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Nonlinear Stability of High Lewis Number
Combustion Fronts

ANNA GHAZARYAN

ABSTRACT. In this paper a mathematical model is considered
that describes combustion processes characterized by a very high
Lewis number. The model is known to support a wavefront
that asymptotically connects the completely burned and the un-
burned states, and that is unique up to translation. The stability
of the front has not yet been investigated beyond the spectral
level. The essential spectrum of the linearization of the system
about the front touches to the imaginary axis, therefore, even
in a parameter regime that guarantees absence of the unstable
discrete spectrum, spectral information is not definitive. There
exists an exponentially weighted norm that stabilizes the front
on the linear level. The nonlinear stability in that exponentially
weighted norm cannot be simply inferred from the spectral sta-
bility because the nonlinearity is not smooth in that norm. We
use the interplay of the norms with and without exponential
weight to overcome this issue, and show that the front in the co-
moving frame is nonlinearly stable in the exponentially weighted
norm with respect to a special class of perturbations.

1. INTRODUCTION

In this paper we study the nonlinear stability of a traveling wavefront that occurs
in a model for high Lewis number combustion. Before describing the model in
detail, we will discuss its key features on the example of a general reaction-diffusion
system. Assume that a nonlinear parabolic equation

(1.1) ∂tU = D∂xxU +N(U), U ∈ Rn, x ∈ R, t ≥ 0,
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has a front solution H(ξ) = H(x − ct). Here D = (d1, ..., dn), di > 0 for
i = 1,...n, is the diffusion matrix, and N(U) is a smooth, nonlinear function of
U . The first step in the stability analysis of the front involves locating the spectrum
of the linearization of the system (1.1) about the front H,

(1.2) ∂tU = D∂ξξU + c∂ξU + ∂UN(H)U.

The spectrum of the linearization contains critical information about the nonlin-
ear stability of the wave. We next assume that the wave is spectrally stable, i.e.
there are no points of the spectrum with non-negative real parts, except at the
origin. The two possible options for the spectrum are illustrated in Fig. 1.1. The
parabolic shape of the essential spectrum is due to the presence of diffusive terms.
The eigenvalue at the origin, that may be isolated or embedded in the essential
spectrum, is due to the translational invariance of the system. If the continuous
spectrum is bounded away from the imaginary axis (Fig. 1.1(b)) and the eigen-
value at the origin is simple, then the wave is nonlinearly stable [14].

The case of marginal stability (Fig. 1.1(b)), which is characterized by the es-
sential spectrum touching the imaginary axis at the origin, at a quadratic tangency,
is one of the most interesting and nontrivial situations that may occur in the sta-
bility analysis of traveling waves. In this case, the information from the spectrum
is not definitive. In other words, nonlinear stability does not simply follow from
the spectral information. On the linear level, one expects that perturbations to
the front will decay but not exponentially. There are techniques for dealing with
marginally stable fronts that involve exponential or algebraic weights. A serious is-
sue with using these weights is that the nonlinearity does not always behave nicely
in the weighted spaces that stabilize the linear problem. For example, in the case
of this combustion model, the nonlinearity is not differentiable in the weighted
space that is needed for linear stability.

To overcome the non-differentiability issue, we take a different approach. The
equation for the perturbation Ũ to the front and the equation for the weighted
perturbation W̃ = ρŨ , where ρ is an appropriate weight, will not be considered
separately of each other. Instead we will build a hybrid system: a nonlinear equa-
tion for Z = (Ũ , W̃ ), where the coupling occurs on both the linear and nonlinear
levels in such a way that we can achieve two goals. First, we want the nonlinearity,
as a function of Z, to be sufficiently smooth. Second, using the structure of the
front, we will write the linear terms in a convenient form that will allow us to
show that the linear terms dominate the nonlinearity. We can show in this case
that marginal stability implies nonlinear stability in the weighted norm. Moreover,
we show that even in the norm without weight, if initial perturbations are suffi-
ciently localized, the perturbed solution will converge to a translate of the front,
although not exponentially fast. More details about this approach are provided in
the next few sections.
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FIGURE 1.1. The spectrum of the linearization about the wave
is located on and to the left of the parabola: a) marginally stable
case, b) linearly stable case. The eigenvalue at the origin is due to
translational invariance of the system. In this schematic picture
stable discrete eigenvalues are disregarded.

1.1. Model. The following model is known to describe propagation of com-
bustion waves in the case of premixed fuel, with no heat loss, in one spatial di-
mension x ∈ R,

∂tu1 = ∂xxu1 +u2Ω(u1),
∂tu2 = ε∂xxu2 − βu2Ω(u1).(1.3)

Here u1 is the temperature and u2 is the concentration of the fuel. The reaction
rate has the form of an Arrhenius law without ignition cutoff: Ω(u1) = e−1/u1

for u1 > 0 and Ω(u1) = 0 otherwise. The system has two parameters. One is
the exothermicity β > 0 which is the ratio of the activation energy to the heat
of the reaction. The other is the reciprocal of the Lewis number ε = 1/Le > 0.
Therefore, ε represents the ratio of the fuel diffusivity to the heat diffusivity. When
0 < ε � 1, i.e., Le is very large but finite, system (1.3) describes burning of very
high density fluids at high temperatures [2]. It also can be used as a model for
combustion of solid fuels (Le = ∞) when melting occurs in the reaction zone.
The system in a liquid phase then is characterized by a finite, but large, Lewis
number.

1.2. Existence of the front. The combustion fronts that asymptotically con-
nect

(1.4) (u1, u2) = (1/β,0) at −∞ and (u1, u2) = (0,1) at ∞,

are in the center of this study. The boundary conditions represent the physical
state where the fuel is completely burned, i.e., u2 = 0, and the maximal tem-
perature u1 = 1/β is reached, and the state when none of the fuel is yet burned
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and the temperature u1 is still zero. The direction of propagation is chosen so the
front moves leaving the burned state behind. As a solution preserving its shape, a
front is a function of a single variable ξ = x − ct, where c represents the velocity
of the front. In the co-moving coordinate frame, (1.3) reads

(1.5)
∂tu1 = ∂ξξu1 + c∂ξu1 +u2Ω(u1),

∂tu2 = ε∂ξξu2 + c∂ξu2 − βu2Ω(u1),

where now u1 and u2 are functions of ξ and t. A front is sought as a stationary
solution of (1.5),

(1.6)
u′′1 + cu′1 = −u2Ω(u1),

εu′′2 + cu′2 = βu2Ω(u1),

where the derivative is with respect to ξ. Equation (1.6) is called the traveling
wave equation.

For (1.6) there are solutions that decay to the rest state at ∞ at algebraic rates,
but these are considered to be of little interest [26]: one of the reasons for such
discrimination is that any amount of heat loss in the physical system will destroy
these algebraicly decaying solutions.

It is known that a unique c > 0 exists for which system (1.6) has a nontrivial
solution that asymptotically connects the rest states (1.4): in an appropriate scal-
ing, the traveling wave equation (1.6) with 0 < ε < 1 falls in a class of equations
described in [3], where Leray-Schauder degree theory has been used to prove the
existence and uniqueness of the front. For the same system as in [3] the existence
and uniqueness questions have been addressed in [17] from the point of view of
phase plane analysis.

For ε sufficiently small, an essentially different approach to the proof of the
existence and uniqueness of the front is based on geometric singular perturbation
theory [16]. System (1.6) has a slow-fast structure. In the limiting case of ε = 0
the flow is restricted to a two-dimensional invariant manifold. The manifold is
normally hyperbolic and attracting; therefore, by Fenichel’s First theorem [5], it
perturbs to an attracting manifold invariant for the flow with sufficiently small
ε > 0. For the reduced problem, the lower dimension of the problem can be used
to show that the front in the ε = 0 case is formed as a transversal intersection of
relevant invariant manifolds. Transversality can be proved by Melnikov integral
calculation [2], or by following the blueprint of the proof of the existence and
uniqueness of subsonic detonation waves [8].

The slow-fast structure of the wave can be used not only to prove the exis-
tence and uniqueness of the front for the perturbed system, but also to show (see
[9]) that the spectrum of the front with sufficiently small ε > 0 is a perturbation
of order ε of the spectrum of the front with ε = 0. In contrast to spectral in-
formation, further stability analysis of the front for ε = 0 and 0 < ε � 1 calls
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for essentially different approaches due to significantly different properties of the
linearized operators. The case of nonzero ε is discussed in this paper. The case
of ε = 0 is studied in [10]. The analysis in [10] is independent of the results for
ε > 0, although it is possible that the relation between the stability of fronts in the
cases of zero and nonzero ε may be revealed in a way similar to one used in [30]
or [28].

