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 Many frequency-response analyses of experimental data for homogeneous glasses and 

single-crystals involving mobile ions of a single type indicate that estimates of the stretched-

exponential 1β  shape parameter of the Kohlrausch K1 fitting model are close to 1/3 and are 

virtually independent of both temperature and ionic concentration.  This model, which usually 

yields better fits than others, is indirectly associated with temporal-domain stretched-exponential 

response having the same 1β  parameter value.  Here it is shown that for the above conditions 

several different analyses yield the important and unique value of exactly 1/3 for the 1β  of the K1 

model.  It is therefore appropriate to fix the 1β  parameter of this model at the constant value of 1/3, 

then defined as the U model.  It fits data sets exhibiting conductive-system dispersion that vary 

with both temperature and concentration just as well as those with 1β  free to vary, and it leads to a 

correspondingly universal value of the Barton-Nakajima-Namikawa (BNN) parameter p of 1.65.  

Composite-model complex-nonlinear-least-squares fitting, including the dispersive U-model, the 

effects of the bulk dipolar-electronic dielectric constant, Dε ∞ , and of electrode polarization when 

significant, also leads to estimates of two hopping parameters that yield optimum scaling of 

experimental data that involve temperature and concentration variation.  

 

  

PACS numbers:  66.30.Dn, 61.47.Fs, 77.22.Gm , 72.20.-i, 66.10.Ed. 

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/475612249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:macd@email.unc.edu


I.  INTRODUCTION 

 

 In 1994 Phillips suggested that the most important unsolved problem in physics today is to 

explain relaxation in complex (disordered) systems by microscopic analysis [1].  Roling and  

Martiny have recently stated that “Finding an explanation for this high degree of universality (i.e., 

the existence of master-curves for conductivity isotherms) is still one of the major challenges of 

solid state physics” [2].  The present work addresses both these challenges.  The apparent 

universality of conduction in disordered solids has been discussed by Dyre and Schrøder who 

suggested various macroscopic and microscopic models that predict such universality in the 

extreme disorder limit [3].  Since universality is an idealized concept, it is not surprising that most 

claims for universal behavior and models [e.g., 4,5] have been found too limited or even incorrect, 

but this should not discourage new universality proposals, ones that are generally doomed 

eventually to suffer the same fate as new experimental results are analyzed and the domain to 

which the model is applied is sufficiently extended.  

 The principal aim of the present work is to describe a new universal, conductive-system 

frequency response expression, the U model; define its range of application; and demonstrate its 

usefulness in fitting and analyzing experimental immittance data.  This model is simpler than 

others used in the past; it is derived from both macroscopic and microscopic analyses; and it and its 

three parameters are strongly physically based.  Complex nonlinear least squares (CNLS) fitting of 

dispersive data using the U model allows highly accurate discrimination between bulk ionic 

response and that associated with electrode effects [6-10, and the present work].  Although such 

effects are usually important in the low-frequency region of experimental data, they may 

sometimes be non-negligible in the high-frequency region as well [8]. 
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 In Section II-A two general expressions for dispersion associated with charge carrier motion 

are described, while in II-B they are specialized by setting a general ion-ion correlation function 

involved in them to stretched-exponential temporal response, leading to the specific dispersive 

frequency-response K0 model and its superior transformed version, the K1 model.  This well-

fitting model is then simplified to yield the U model, and justifications for the fixed value of 1/3 of 

its shape parameter provided.  Its limited universality and its prediction of a universal value for the 

BNN parameter are then discussed.  In Section III, the U model is used for fitting and scaling of 

data for the same material at different temperatures and at different ionic concentrations, as well as 

demonstrating the separation of bulk dispersion and electrode effects.  Finally, Section IV 

summarizes the conclusions of the work.     

 

II.  DETAILS OF SOME CONDUCTIVE-SYSTEM DISPERSIVE MODELS 

A.   General expressions 

      In order to distinguish easily between various fitting models, let the index k take on 

values of 0 or 1, used in-line or as a subscript.  Then for 0k = , if 0( )tφ  is a conductive-system 

correlation function defined in the time domain, the corresponding normalized frequency response 

complex function, defined at the complex resistivity level, is [ 9,11] 

0 0 0
0 0 0 0

0 0

( ) ( ) ( )( ) ' ( ) '' ( ) exp( )
(0) ( )

C C

C C

d tI I iI i t dt
dt

ρ ω ρ φω ω ω ω
ρ ρ

∞− ∞ ⎛ ⎞= − = = − −⎜ ⎟− ∞ ⎝ ⎠∫

0 ( )I

, (1)  

involving a one-sided Fourier transform.  Note that a specific expression for the ω  response 

model only follows when one is specified for 0( )tφ , as in the next section. When the small or zero 

0 0( )C Cρ ρ∞ ≡ ∞ 0k quantity is neglected as usual [12], the corresponding =  frequency response at 

the complex modulus level is just 0 0 0 0 0( ) '' ( ) '' ( ) ( )C C C VM M iM i Iω ω ω ωε ρ ω= + = .  Here the 
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subscript “C”, used for theoretical and model quantities, denotes conductive-system response, and 

Vε  is the permittivity of vacuum.  We shall not distinguish between the  dc resistive 

quantities

0 and 1k =

0(0)Cρ  and 1(0)Cρ , and will thus use 0 01/ρ σ=  for either.  The quantity 0σ  is the dc 

limit of the real part of the conductivity, ( ) '( ) ''( ) 1/ ( )iσ ω σ ω σ ω ρ ω= + ≡

( ) '( ) ''( )i

, where 

ρ ω ρ ω ρ ω= −

( ) '( ) ''( ) 1/ ( )i M

. The corresponding complex dielectric constant expression is 

ε ω ε ω ε ω ω= − ≡

1k

.  

