dimension of the testing data set at this
scale s ∈ S.

4. Examples

In this section we present several examples with applications of our method.
The first two examples are based on simulated data. Example 3 and 4 are two
real data sets. Example 5 is about the deterministic chaos case.

4.1. Simulated examples

Example 1: A circle
We use Example 1 and 2 in “Adaptive Principal Surfaces” by LeBlanc &

tibshirani, (1994). Generate the first data set of 100 observations from the circle

y1 = 5 sin(λ) + ǫ1

y2 = 5 cos(λ) + ǫ2,

where λ ∼ U(0, 2π) and ǫi ∼ N(0, 0.25) for i = 1, 2. And by adding 4-dimensional
noise, yi = ǫi, where ǫi, i = 3, 4, 5, 6 have the same distribution as ǫ1, we have
the second data set.
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Fig 5. Plot of T1(s) for the circle examples: 2-d (left) and 6-d (right)

In plots of Figure 5, we compare T1(s) based on the two simulated data
sets with the T1(s) of the 2-d standard normal distribution. The green dash-
dotted curve and the 2 magenta dash-dotted curves represent the estimate of
T1(s) and the “typical range” (95% confidence bands) of T1(s) if the data fol-
low a 2-d standard normal distribution. The blue “-*” curves are T1(s) based
on the simulated data sets. The scale s is chosen from the minimum pairwise
distance to the maximum increased by 5% of pairwise distance, denoted as
smin, s5%, s10%, . . . , s95%, smax. To make the scale comparable, we standardize
it either by the maximum pairwise distance or by the 95% pairwise distance to
reduce the affect of outliers.

For the first simulated data set, T1(s) is less than lower magenta line for
relatively small and large scales, indicating that the effective dimension is leas
than 2 for those scales. For some middle range scales, T1(s) is within the 2
magenta lines, indicating that they are 2-d. T1(smin) > T1(s5%) because the data
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have noise and the noise affect the effective dimension more at the smaller scales.
T1(s) reaches its maximum value at some middle range of scale for the reason
that the underlying structure of the data is nonlinear and shows 2-d structure
at the middle scales. For the second data set, T1(s) is larger than the first
case at every scale because of the larger noise level. However, it still shows less
than 2-d structure of the data at some scales, see right plot of Figure 5. T1(s) is
significant bigger than 2 when s = s45%, s50%. We should go further to test T2(s)
for this data set at these two scales to determine the effective dimensionality at
these two scales. By applying ISOMAP to these two data sets, no matter what
the value of neighborhood parameter is taken, ISOMAP always estimates the
intrinsic dimension as 2 or bigger.

Example 2: The Swiss roll
In this example, we will compare our method with ISOMAP through two

toy data sets, the noiseless Swiss roll data in plot (a) of Figure 1 and the noisy
Swiss roll data in plot (b) of Figure 1.

For the noiseless Swiss roll data shown in plot (a) of Figure 1, the result
analyzed by the ISOMAP algorithm is shown in plot (a) of Figure 6. As with
PCA, the true dimensionality of the data can be estimated from the decrease
in residual variance as the dimensionality of the low-dimensional representation
increases. The residual variance of ISOMAP correctly bottoms out at dimen-
sionality equal to 2.

Since the data lie exactly on the surface of the Swiss roll, the shapes of T1(s)
and T2(s) are driven completely by the curvature of the surface of the Swiss
roll. Plot (b) in Figure 6 shows T1(s) of the noiseless data (blue “-*” line) and
compares it with the T1(s) of the typical 2-d data (the typical data means the
data with standard normal distribution). T1(s) is significantly greater than the
typical T1(s) of 2-d data from smin to s75%. It suggests that the data are close to a
manifold with dimensionality greater than 2. From T2(s) in plot (c), at smin, s5%,
and s10%, the corresponding values of T2(s) are significantly less than the typical
T2(s) of 3-d data, especially T2(smin) is about 2.2 and T2(smin) < T2(s5%). Since
the noise affects detection of the real structure mostly at the smallest scale,
the fact that T2(smin) < T2(s5%) indicates that even at the smallest scale, the
window sizes is big enough to detect the true underline structure. T2(s) of this
simulated data set starts significantly less than the typical T2(s) of 3-d data at
smin ≤ s < s15%, increases to values bigger than the typical T2(s) of 3-d data at
the medium scales, then decreases to the values less than the typical T2(s) of 3-d
data again at large scales. The values of T2(s) consistently less than 3 at smaller
scales indicate that the data are close to 2-d manifold. The non-monotone shape
suggests that the data lie on a curved 2-d manifold, since the 3-d structure only
shows at the medium scales.