This approach is particularly useful for our purposes because the geometric
construction of the front provides an additional piece of information: the unique
front of (1.3) converges to the rest states (1.4) exponentially fast. This fact is
crucial for the proof of the nonlinear stability result in the present paper.

1.3. Stability. The unique front of (1.3) is denoted by H = (h1, h2), and
its corresponding speed by c. The linearization of (1.5) about H is given by

(1.7)
∂tp1 = ∂ξξp1 + c∂ξp1 +Ω(h1)p2 + h2Ωh1(h1)p1,

∂tp2 = ε∂ξξp2 + c∂ξp2 − βΩ(h1)p2 − βh2Ωh1(h1)p1,

where Ωh1(h1) = Ω(h1)/h2
1. The eigenvalue problem reads

(1.8)
λp1 = ∂ξξp1 + c∂ξp1 +Ω(h1)p2 + h2Ωh1(h1)p1 ,

λp2 = ε∂ξξp2 + c∂ξp2 − βΩ(h1)p2 − βh2Ωh1(h1)p1 .

A traveling wave is called spectrally stable if the spectrum of the linearization
of the system about the traveling wave is contained in the left half-plane {λ ∈
C : Reλ ≤ 0}. Generally speaking, the spectral stability need not imply the linear
stability of the traveling wave, i.e., the decay of the solutions of the linearized PDE
(1.7).

If the linearized operator is sectorial, the linear stability is guaranteed if there
exists B > 0 such that the spectrum belongs to the half-plane {λ ∈ C : Reλ < −B}
with the exception of a simple eigenvalue at zero that is caused by translation
symmetry. For (1.8) with sufficiently small ε > 0 it has been shown in [9] using the
Stability Index technique [1] that the translational eigenvalue λ = 0 is simple. The
proof is based on the reduction of the spectral stability analysis of the case 0 < ε�
1 to the stability analysis of the case ε = 0. For ε = 0 the multiplicity of the zero
eigenvalue is calculated in [10] using the Evans function. Numerical investigations
[2,13,25], for both ε = 0 and ε > 0, also confirm that the translational eigenvalue
is simple.

There is numerical evidence [13] that the spectrum of the front (0 < ε � 1)
strongly depends on the parameter β: there exist β0 = O(1) such that for β < β0
the linearization about the front does not possess any unstable eigenvalues. If β
increases a pair of complex conjugate eigenvalues crosses the imaginary axis from
left to right, causing a so-called pulsating instability. The occurrence of a ”Hopf”
bifurcation, with the speed of the front as the bifurcation parameter, has also been
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FIGURE 1.2. In the frame moving with the front, a small, suf-
ficiently localized perturbation is transported to −∞.

discussed in [25]. We avoid calling this bifurcation a Hopf bifurcation in a regular
sense because the spectral picture is not that of a generic case of a Hopf bifur-
cation: in addition to a pair of isolated eigenvalues crossing the imaginary axis,
the essential spectrum is touching the imaginary axis for all β. Theoretically, the
occurrence of a Hopf bifurcation is not clear at all, or guaranteed. The Lyapunov-
Schmidt method and the center manifold theorem are not applicable to analyze
the bifurcation scenario. An example of the analysis of the nature of the bifurca-
tion in a situation with similar spectral characteristics can be found in [4]. There,
for a reaction-diffusion-convection system, the trivial solution and the bifurcating
time-periodic patterns are proved to be nonlinearly stable against spatially local-
ized perturbations.

The case of β that yields eigenvalues on the imaginary axis or to the right of it
is out of scope of this paper. In what follows a parameter regime is assumed when
there are no eigenvalues with non-negative real parts other than that at the origin.

In Section 2.1 the location of the essential spectrum of the linearization of
(1.3) about the front is studied and it is shown that the essential spectrum touches
the imaginary axis at the origin. The boundaries of the essential spectrum are
found using the linear dispersion relations at asymptotic states at ±∞: d±(λ, ν) =
0 that are relations between temporal eigenvalues λ and spatial eigenvalues ν at
the asymptotic rest states. The group velocity cgr = −(d Imλ)/(dν) is calculated.
The sign of the group velocity, cgr < 0, implies that the system on the linear
level transports perturbations in the direction opposite to the propagation of the
front, to −∞ (see Fig.1.2). Perturbations are stabilized in a norm with exponential
weights with positive rates. The essential spectrum can be shifted to the open left
half-plane using exponential weights with positive rates (Section 2.2).

For fixed ε > 0 the linearized operator is sectorial [14, 20] as a perturbation
of the Laplacian by lower-order derivatives and bounded operators. The linear
stability of the front in appropriate exponentially weighted spaces follows from
the spectral stability. This is not the case for the system with ε = 0, where the
spectrum of the linearized operator contains a vertical line (the imaginary axis)
and therefore the linearized operator is not sectorial; see [10] for details.

The next question is whether spectral stability implies stability of the solution
to the full PDE (1.3), in other words, nonlinear stability. Two scenarios are re-
ferred to as nonlinearly stable: solutions initially close to the wave can be attracted
to the traveling wave itself or some fixed translate of it (orbital stability, or non-
linear stability with asymptotic phase) or they can stay in a small neighborhood of



Nonlinear Stability of High Lewis Number Combustion Fronts 187

the set of all translates of the front, but never settle down to a particular one. For
the model considered here, in the co-moving frame, the front will be proved to be
orbitally stable in a weighted norm with respect to small perturbations from some
exponentially weighted space.

The nonlinear terms in our problem have a specific structure: in exponentially
weighted norms the nonlinearity is well defined and uniformly bounded, but its
derivative is not. Indeed, the nonlinearity in the equation for perturbation V =
(v1, v2) to the front, when transformed to the weighted variable W = (w1,w2) =
eαξV , will contain terms such as w2 exp(−eαξ/w1), where the partial derivative
with respect tow1 is not a bounded function. Therefore the nonlinear stability of
the front H in weighted spaces cannot be inferred from linear stability. Instead,
we use an approach that is based on the interaction of a spatially uniform norm
and the exponentially weighted norm. This technique originated in [21] in the
Hamiltonian context. If one can obtain a priori estimates for the perturbation to
the front in the space without weight, for instance in the space C1 of functions
uniformly bounded together with their derivatives, and show that the perturbation
stays bounded and sufficiently small, then the nonlinear terms in the equation for
weighted perturbations can be controlled as linear in W . For example,∥∥∥∥eαξv2 exp

(
− 1
v1

)∥∥∥∥
H1
≤ M

∥∥∥∥exp
(
− 1
v1

)∥∥∥∥
C1
‖w2‖H1 , M > 0.

This technique has been used to prove the nonlinear stability of the essentially
unstable fronts characterized by small-amplitude Turing patterns appearing in the
neighborhood of the rest state triggering the instability [7, 11]. Another example
of a successful application of this technique has been given in [4] where a reaction-
diffusion-convection system is considered that has the essential spectrum up to the
imaginary axis for all values of the bifurcation parameter, while a pair of imaginary
eigenvalues crosses the imaginary axis at the bifurcation point.

In this paper, in addition to a nonlinear stability result in weighted spaces, we
show that the interaction of the norms can also be useful to find rates of conver-
gence of the perturbation of the front of (1.3) in a norm without a weight.

We will study the stability of the front against perturbations that, in addition
to being from H1, decay on +∞ faster than e−αξ for some α > 0. In other words,
perturbations are restricted to the intersection of H1 and

H1
α =

{
f :

∫
(f (s)2 + f ′(s)2)e2αs ds <∞

}
,

an exponentially weighted H1. This restriction, although it appears to be an an-
alytic convenience, does not contradict the natural properties of the application.
Indeed, the perturbations related to variations in temperature, ”hot spots,” or in-
homogeneities of the fuel can be assumed to be spatially localized. Moreover, in
the neighborhood of the completely unburned state, at +∞, if initial perturba-
tions to the front are allowed that converge at +∞ very slowly, then it is possible
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that the perturbed front will converge to one of the non-physical fronts that de-
cay to the unburned state at algebraic rates. To prevent this from happening, one
controls the rate of convergence at +∞ by choosing an appropriate α. Therefore
considering perturbations from H1 ∩H1

α seems to be a natural choice.
It will be shown below that, for some carefully chosenα > 0, in the co-moving

frame the front is nonlinearly stable with asymptotic phase with respect to such
perturbations. More precisely, the following theorem holds.

Theorem 1.3.1. Assume that parameter β is such that the front H is spectrally
stable. There exist positive constants α, ρ∗, and ν∗ such that the following is true:
For every 0 < ρ ≤ ρ∗, there exists K > 0 such that for V 0 ∈ H1 ∩H1

α with

(1.9) ‖V 0‖H1 + ‖V 0‖H1
α ≤ ρ,

equation (1.5) with initial data U0 = H + V0 has a unique global solution U(t),
which can be expressed as

U(x, t) = H(x − ct − q(t))+ V(x, t)

for an appropriate real-valued function q(t), and there is a q∗ ∈ R so that

(1.10) |q(t)| ≤ Kρ, ‖V(t)‖H1
α + |q(t)− q∗| ≤ Kρe−ν

∗t

for t ≥ 0.
Moreover, there exists a constant K̂ > 0 such that for t ≥ 0 the following is true

for V = (v1, v2):

‖v2(t)‖H1 ≤ K̂ρe−(ν
∗/2)t,

‖v1(t)‖H1 ≤ K̂ρ,

i.e., v2 converges to 0 exponentially and v1 is bounded.
If, in addition to (1.9), V 0 is in L1 space, then v1 decays algebraically fast in

L∞-norm: there exists K̃ > 0 such that

‖v1(t)‖L∞ ≤ K̃ 1
t1/2 , t > 0

The theorem says that given that initial perturbations are sufficiently small
in the regular H1 norm and the weighted H1

α norm, how far away the perturbed
solution will slide before settling at a translate of the front is determined by how
small the initial perturbation is. The reaction for such class of perturbations will
not stop until all of the fuel is burned. The behavior of the temperature is in
agreement with the usual expectations of heat diffusion: the perturbation decays
like a heat kernel. Because of the weight, we know that initial conditions are expo-
nentially localized at +∞. The requirement on L1-norm of the initial perturbation
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can be interpreted as an additional restriction on how fast the perturbation should
decay at −∞ for the front to be stable.

At the end of the introduction we want to mention just a few papers where
nonlinear results for marginally stable fronts have been obtained (see also refer-
ences therein and a review paper [23] for additional relevant literature).

A well-known example of a stability result obtained using exponential weights
for fronts in scalar equations is presented in [24]. There an assumption is made
that the wave itself belongs to the weighted space and the inverse of the weight is
bounded. Algebraic weights have been used in [18] under the assumption that the
nonlinearity is defined in the weighted space. In conservation laws, the nonlinear
stability of marginally stable viscous shocks has been analyzed in [15, 18, 27, 29]
using sharp pointwise estimates on the Green’s function of the linearization. In-
stability criteria for shock waves has been formulated in [6] using a construction
of the Evans function that is valid in the region containing the intersection of the
essential spectrum with the imaginary axis.

The techniques used for viscous shock have been generalized to reduce the
question of the nonlinear stability to the spectral information for traveling wave
solutions of an abstract viscous combustion model including both Majda’s model
and the full reacting compressible Navier-Stokes equations with artificial viscosity
[19]. The spectrum is found by means of the Evans function.

An interesting aspect of nonlinear stability of fronts in viscous conservation
laws is that the weight can be chosen independently of viscosity if the viscosity is
sufficiently small. The stability of the corresponding shocks in hyperbolic (zero
viscosity) conservation laws in certain exponentially weighted spaces then is a nec-
essary condition for the stability of viscous shocks [30]. The same mathematical
phenomenon takes place for balance laws [28].

The key feature of the stability analysis for the above mentioned papers is that
the nonlinear stability follows from the information obtained from the spectral
analysis of either the system with or without the weight as the effect of the corre-
sponding nonlinearity is assumed or shown to be negligible compared to the linear
terms. As we already said, this is not the case for our model. The proof is based
on the interaction of the variables with and without the weight.

The plan of the paper is as follows. In Section 2 we discuss the location of
the spectrum of the front, the effects of exponential weights on the spectrum, and
the stability of the front in the weighted space on the linear level. The nonlinear
stability is addressed in Section 3. The proof of Theorem 1.3.1 consists of two
parts. First, using weighted spaces, we show that the front is nonlinearly stable
provided the perturbations to the front are sufficiently small in the norm without
weight. Afterwards, we establish a priori estimates that show that the norm of the
perturbations can be controlled in terms of the norm of the initial data. We con-
clude by analyzing an interesting case when the initial data satisfy some additional
assumptions.
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2. SPECTRAL STABILITY

We denote the linear operator defined by the right hand side of (1.6) by

(2.1)

M0P =M(∂ξ)P =

∂ξξ + c∂ξ + h2Ωh1(h1) Ω(h1)

−βh2Ωh1(h1) ε∂ξξ + c∂ξ − βΩ(h1)

P,
P =

(
p1
p2

)
.

The linearized operator restricted to the exponentially weighted space H1
α is then

given by Mα = M(∂ξ − α). The essential spectrum is the complement of the
point spectrum in the spectrum of the operator. First, the location of the essential
spectrum for M0, and, second, for Mα, is found in the next two subsections. In
what follows ε is a small but fixed positive number.

2.1. Essential spectrum. The eigenvalue problem (1.8), written as a first
order ODE, reads

p′1 = q1,

q′1 = −cq1 −Ω(h1)p2 + (λ− h2Ωh1(h1))p1,

p′2 = q2,

q′2 =
1
ε

(
− cq2 + βΩ(h1)p2 + βh2Ωh1(h1)p1 + λp2

)
.

The right-hand side of this system is an action of the matrix

M(ξ,λ) =



0 1 0 0

λ− h2Ωh1(h1) −c −Ω(h1) 0

0 0 0 1

β
ε
h2Ωh1(h1) 0

1
ε
(λ+ βΩ(h1)) −c

ε


on the vector (p1, q1, p2, q2)T . Let M±(λ) = limξ→±∞M(ξ,λ). Then

M−(λ, ε) =



0 1 0 0

λ −c −e−β 0

0 0 0 1

0 0
1
ε
(λ+ βe−β) −c

ε


and M+(λ) =



0 1 0 0

λ −c 0 0

0 0 0 1

0 0
λ
ε
−c
ε


.
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The eigenvalues of M±(λ) are called the spatial eigenvalues as opposed to the
temporal eigenvalues λ. The eigenvalues of M−(λ) are

κ−1 =
1
2ε

(
− c −

√
c2 + 4(λ+ βe−β)

)
, κ−3 =

1
2

(
− c −

√
c2 + 4λ

)
,

κ−2 =
1
2ε

(
− c +

√
c2 + 4(λ+ βe−β)

)
, κ−4 =

1
2

(
− c +

√
c2 + 4λ

)
.

When λ crosses the imaginary axis from right to left, κ−4 crosses the imaginary axis
from right to left. The boundaries of the essential spectrum due to the behavior at
−∞ are curves

(2.2) {λ = −εν2 + ciν − βe−β; ν ∈ R} ∪ {λ = −ν2 + ciν; ν ∈ R}.

The eigenvalues of M+(λ) are

κ+1 =
1
2ε

(
− c −

√
c2 + 4λ

)
, κ+3 =

1
2

(
− c −

√
c2 + 4λ

)
,

κ+2 =
1
2ε

(
− c +

√
c2 + 4λ

)
, κ+4 =

1
2

(
− c +

√
c2 + 4λ

)
.

When λ crosses the imaginary axis from right to left, both eigenvalues with posi-
tive real parts, κ−2 , κ−4 , cross the imaginary axis from right to left, and coincide at
λ = 0. The boundaries of the essential spectrum due to the behavior at +∞ are
given by the curves

(2.3)
{
λ = −εν2 + ciν; ν ∈ R

}
∪
{
λ = −ν2 + ciν; ν ∈ R

}
.

The set of curves (2.2)–(2.3) divides the complex plane into regions that are
either covered by spectrum or, otherwise, contain only discrete eigenvalues. There
is a component which contains the right half-plane of the complex plane. From
[9] it is known that there can be no eigenvalues with very large positive real parts.
Therefore the region to the right of the rightmost parabola from (2.2) and (2.3)

(2.4) {λ = −εν2 + ciν; ν ∈ R}

contains only the discrete spectrum, i.e., isolated eigenvalues of finite multiplicity.
The essential spectrum is bounded on the right by (2.4) and includes that curve
(see Fig. 2.2).