For the noisy Swiss roll data in plot (b) of Figure 1, plot (d) of Figure 6 shows
the estimated dimensionality by ISOMAP. We tried the values of neighborhood
size from 2 to 22 by every increment of 2. The result shown in plot (d) is the
best among them. Plots (e) and (f) show our test statistics T1(s) and T2(s) of
the noisy Swiss roll data comparing to the typical 2-d and 3-d data. Our method
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Fig 6. (a): The estimated dimension by ISOMAP for the noiseless Swiss roll data in Figure 1.
(b): For the noiseless Swiss roll data: comparing their T1(s) with the typical T1(s) of 2-d data.
(c): For the noiseless Swiss roll data: comparing their T2(s) with the typical T2(s) of 3-d data.
(d): The estimated dimension by ISOMAP for the noisy Swiss roll data in Figure 1. (e): For
the noisy Swiss roll data: comparing their T1(s) with the typical T1(s) of 2-d data. (f): For
the noisy Swiss roll data, comparing their T2(s) with the typical T2(s) of 3-d data.
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suggests that this noisy Swiss roll data are still close to a 2-d manifold but with
relatively large noise, since T2(smin) and T2(s5%) are significantly less than the
corresponding typical T2(s) of 3-d data. However, comparing to the result of
noiseless Swiss roll data, T2(smin) ≈ 2.85 is much bigger than the previous one,
T2(smin) ≈ 2.2.

4.2. Two real data sets

Example 3: Berkeley growth study data
The Berkeley growth study data (Chapter 6, Ramsay and Silverman 2002)

have been studied by Wang and Iyer (2006). The data set contains height mea-
surements of 54 girls and 39 boys with total 31 measurements on each subject
from age 1 to 18 years. For comparison reason, we choose the last 21 measure-
ments from age 8 to 21 years which were analyzed by Wang and Iyer, i.e., a data
set with 103 observations on 21-dimensional space. Wang and Iyer developed a
method of finding nonlinear latent structure by LLE. To find the intrinsic di-
mension, they use the cross-validation method. The left panel of Figure 7 shows
that such a data set has a significant 2-d underlying structure which is consis-
tent to the result of Wang and Iyer. They concluded that 2 factors essentially
determine the growth patten for the juvenile boys and girls.

Example 4: States data
The data consist of 7 variables for 50 U.S. states, which are population, aver-

age income, illiteracy rate, life expectancy, homicide rate, high school graduation
rate, and average number of days with below-freezing minimum temperatures.
The data are available from Becker, Chambers, and Wilks (1988) and were used
as an example in the paper of LeBlanc and Tibshirani (1997). In their paper,
they showed that the projection onto the 2-dimensional adaptive principal sur-
face captured the most variation of the data. As we explained before, they use
GCV to find the intrinsic dimension. The right panel of Figure 7 shows that for
the most of scale, the data are lying closely on the 2-dimensional manifold.

From Example 3 and 4, it is clear that we can find the effective dimensions
of these two data sets very quickly based on out scale space approach.

4.3. Intrinsic dimension for deterministic chaos

Deterministic chaos has been rigorously and extensively studied by mathemati-
cians and scientists. Instead of presenting a formal account, we will adopt an
informal approach in which we illustrate some basic concepts of deterministic
chaos through an example.

Example 5: Hénon map
The example is the Hénon map defined by

xn = yn−1 + 1− 1.4x2n−1

yn = 0.3xn−1 (6)
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Fig 7. The left panel is the plot of T1(s) for the Berkeley growth study data. The right panel
is the plot of T1(s) for the States data.

which maps a 2-d vector (xn−1, yn−1) to (xn, yn). There is an extensive liter-
ature about the Hénon map. However, it has proved surprisingly difficult to
obtain rigorous results for this map. The correlation dimension, p, has been
quoted as being in the range 1.25 ± 0.02 (Grassberger and Procaccia, 1983).
The direct Grassberger-Procaccia method, the Takens’s estimate, and other
modified Grassberger-Procaccia methods (they are essentially equivalent) give
similar estimated values p̂ = 1.22. When noise is present, all these methods are
not effective.