The direction in which spatial eigenvalues cross the imaginary axis is related to
the group velocity and determines where, on the linear level, the system transports
initial perturbations. In this case the system convects toward −∞. Indeed, this
follows from the dynamics of the spatial eigenvalues (see Fig. 2.1 for a schematic
description).
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FIGURE 2.1. The picture shows the location of the spatial
eigenvalues depending on the location of λ relative to the right-
most boundary of the essential spectrum: a) Imλ ≠ 0, for either
M− orM+; b) Imλ = 0 for M−; c) Imλ = 0 for M+. The dotted
line shows that spatial eigenvalues that cross the imaginary axis
are still separated from the eigenvalues with strongly negative real
parts by a vertical line Reλ = −d < 0. This makes it possible to
chose an exponential weight.

At ±∞, when λ is to the right of the essential spectrum, we have Reκ±2 ≥
Reκ±4 > 0 > Reκ±3 ≥ Reκ±1 . When λ crosses the essential spectrum at least one
of the spatial eigenvalues crosses the imaginary axis. We are looking for values of
λ where κ−4 coincides with κ−3 , when κ−3 crosses into the essential spectrum, and
where κ+4 coincides with κ+1 as κ+1 enters the essential spectrum ahead of κ+3 . In
our case this occurs when λ∗ = −c2/4. That λ∗ corresponds to a double root of
the linear dispersion relations d±(λ, ν) = 0 at the asymptotic rest states at ±∞.

According to [22, Sect. 3.3], the sign of λ∗ < 0 indicates that the linear system
convects perturbations in a preferred direction. The group velocity, or the direc-
tion in which the linear system convects, is given by −(d Imλ)/(dν) = −c < 0,
thus the convection is toward −∞. To stabilize the situation at −∞, it is conve-
nient to introduce exponential weights with positive rates. An exponential weight
with a positive rate pushes the essential spectrum to the left of the imaginary axis
[23, Sect. 4.7]. This is reflected in the dynamics of spatial eigenvalues in the fol-
lowing way. For λ outside the essential spectrum the set σu(λ) of unstable spatial
eigenvalues is separated from the stable set σs(λ) by the imaginary axis. When
λ crosses the imaginary axis σs(λ) are σu(λ) still separated, in this case by the
vertical line Reλ = −d for some d > 0 (see Fig. 2.1). The double root of the
dispersion relation at λ∗ discussed above is the point where this separation ceases
to exist.

2.2. Essential spectrum in the exponentially weighted spaces. The eigen-
value problem for the weighted variable P̃ = eαξP reads

(2.5)
λp̃1 = ∂ξξp̃1 + (c − 2α)∂ξp̃1 +Ω(h1)p̃2 + (h2Ωh1(h1)− cα+α2)p̃1,

λp̃2 = ε∂ξξp̃2 + (c − 2α)∂ξp̃2 + (εα2 − cα− βΩ(h1))p̃2 − βh2Ωh1(h1)p̃1.
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FIGURE 2.2. The rightmost boundary of the essential spectrum
before (left panel) and after (right panel) applying exponential
weights with positive rate.

In the notations of the previous section, if we write system (2.5) as a first order
ODE, its right hand side is determined by the matrix M(λ, ξ)+ αI. The asymp-
totic matricesM±(λ)+αI have imaginary eigenvalues for values of λ strictly to the
left of the essential spectrum of M±(λ). The boundaries of the essential spectrum
of (2.5) due to the behavior at +∞ are given by the curves

(2.6)
{
λ = −εν2 + (c − 2α)iν + εα2 − cα; ν ∈ R

}
∪
{
λ = −ν2 + (c − 2α)iν − cα+α2; ν ∈ R

}
,

and due to the behavior at −∞ by the curves

(2.7)
{
λ = −εν2 + (c − 2α)iν + εα2 − cα− βe−β; ν ∈ R

}
∪
{
λ = −ν2 + (c − 2α)iν − cα+α2; ν ∈ R

}
.

The essential spectrum is bounded by the curves (2.6) and (2.7) and includes
those. Choosing any 0 < α < c

2 will make −cα+α2 < 0, and therefore will push
the essential spectrum to the left of the imaginary axis.

For small α > 0, the essential spectrum of the right hand side of (2.5) is
strictly to the left of the imaginary axis. As to the discrete spectrum, it is known
[12, Sect. 1.4] that exponential weights do not create new eigenvalues, but can
remove them if the rate of convergence of the eigenfunction is slower than the
one required by the exponentially weighted spaces. This can cause potentially
dangerous loss of information in situations when, in the space without the weight,
unstable (Reλ > 0) or marginally unstable (Reλ = 0) eigenvalues are present.
In the present case, we only consider parameter regimes when there are no such
eigenvalues except for a simple eigenvalue λ = 0. The eigenvalue at the origin
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survives if the weight is such that the derivative of the front (the eigenfunction
of λ = 0) belongs to the weighted space. The weight is chosen based on the
information about the exponential decay rates of the derivative of the front to zero
at ±∞ that are the same as the decay rates of the front to its asymptotic rest states.

2.3. Linear stability.

Proposition 2.4. Assume that β is such that the linear operator M0 defined by
(2.1) does not have nonzero isolated eigenvalues with non-negative real parts except for
the simple eigenvalue at the origin. The spectrum σ(M0) then satisfies

(2.8) σ(M0) ⊂ {λ ∈ C; Reλ < 0} ∪ {0}.

Moreover, for any 0 < α < c/2 there exists ν0 > 0 such that

σ(Mα) ⊂ {λ ∈ C; Reλ < −ν0} ∪ {0}.

By the properties of sectorial operators from [14] the front in the co-moving
frame is then linearly stable in the exponentially weighted space H1

α.

Proof. Under this assumption on β, the bound (2.8) is defined by the location
of the rightmost boundary of the essential spectrum ofM0 given by (2.4).

The exponential weight with any sufficiently small positive rate α > 0 pushes
the essential spectrum to the left of the imaginary axis. In addition to the isolated
eigenvalues ofM0 in the open left-half plane that persist as eigenvalues ofMα, it
is possible that isolated eigenvalues of the operatorMα appear in the exposed area.
The constant −ν0 is defined as the maximum of the real parts of the eigenvalues
ofMα and the rightmost point of the shifted essential spectrum. ❐

For the proof of the nonlinear stability result, depending on the relation be-
tween c and β, a more precise assumption on the upper bound for α is necessary,
as described in the following lemma.

Lemma 2.5. There exists α̃ > 0 such that for any 0 < α ≤ α̃ the following is
true about the front H = (h1, h2): For any fixed b
• h2(ξ + b)e−αξ ∈ C1,
• Hξ(ξ + b)e−αξ ∈ H1,
• Hξ(ξ + b)eαξ ∈ H1.

Proof. The geometric construction [9] shows that the front is formed as a
transversal intersection of the unstable manifold of the burned state and the stable
manifold of the unburned state. The component h2 of the front, and the first and
second order derivatives of h1 and h2 are not only uniformly bounded, but also
approach 0 at −∞ exponentially fast, let us say at rate γ− that depends on β, c
and ε. At +∞ the front exponentially converges to its rest state at the rate −γ+,
γ+ = γ+(β, c, ε). At the same rates the derivative of the front converges to 0 at
±∞. If α ≤ γ± than then the statements of the lemma hold. ❐
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In what follows we assume that

(2.9) 0 < α < α̂ = min
{
c
2
, α̃
}
.

3. NONLINEAR STABILITY IN THE WEIGHTED SPACES

This section contains the proof of Theorem 1.3.1. The goal is to show that the
front, when considered in the co-moving frame, is asymptotically stable in the
weighted norm for the class of initial perturbations that are small in C1 and, in
addition, exponentially localized at x = ∞. The proof of Theorem 1.3.1 is di-
vided in two parts. First we will show that suitable a priori estimates imply the
nonlinear stability of the front in the co-moving frame in appropriate exponen-
tially weighted norms. The a priori estimates are established afterward.

3.1. A priori estimates imply nonlinear stability. Solutions initially close
to the front are expected to converge to an appropriate translate of the front but
not necessarily to the front H itself. To capture this behavior, we introduce a time-
dependent spatial shift function q(t) in the argument of the front H and write
solutions to (1.3) as

(3.1) U(ξ, t) = H(ξ − q(t))+ V(ξ, t).

Because of the translational invariance, one may assume, without loss of generality,
that q(0) = 0. The decomposition (3.1) can be made unique by requiring that the
perturbation V = (v1, v2) is orthogonal, in an appropriate way discussed below,
to the one-dimensional subspace spanned by the derivative of the front.

The perturbation V = (v1, v2) of the front satisfies the system

(3.2) ∂tv1 = ∂ξξv1 + c∂ξv1 + q̇(t)h′1(ξ − q(t))
+ (h2(ξ − q(t))+ v2)Ω(h1(ξ − q(t))+ v1)

− h2(ξ − q(t))Ω(h1(ξ − q(t))),
∂tv2 = ε∂ξξv2 + c∂ξv2 + q̇(t)h′2(ξ − q(t))

− β
[
(h2(ξ − q(t))+ v2)Ω(h1(ξ − q(t))+ v1)

− h2(ξ − q(t))Ω(h1(ξ − q(t)))
]
,

with initial data v1(ξ,0) = v0
1(ξ), v2(ξ,0) = v0

2(ξ) and q(0) = 0. For the
nonlinear terms we will use the representation obtained in [10],

(h2(ξ − q(t))+ v2)Ω(h1(ξ − q(t))+ v1)
− h2(ξ − q(t))Ω(h1(ξ − q(t)))− h2(ξ)Ωh1(h1(ξ))v1 −Ω(h1(ξ))v2

= v1(v2f1 + h2(ξ − q(t))f2),
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where

f1 = f1(ξ, q(t), t)

=
∫ 1

0
Ωh1(h1(ξ − q(t))+ sv1(ξ, t))ds,

f2 = f2(ξ, q(t), t)

=
∫ 1

0
[Ωh1(h1(ξ − q(t))+ sv1(ξ, t))−Ωh1(h1(ξ − q(t)))]ds.

Using the notation

L(∂ξ) =
∂ξξ + c∂ξ 0

0 ε∂ξξ + c∂ξ

 ,

R(ξ) =
 h2(ξ)Ωh1(h1(ξ)) Ω(h1(ξ))

−βh2(ξ)Ωh1(h1(ξ)) −βΩ(h1(ξ))

 ,
∆R(ξ, ·) = R(ξ − ·)−R(ξ),
N (V) = v2f1 + h2(ξ − q(t))f2,

we rewrite (3.2) as

∂tV = L(∂ξ)V +R(ξ)V +∆R(ξ, q(t))V +
(

1
−β

)
N (V)v1+ q̇(t)H′(ξ−q(t)).

The weighted solution

W(ξ, t) =
(
w1(ξ, t),w2(ξ, t)

)
= eαξV(ξ, t),

satisfies the system

(3.3) ∂tW = ΛαW +∆R(ξ, q(t))W +
(

1
−β

)
N (V)w1+ q̇(t)eαξH′(ξ−q(t)),

where Λα = L(∂ξ −α)+R(ξ).
Throughout the remainder of the proof, α is as in (2.9) and ν0 is as in Propo-

sition 2.4: it is known then that λ = 0 is a simple isolated eigenvalue of Λα with
eigenfunction eαξH′(ξ) and the rest of the spectrum has real parts less than ν0.
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Due to the assumption on β, the eigenspace of Λα corresponding to the zero
eigenvalue is one-dimensional. Define Pc

α : H1 ×H1 → H1 ×H1 to be the central
spectral projection, that is the projection on that one-dimensional eigenspace, and
denote by Ps

α = 1−Pc
α the complementary projection onto the stable eigenspace.

The following lemma is a direct consequence of Proposition 2.4.

Lemma 3.2. Assume that ν0 as in Proposition 2.4 and α̂ is defined in (2.9).
For 0 < α < α̂, there is a constant K0 > 0 such that the following is true about the
analytic semigroup e

Ps
αΛαt generated by Ps

αΛα,

(3.4) ‖ePs
αΛαt‖H1→H1 ≤ K0e

−ν0t, t ≥ 0.

The uniqueness of q(t) is provided by requiring that Pc
αW(t) = 0 for all t

for which the decomposition (3.1) exists, in other words, W(t) ∈ Range(Ps
α) for

all t. Let ψc span the kernel of the operator conjugate to Λα and assume that
ψc is appropriately normalized. Applying Pc

α and Ps
α to (3.3), one obtains the

evolution system for V = (v1, v2), W = (w1,w2) and q

∂tV = L(∂ξ)V +R(ξ)V +∆R(ξ, q(t))V(3.5)

+
(

1
−β

)
v1(v2f1 + h2(ξ − q(t))f2)+ q̇(t)H′(ξ − q(t)),

∂tW = Ps
αΛαW +Ps

α∆R(ξ, q(t))W(3.6)

+ Ps
α

(
1
−β

)
w1(v2f1 + h2(ξ − q(t))f2)+Ps

αq̇(t)eαξH′(ξ − q(t)),

q̇(t) = −〈ψc, eαξH′(ξ − q(t))〉−1
L2 〈ψc,∆R(ξ, q(t))W(3.7)

+
(

1
−β

)
w1(v2f1 + h2(ξ − q(t))f2)〉L2 .

It is easy to see that the linear part of the right-hand sides in (3.5)-(3.6) is a sectorial
operator on H1×H1×H1×H1 with the dense domain H3×H3×H3×H3. The
nonlinearity is a smooth mapping from Y := H1(R,R4)×R into itself, and there
is a constant K1 such that

(3.8) ‖∆R(·,−q)‖H1 + ‖N (V)‖H1 ≤ K1(|q| + ‖V‖H1).

Since 〈ψc, eαξH′(ξ − q(t))〉L2 = 1+O(q) we also have that

(3.9) |q̇| ≤ K1(|q| + ‖V‖H1)‖W‖H1

for all (V ,W, q) ∈ Y with norm less than one, for example. We therefore have the
methods introduced in [14] at our disposal that give local existence and unique-
ness of solutions for initial data in Y as well as continuous dependence on initial
conditions, thus proving local existence and uniqueness of decomposition (3.1).
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Based on these arguments it is reasonable to claim that, for each given 0 <
δ∗ ≤ 1, there exists a ρ > 0 and a time T > 0 such that decomposition (3.1) exists
for 0 ≤ t < T with

(3.10) |q(t)| + ‖V(t)‖H1 ≤ δ∗

provided ‖V 0‖H1 ≤ ρ. Let Tmax = Tmax(δ∗) be the maximal time for which (3.10)
holds. The following lemma is proved essentially in the same way as in [11], where
a front exhibited by a system that consists of a Swift-Hohenberg equation coupled
nonlinearly to a Chaffee-Infante equation is studied and the nature of its nonlinear
stability is analyzed.

Lemma 3.3. Pick ν with 0 < ν < ν0 and δ̂ > 0 so that

(3.11)
K0K1(1+ K0)
ν0 − ν

δ̂ <
1
2
,

then there are positive constants K2 and K3 such that for any 0 < δ∗ ≤ δ̂

‖W(t)‖H1 ≤ K2e
−νt‖W(0)‖H1 , |q(t)| ≤ K3‖W(0)‖H1

for all 0 ≤ t < Tmax(δ∗) and any solution that satisfies (3.10). If Tmax(δ∗) = ∞,
then there is a constant q∗ ∈ R such that

(3.12) |q(t)− q∗| ≤
K1K2

ν0
e
−νt‖W(0)‖H1

for t ≥ 0.

To complete the proof of Theorem 1.3.1 once Lemma 3.3 has been proved,
it suffices to establish a priori estimates and show that V(t) always stays small
enough and therefore that Tmax = ∞, if δ̂ satisfies (3.11).

Proof. The variation-of-constants formula applied to (3.6) gives

W(t) = e
Ps
αΛαtW(0)+

∫ t
0
e
Ps
αΛα(t−s)Ps

α

×
[∆R(ξ, q(s))W + ( 1

−β

)
w1

(
v2f1 + h2

(
ξ − q(t))f2

)

+ q̇(s)Hξ
(
ξ − q(s))eαξ]ds .

Using estimates (3.4), (3.8) and (3.10) we obtain
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‖W(t)‖H1 ≤ K0e
−ν0t‖W(0)‖H1 +K0

∫ t
0
e
−ν0(t−s)

×
[
K1δ∗‖W(s)‖H1 + |q̇(s)| ‖Hξ(ξ − q(s))eαξ‖H1

]
ds.