In Smith’s (1992a) paper, there is a theoretical discussion about the presence
of noise and a modified version of the Grassberger-Procaccia methods for esti-
mating the dimensionality in the presence of the noise. In his paper, he used
the Hénon map as an example. Here we follow Smith’s example and generate
1100 data points from the Hénon map as (6) by discarding the first 100 and
adding the 2-d Gaussian observational noise with σ = 0, 0.001, 0.003, 0.01. Fig-
ure 8 shows the four data sets. The σ = 0.001 data set appears no different from
the case σ = 0, whereas at σ = 0.003 the difference is noticeable but the fractal
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structure still evident, and at σ = 0.01 the picture has become quite seriously
blurred.
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Fig 8. The scatter plots for the trajectory starting from the origin and driven by the Hénon
map plus the 2-d Gaussian noise. Sample size is 1000. (a) with no noise, i.e., σ = 0; (b) with
σ = 0.001; (c) with σ = 0.003; (d) with σ = 0.01.

For the data set with σ = 0.001, recall that this is visually indistinguishable,
some estimates of p are as high as 2.5. For the data set with σ = 0.003, the
estimates of p vary from 1.3 to 2.7. For the data with σ = 0.01, the estimates
are even worse. Details can be found in Smith (1992b). In that paper, Smith
gave a dimension estimate dealing with the noise, which requires either the prior
knowledge or an estimation of the variance of the noise. Smith’s method gave
much improved estimates of the dimensions of the data with noise. Because we
study the case without prior knowledge, we will only compare our method with
the methods which require no knowledge of or no estimation of the variance,
e.g., Takens’ estimate.

Figure 9 shows T1(s) for the four simulated data sets. At smin, T1(s) increases
as the noise level increases. This is not surprising, since the smallest scale senses
the high-dimensional structure. However, T1(s5%) is around 1.4 for the data sets
with σ = 0, σ = 0.001, and σ = 0.003. T1(s5%) is about 1.5 for the data set with
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Fig 9. Comparison between T1(s) of the 4 data sets in Figure 8 and T1(s) of the typical 2-d
data. They are all significantly different from a 2-d manifold.

σ = 0.01. Our method shows that all 4 data sets are significantly different from
a 2-d manifold.

To summarize the comparison between our method and the methods for es-
timating the correlation dimension of the deterministic chaos, the similarity is
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that both two versions of estimating dimensionality try to find the effective
dimensionality between integers. In other words, they not only give the infor-
mation whether the data are close to a k-dimensional manifold with k as an
integer, but also provide the information about the degree of the closeness by
using fractional dimensionality. They give similar information when the data
are studied locally. However, our method gives the effective dimensionality not
only locally but also globally. Unlike the general methods of estimating the cor-
relation dimension for the deterministic system, the noise in the data does not
affect the stability of our method.

5. Summary and discussion

The method provided in this paper does not give a single number as an estimate
of intrinsic dimension as others. In stead, it gives a whole picture of intrinsic
dimension for data at all scales. The estimated intrinsic dimension is a func-
tion of scale parameter s which takes values not integer but real number. The
fraction part of the intrinsic dimension of the small scales helps us to learn
some information about the noise. Based on our method, it is possible to choose
a proper estimate for the intrinsic dimension as an input for many nonlinear
dimension reduction methods. Our procedure does not depend on any specific
dimension reduction method. It is more robust than ISOMAP when data have
relatively large noise and more computational efficient than most of CV and
GCV methods.

A couple of extensions of the procedure might be worth of investigating.

• For a fixed scale s and a fixed point, only two points at this scale are
taken into account to calculate the test statistics. It could be extended to
include more data points at the scale so that the test statistics are more
robust.

• Currently, we use the simulation result to determine the significance of
the effective dimension. It is important to establish the asymptotic distri-
butions of test statistics at all scale.

Our current method is carried out in a simple Matlab code.
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