It follows from Lemma 2.5 that there exists a K̃ > 0 such that
‖Hξ(ξ − q(s))eαξ‖H1 ≤ K̃. Therefore due to (3.9) one has

‖W(t)‖H1 ≤ K0e
−ν0t‖W(0)‖H1(3.13)

+ K0K1(1+ K̃)δ∗
∫ t

0
e
−ν0(t−s)‖W(s)‖H1 ds

for 0 < t < Tmax. For any ν such that 0 < ν < ν0, we define

M(T) := sup
0≤t≤T

e
νt‖W(t)‖H1 ,

where 0 ≤ T ≤ Tmax and T is finite. Equation (3.13) gives

e
νt‖W(t)‖H1

≤ K0e
−(ν0−ν)t‖W(0)‖H1 + K0K1(1+ K̃)δ∗

∫ t
0
e
−(ν0−ν)(t−s)

e
νs‖W(s)‖H1 ds

≤ K0‖W(0)‖H1 + 2K0K1(1+ K̃)δ∗M(T)
∫ t

0
e
−(ν0−ν)(t−s) ds,

which yields

M(T) ≤ K0‖W(0)‖H1 + K0K1(1+ K̃)δ∗
ν0 − ν

M(T)

≤ K0‖W(0)‖H1 + K0K1(1+ K̃)δ∗
ν0 − ν

M(T).

Assume δ̂ > 0 to be such that (3.11) holds; then there is a constant K2 > 0 such
that for any 0 < δ∗ ≤ δ̂

sup
0≤t≤T

e
νt‖W(t)‖H1 ≤ K2‖W(0)‖H1

and therefore

‖W(t)‖H1 ≤ K2e
−νt‖W(0)‖H1(3.14)
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for 0 ≤ t ≤ T as desired. Estimate (3.14) combined with (3.9) yields

|q̇(t)| ≤ K1K2δ∗e−νt‖W(0)‖H1(3.15)

for 0 ≤ t ≤ T . An estimate for q(t) is obtained from the equation

(3.16) q(t) = q(s)+
∫ t
s
q̇(τ)τ,

from where due to (3.15) it follows that at s = 0

|q(t)| ≤
∫ t

0
|q̇(τ)|dτ ≤ K1K2δ∗‖W(0)‖H1

∫ t
0
e
−ντ dτ ≤ K1K2δ∗

ν
‖W(0)‖H1 .

We recall that 0 < δ∗ < 1. The desired estimate is then obtained by setting
K3 = K1K2/ν (notice that K3 then is independent of δ∗)

(3.17) |q(t)| ≤ K3‖W(0)‖H1

for 0 ≤ t ≤ T .
Lastly, if Tmax = ∞, then (3.14), (3.9) and (3.17) are valid for all times since

the constants K2 and K3 do not depend upon T or on δ∗. Thus, equation (3.15)
implies that the limit q∗ = limt→∞ q(t) exists, and (3.17) shows that |q∗| ≤
K3‖W(0)‖H1 . Therefore, in the limit s →∞, (3.16) yields

q(t) = q∗ +
∫ t
∞
q′(τ)dτ,

which together with (3.15) give the estimate (3.12). ❐

3.4. Establishing the necessary a priori estimates. To complete the proof
of Theorem 1.3.1, it suffices to show that, for 0 < δ∗ ≤ δ̂with δ̂ as in Lemma 3.3,
there exists a ρ > 0 such that

|q(t)| + ‖V(t)‖H1 ≤ δ∗

for all t ≥ 0 provided
‖V 0‖H1 + ‖W(0)‖H1 ≤ ρ.

Throughout this section, we assume that q(0) = 0, V 0 ∈ H1, and W(0) = e
αξV 0

is also in H1.
Assume (v1, v2,w1,w2, q) satisfy the system (3.5)-(3.7). We first analyze the

equation for the perturbation v2 to the concentration component of the front.
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Function v2 is a solution of the equation

(3.18) ∂tv2 = ε∂ξξv2 + c∂ξv2 − βe−βv2

+ β[e−β −Ω(h1(ξ − q(t)))]v2 − βh2Ωh1(h1(ξ − q(t)))v1

− βv1(v2f1 + h2f2)+ q̇(t)h′2(ξ − q(t)).

Recall that the rate α in the exponential weight is a number from the interval
(0, α̃) chosen according to Lemma 2.5 . The following simple lemma follows
from the properties of the front H.

Lemma 3.5. Assume that α is as in Lemma 2.5. There exist then constants
M1, M2, M3, M4, M5, M6, M7 > 0 that are independent of α and are such that the
following is true for any ξ ∈ R and t ≥ 0:
• ‖[e−β −Ω(h1(ξ − q(t)))]e−αξ‖C1 ≤ M1,
• ‖h2(ξ − q(t))Ωh1(h1(ξ − q(t))e−αξ‖C1 ≤ M2,
• ‖h2(ξ − q(t))f2e

−αξ‖H1 ≤M3(1+ ‖v1‖H1)/2 ≤ M3, for t < Tmax,
• ‖f1(ξ, t)‖H1 ≤ M4(1+ ‖v1‖H1)/2 ≤ M4, for t < Tmax,
• ‖Ω(h1(ξ))‖C1 ≤M5,
• ‖h′1(ξ)‖C1 ≤M6,
• ‖h′2(ξ)‖C1 ≤M7,

where C1 norm is taken with respect to ξ.

Proof. The first bound follows from the fact that the h1-component of the
front approaches 1/β at ξ → −∞ exponentially fast. ThereforeΩ(h1(ξ−q(t))) =
e

1/h1(ξ−q(t)) approaches e
−β faster than any fixed exponential rate. The derivative

∂ξ[e−β −Ω(h1(ξ − q(t)))]e−αξ

= −Ωh1(h1(ξ − q(t)))h′1e−αξ −α[e−β −Ω(h1(ξ − q(t)))]e−αξ

is bounded by Lemma 2.5.
The second and the third bounds are also consequences of Lemma 2.5.
The bounds for f1 and Ω(h1) follow from their definitions.
The inequalities h′2 > 0 and h′1 < 0 have been obtained in [9]. In the same

style upper bounds for h′2 and h′1 can be obtained. The front is the unique solution
of the ODE

(3.19)
h′′1 + ch′1 = −h2Ω(h1),

εh′′2 + ch′2 = βh2Ω(h1)

that satisfies the boundary conditions: (h1, h2) → (1/β,0) as ξ → −∞, and
(h1, h2) → (0,1) as ξ → ∞. The system (3.19) can be effectively integrated
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from −∞ to ξ:

h′1 + c
(
h1 −

1
β

)
= −

∫ ξ
−∞
h2(z)Ω(h1(z))dz(3.20)

εh′2 + ch2 = β
∫ ξ
−∞
h2(z)Ω(h1(z))dz.(3.21)

For (h1, h2) the boundary conditions at +∞ are satisfied, therefore it is easy to see
that ∫∞

−∞
h2(z)Ω(h1(z))dz = c

β
.

From (3.20) and (3.21), since both h1 and h2 are positive [9], the estimates follow:

0 ≥ h′1 = −c
(
h1 − 1

β

)
−
∫ ξ
−∞
h2(z)Ω(h1(z))dz ≥ − c

β
,

0 ≤ h′2 = −
c
ε
h2 +

β
ε

∫ ξ
−∞
h2(z)Ω(h1(z))dz ≤ c

ε
.

For h′′1 and h′′2 uniform bounds are easy to obtain from (3.19). ❐

Using Lemma 3.5 and the relation between W and V , W = e
αξV , the equa-

tion (3.18) can be rewritten in an equivalent form

(3.22) ∂tv2 = ε∂ξξv2 + c∂ξv2 − βe−βv2 + βg1w2

− βg2w1 − βv1v2f1 − βg3w1 + q̇(t)h′2(ξ − q(t)),

where

g1 = [e−β −Ω(h1(ξ − q(t)))]e−αξ, ‖g1‖C1 ≤M1,

g2 = h2(ξ − q(t))Ωh1(h1(ξ − q(t))e−αξ, ‖g2‖C1 ≤M2,

g3 = h2(ξ − q(t))f2e
−αξ, ‖g3‖C1 ≤M3 for t < Tmax.

The operator L2 = ε∂ξξ + c∂ξ − βe−β is a sectorial operator on H1. If the initial
perturbation v0

2 to the v2-component of the front belongs toH1 and is sufficiently
small (as encoded in |q(t)| + ‖V 0‖H1 ≤ δ∗ < 1) then in finite time it will evolve
to a function that is still in H1. The operator L2 generates an analytic semigroup
e
L2t for which standard semigroup estimates hold, i.e. there exist constants 0 <
b < βe−β and K4 > 0 such that

(3.23) ‖eL2t‖H1→H1 ≤ K4e
−bt.
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Bound (3.23) gives an additional restriction on ν from Lemma 3.3. From now
on we assume that

(3.24) 0 < ν < min{ν0, b}.

Applying the variation-of-constants formula to equation (3.22), one obtains

(3.25) v2 = e
L2tv0

2 +
∫ t

0
e
L2(t−s)

×
[
βg1w2 − β(g2 + g3)w1 − βv1v2f1 + q̇(s)h′2

(
ξ − q(s))]ds .

The semigroup estimates (3.23), Lemma 3.5, and the bootstrap inequality (3.10)
yield

(3.26) ‖v2(t)‖H1

≤ K4e
−bt‖v0

2‖H1 +K4

∫ t
0
e
−b(t−s)β(M1 +M2 +M3)‖W(s)‖H1 ds

+ K4

∫ t
0
e
−b(t−s)[M7|q̇(s)| + βM4δ∗‖v2(s)‖H1]ds .

Using in (3.26) the key inequalities, (3.14) for ‖W‖H1 and (3.15) for |q̇|, one then
obtains

(3.27) ‖v2(t)‖H1 ≤ K4e
−bt‖v0

2‖H1 + βM4δ∗K4

∫ t
0
e
−b(t−s)‖v2(s)‖H1]ds

+ K4

∫ t
0
e
−b(t−s)(β(M1 +M2 +M3)K2 +M7K1)e−νs‖W(0)‖H1 ds .

We multiply the inequality (3.27) by e
(ν/2)t ,

e
(ν/2)t‖v2(t)‖H1 ≤ K4e

−(b−ν/2)t‖v0
2‖H1(3.28)

+ K4(β(M1 +M2 +M3)K2 +M7K1)‖W(0)‖H1e
(ν/2)t

∫ t
0
e
−b(t−s)

e
−νs ds

+ δ∗βM4K4

∫ t
0
e
(ν/2)t

e
−b(t−s)‖v2(s)‖H1 ds.

Due to (3.24), b− ν/2 > 0. For the term in (3.28) that contains the first integral
we find∫ t

0
e
(ν/2)t

e
−b(t−s)

e
−νs ds = e

−(b−ν/2)t
∫ t

0
e
(b−ν)s ds

= e
−(ν/2)t

e
−(b−ν)t e

(b−ν)t − 1
b − ν = e

−(ν/2)t 1− e
−(b−ν)t

b − ν ,
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so the following bound is true:

(3.29)
∫ t

0
e
(ν/2)t

e
−b(t−s)

e
−νs ds ≤ 1

b − ν .

For the second integral we have

∫ t
0
e
(ν/2)t

e
−b(t−s)‖v2(s)‖H1 ds =

∫ t
0
e
−(b−ν/2)(t−s)

e
(ν/2)s‖v2(s)‖H1 ds

≤ sup
0<t<Tmax

{e(ν/2)t‖v2(t)‖H1}
∫ t

0
e
−(b−ν/2)(t−s) ds

= sup
0<t<Tmax

{e(ν/2)t‖v2(t)‖H1}e
−(b−ν/2)t − 1
−(b − ν/2) ,

therefore this integral can be controlled as

(3.30)
∫ t

0
e
(ν/2)t

e
−b(t−s)‖v2(s)‖H1 ds ≤ sup

0<t<Tmax

{e(ν/2)t‖v2(t)‖H1} 1
b − ν/2

With bounds (3.29) and (3.30), inequality (3.28) becomes

(3.31) e
(ν/2)t‖v2(t)‖H1

≤ K4‖v0
2‖H1 + K4(β(M1 +M2 +M3)K2 +M7K1)‖W(0)‖H1

1
b − ν

+ δ∗βM4K4 sup
0<t<Tmax

{e(ν/2)t‖v2(t)‖H1} 1
b − ν/2 .

To continue we impose an additional condition on δ̂, and therefore on δ∗ < δ̂:

(3.32) δ̂ ≤ 1
2

(
βM4K4

b − ν/2
)−1

= b − ν/2
2βM4K4

.

Under this condition, one can take the supremum over all 0 ≤ t ≤ Tmax on both
sides of (3.31), and obtain

sup
0<t<Tmax

{
e
(ν/2)t‖v2(t)‖H1

}
≤ 2K4‖v0

2‖H1 + 2K4(β(M1 +M2 +M3)K2 +M7K1)‖W(0)‖H1
1

βe−β − ν .
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Therefore for any t < Tmax,

‖v2(t)‖H1

≤ e
−(ν/2)t

[
2K4‖v0

2‖H1 + 2K4(β(M1 +M2 +M3)K2 + K1M7)‖W(0)‖H1
1

b − ν
]

.

The following lemma is proved.

Lemma 3.6. Assume that α is such as in Lemma 2.5, δ̂ satisfies (3.11) and
(3.32), and ν satisfies (3.24). There exist positive, independent of α constants ρ∗
and K5 such that for any t ∈ [0, Tmax(δ̂))

(3.33) ‖v2(t)‖H1 ≤ K5[‖v0
2‖H1 + ‖W(0)‖H1]e−(ν/2)t,

provided ‖V 0‖ + ‖W(0)‖H1 ≤ ρ∗.

Lemma 3.6 says that the size of ‖v2(t)‖H1 within the time interval [0, Tmax)
can be controlled by choosing small enough initial perturbations ‖V 0‖H1 and
‖W(0)‖H1 . Moreover, ‖v2(t)‖H1 decreases on [0, Tmax) exponentially.

The next goal is to obtain a priori estimates for the temperature component
v1 of the perturbation to the front. The temperature v1 satisfies the equation

(3.34) ∂tv1 = ∂ξξv1 + c∂ξv1 + h2Ωh1

(
h1
(
ξ − q(t)))v1

+ Ω(h1
(
ξ − q(t)))v2 + v1(v2f1 + h2f2)+ q̇(t)h′1

(
ξ − q(t)) .

Operator L1 = ∂ξξ + c∂ξ is sectorial. It generates an analytic semigroup e
L1t

and, moreover, because of the estimates on the heat kernel, there exists a positive
constant K6

(3.35) ‖eL1t‖H1→H1 ≤ K6.

We rewrite Equation (3.34) in the following form

∂tv1 = L1v1 +
(
h2Ωh1

(
h1
(
ξ − q(t)))+ h2f2

)
e
−αξw1

+
(Ω(h1

(
ξ − q(t)))+ v1f1

)
v2 + q̇(t)h′1

(
ξ − q(t)) ,

and apply to it the variation-of-constants formula,

(3.36) v1 = e
L1tv0

1 +
∫ t

0
e
L1(t−s)

[(
h2Ωh1

(
h1(ξ − q(t))

)+ h2f2

)
e
−αξw1

]
ds

+
∫ t

0
e
L1(t−s)

[(Ω(h1(ξ − q(t))
)
)+ v1f1

)
v2 + q̇(t)h′1

(
ξ − q(t))] ds .
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From Lemma 3.5 and semigroup estimates (3.35) it follows that

(3.37) ‖v1(t)‖H1 ≤ K6‖v0
1‖H1 + K6(M2 +M3)

∫ t
0
‖w1(s)‖H1 ds

+ K6(M5 + δ∗M4)
∫ t

0
‖v2(s)‖H1 ds + K6M6

∫ t
0
|q̇(s)|ds.

In (3.37), we use inequality (3.14) to estimate the term containing ‖w1‖H1 , and
(3.15) to estimate the term containing |q̇(t)|. The term with ‖v2‖H1 is controlled
according to (3.33). The estimate (3.37) then implies

(3.38) ‖v1(t)‖H1 ≤ K6‖v0
1‖H1 + K6(M2 +M3)K2‖W(0)‖H1

∫ t
0
e
−νs ds

+ K6(M5 + δ∗M4)K5[‖v0
2‖H1 + ‖W(0)‖H1]

∫ t
0
e
−(ν/2)s ds

+ K6K1K2M6‖W(0)‖H1

∫ t
0
e
−νs ds .

Evaluating the integrals on the right hand side of (3.38) one obtains

‖v1(t)‖H1 ≤ K6‖v0
1‖H1 +K6 [(M2 +M3)K2 +K6K1K2M6]

1− e
νt

ν
‖W(0)‖H1

+ K6(M5 + δ∗M4)K5[‖v0
2‖H1 + ‖W(0)‖H1]

2(1− e
ν/2t)
ν

,

from where the next lemma follows.

Lemma 3.7. Under conditions of Lemma 3.6 there exists a positive constant K7
such that for any t ∈ [0, Tmax)

‖v1(t)‖H1 ≤ K7(‖V 0‖H1 + ‖W(0)‖H1).

The result on nonlinear stability in the weighted norm in Theorem 1.3.1 fol-
lows now from Lemmas 3.6 and 3.7. Indeed, the lemmas imply that if ‖W(0)‖H1

and ‖V 0‖H1 are sufficiently small, then (3.10) holds for all t > 0 so that (3.14)
and (3.17) are valid for all positive times.

Lemma 3.7 says that perturbations to the temperature component v1 of the
front, if initially sufficiently small in H1-norm, stay bounded in H1-norm. It is
possible to show that if the initial perturbation additionally belongs to the space
L1 then v1 also decays in time, but at an algebraic rate. This does not add to our
nonlinear stability result, but shows that eventually the perturbed front converges
to a translate of the same front, and not to other solutions as described in the
following lemma.
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Lemma 3.8. If, in addition to the conditions of Lemma 3.6 and Lemma 3.7,
V 0 ∈ L1 then there exists a positive constant K8 such that the following is true for any
t > 0

(3.39) ‖v1(t)‖L∞ ≤ K8(‖V 0‖H1 + ‖V 0‖L1 + ‖W(0)‖H1)
1
t1/2 ,

Proof. The proof is similar to the proof of Lemma 3.7, but uses its results.
We turn to (3.25) again,

v2 = e
L2tv0

2

+
∫ t

0
e
L2(t−s)[βg1w2 − β(g2 + g3)w1 − βv1v2f1 + q̇(s)h′2(ξ − q(s))]ds .

First we notice that instead of (3.27) we can in the same way obtain an estimate
for ‖v2(t)‖L1 . Indeed, because g1, g2, g3, h′2 and f1 are exponentially localized at
±∞, there are constants M̃1, M̃2 and M̃3, M̃7 and M̃4 > 0 such that ‖g1‖L1 ≤ M̃1,
‖g2‖L1 ≤ M̃2, ‖g3‖L1 ≤ M̃3, ‖h′2‖L1 ≤ M̃7, ‖f1‖L1 ≤ M̃4. We assume that initial
perturbations are in L1∩H1. The semigroup estimate (3.23) is valid in L1 as well.
Using the relation between norms, ‖·‖L∞ ≤ C‖·‖H1 for some C > 0, from (3.25)
we obtain

(3.40) ‖v2(t)‖L1

≤ K4e
−bt‖v0

2‖L1+CK4

∫ t
0
e
−b(t−s)(β(M̃1+M̃2+M̃3)K2+M̃7K1)e−νs‖W(0)‖H1 ds ,

and in the same manner as in Lemma 3.6 we obtain the that there exists K̃5 > 0
such that

(3.41) ‖v2(t)‖L1 ≤ e
−(ν/2)tK̃5

(
‖v0

2‖L1 + ‖W(0)‖H1

)
,

for any t < Tmax. With (3.41) in mind, we turn to the equation for v1.
The following semigroup estimates (3.35) for e

L1t follow from the estimates
on the heat kernel [4]: there exists a constant K9 > 0 such that for any z ∈
L1 ∩H1 ⊂ L1 ∩ L∞

‖eL1tz(t)‖L∞ ≤ K9 min
{

1
t1/2 ‖z‖L1 ,‖z‖L∞

}
.
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This estimate is used in the analysis of the variation-of-constant formula (3.36)
rewritten for convenience as

v1 = e
L1tv0

1

+
∫ t

0
e
L1(t−s)[(h2Ωh1(h1(ξ − q(t)))+ h2f2)e−αξw1 + q̇(t)h′1(ξ − q(t))]ds

+
∫ t

0
e
L1(t−s)(Ω(h1(ξ − q(t)))v2 + v1f1v2)ds .

The functions (h2Ωh1(h1(ξ−q(t)))+h2f2)e−αξ and h′1(ξ−q(t)) are expo-
nentially localized on ±∞, continuous functions, therefore are from L1. Thanks
to (3.14), (3.15) and (3.33) from Lemma 3.6, we then know that there exists a
constant K10 > 0 such that

‖(h2Ωh1(h1(ξ − q(t)))+ h2f2)e−αξw1 + q̇(t)h′1(ξ − q(t))‖L1

≤ K10e
−(ν/2)t(‖W(0)‖H1 + ‖V 0‖H1),

and, because of the relation between L∞ and H1 norms, K10 can be also chosen so

‖(h2Ωh1(h1(ξ − q(t)))+ h2f2)e−αξw1 + q̇(t)h′1(ξ − q(t))‖L∞
≤ K10e

−(ν/2)t(‖W(0)‖H1 + ‖V 0‖H1).

For the term with v2 we use (3.41) and (3.33) from Lemma 3.6 to obtain

‖Ω(h1(ξ − q(t)))v2‖L1 ≤ K11e
−(ν/2)t(‖W(0)‖H1 + ‖v0

2‖L1),(3.42)

‖Ω(h1(ξ − q(t)))v2‖L∞ ≤ K11e
−(ν/2)t(‖W(0)‖H1 + ‖v0

2‖H1),(3.43)

Applying (3.33) again we then get

∥∥∥∥∥
∫ t

0
e
L1(t−s)(v1(s)f1v2(s))ds

∥∥∥∥∥
L∞

≤ K9

∫ t
0

min
{ 1
(t − s)1/2 ‖f1‖L1‖v2(s)‖H1‖v1(s)‖L∞ ,

‖f1‖L∞‖v2(s)‖L∞‖v1(s)‖L∞
}

ds

≤ K12(‖W(0)‖H1 + ‖V 0‖H1)(‖W(0)‖H1 + ‖v0
2‖L1)

×
∫ t

0
min

{
1

(t − s)1/2 ,1
}
e
−(ν/2)s ds ,
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where K12 = K9K5K7 max{M4, CM̃4}, and C from ‖v2‖L∞ ≤ C‖v2‖H1 . There-
fore,

‖v1(t)‖L∞ ≤ K9 min
{

1
t1/2 ‖v

0
1‖L1 ,‖v0

1‖L∞
}

+ K9(K10+K11+K12(‖W(0)‖H1+‖v0
2‖L1))(‖W(0)‖H1+‖V 0‖H1)

×
∫ t

0
min

{
1

(t − s)1/2 ,1
}
e
− ν2 s ds .

We want to show that the right hand side of the previous inequality, when multi-
plied by t1/2, is uniformly bounded in t. It is easy to see that

t1/2 min
{

1
t1/2 ‖v

0
1‖L1 , ‖v0

1‖L∞
}
≤ t1/2 min

{
1
t1/2 , 1

}
max

{
‖v0

1‖L1 , ‖v0
1‖L∞

}
≤max

{
‖v0

1‖L1 , ‖v0
1‖L∞

}
.

There exists K13 > 0 such that

t1/2
∫ t

0
min

{
1

(t − s)1/2 ,1
}
e
−(ν/2)s ds ≤ K13

uniformly in t. Indeed,∫ t
0

min
{

1
(t − s)1/2 ,1

}
e
−(ν/2)s ds =

∫ t−1

0

1
(t − s)1/2 e

−(ν/2)s ds+
∫ t
t−1

e
−(ν/2)s ds.

The second integral is easily evaluated∫ t
t−1

e
−(ν/2)s = 2

ν

(
e
−(ν/2)t − e

−(ν/2)(t−1)
)
≤ 2
ν
(1− e−1).

To find a bound for the first integral, we make a substitution z = t − s,

t1/2
∫ t−1

0

1
(t − s)1/2 e

−(ν/2)s ds =

∫ t
1

1
z1/2 e

(ν/2)z dz

t−1/2
e
(ν/2)t .

L’Hôpital’s rule shows that this function of t at +∞ approaches 1, and therefore is
bounded.

Finally, we obtain that

t1/2‖v1‖L∞ ≤ CK9 max
{
‖v0

1‖L1 ,‖v0
1‖H1

}
+ CK9K13

(
K10 + K11 + K12

(‖W(0)‖H1 + ‖v0
2‖L1

))
×
(
‖W(0)‖H1 + ‖V 0‖H1

)
,
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from which (3.39) follows. The proof of the lemma is complete. ❐

The choice of the weight restricts the class of admissible perturbations to those
that decay exponentially fast at +∞. In Lemma 3.8 we request that initial per-
turbations belong to L1 space, but never need their L1 norm to be small. In other
words, we impose an additional condition only on the decay rates of perturba-
tions at −∞, but not on the size. The convergence is then slow, but it occurs in
the norm without a weight.
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