Consider now the different =  response, closely related to 0 ( )I ω , as demonstrated in the 

equation below. When the famous 1973 continuous-time, random-walk (CTRW) approximate 

microscopic model of Scher and Lax [13] is extended slightly to make its imaginary part fully 

consistent with its real part at the complex conductivity level [12], this conductive-system hopping 

model may be expressed most simply at the complex modulus level as [9,12]   

1 1 1 0 1 01( ) ' ( ) '' ( ) ( ) [1 ( )] /C C C V ZM M i M i I Iω ω ω ωε ρ ω ω ε= + = ≡ − , (2)  

where the important effective-dielectric-constant quantity  is defined as Zε

1 1 1' ( ) 1/ ( )C C CMε ε ∞∞ ≡ = ∞ 01( )I ω 0( )I ω, and the 01 subscript here indicates that  is of the form of  

but it involves 1( )I ω  fit parameters rather than those obtained by direct fitting of the same data 

with the  0k = 0( )I ω  model.  In Ref. 13, the 0 ( )tφ 0( )I ω correlation function that leads to  

normalized frequency response is defined as the probability that a hopping entity remains fixed in 

place over the time interval from 0 to t. 

1I 0( )I ω( )ω  and Equation (2) provides a direct connection between the different  

responses, but the time domain response following from 1( )I ω 0( )I ω is not the same as that of  

[12].  Importantly, Eq. (2), arising from a detailed microscopic analysis, is of exactly the same form 

as that derived macroscopically, contemporaneously, and independently by Moynihan, Boesch, and 
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Laberge [14] by considering electric field decay at constant dielectric displacement.  This formal 

micro-macro agreement, unique for this 1k =  model, thus provides additional justification for it.  It 

remains general, however, until specific forms of 0( )tφ  and  are introduced. Zε

 It follows from the work of Scher and Lax [13], Eq. (2), and Refs. [6-9,12, and 15] that for 

the general present k  dispersion model the very important quantity1= 1Z Cε ε ∞=  may be expressed 

as 

1 2
1 01 [ ( )] /C V Ma B V                                   1 0( / ) / ) /(6x N q Tε σ ε τ ε γ ε−

∞ = < > = < > =

/ ox

,                   (3)  d k

a purely conductive-system quantity.  Here ; τ τ≡ oτ  is a characteristic relaxation time for the 

model that determines the placement on the frequency scale of the model response; 0 /M o Vaε σ τ ε≡ ; 

and  <  and 1
1

−τ > 01 0 01xτ τ< > ≡ < > 1k are different averages over the =  and k  distributions 

of relaxation times, respectively.  When the form of 

0=

0 ( )tφ  is known, one can calculate 0τ< >

0 00
( )t dtτ φ

∞
< > = ∫ 0

 from 

 [11,13].  Equation (3) is consistent with the Scher-Lax result that ρ  is 

proportional to τ 01< , identified in their work as the mean waiting time for a typical hop 

[12,13,15], a physically plausible result. 

>

 The quantity N is the maximum mobile charge number density; γ  is the fraction of charge 

carriers of charge q that are mobile;  d is the rms single-hop distance for a hopping entity, and  is 

the Boltzmann constant.  The high-frequency-limiting effective dielectric constant, 

B

1C

k

ε ∞

1C

, associated 

entirely with mobile-charge effects, is likely to arise from the short-range vibrational and 

librational motion of caged ions.  In addition to ε ∞ , a bulk high-frequency-limiting dielectric 

constant, Dε ∞ , associated with non-dispersive dipolar and vibratory effects, is always present.  

Thus, for an appreciable range of high-frequencies [12], the total limiting dielectric constant is 
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1C Dε ε ε∞ ∞ ∞= + '( ).   Although the important quantity σ ω  approaches a final plateau at sufficiently 

high frequencies [12], we shall be concerned here only with high-frequency-limiting behavior 

occurring before the effects of the plateau become important, the usual experimental situation.  

 Because of the endemic presence of Dε ∞ , a quantity not directly associated with mobile-

charge effects, it is necessary in fitting data to always include a free dielectric parameter in the 

fitting model, 0k = k 1=, to represent  for  or  for xε ε∞ Dε ∞  situations, as discussed in the 

following section.  Two fitting parameters present in all the following models are 0ρ , a quantity 

that determines the magnitude or scale of the response, and , defined above. oτ

 

B.   Specific models associated with stretched-exponential temporal response: K0, K1, and U 

1.   Stretched-exponential temporal response, the K0 frequency-response model, and electrode 

effects 

 As already mentioned, an explicit expression for 0 ( )tφ  is required in order to calculate 

specific  and  frequency responses for data fitting or data simulation.  The 0k = 1k = 0k =  choice 

leads to K0-model response when the ubiquitous stretched-exponential relation, 

0
0( ) exp{ ( / )ot t βφ τ= − 0 1 with 0 β< ≤

0 ( )

 [1,16,17], originally introduced by Kohlrausch, is used in 

Eq. (1) to obtain an explicit expression, or numerical representation, for I ω . Then, such results 

may be used to calculate the K0-model modulus-level frequency response 0 0 0 ( )C V I( )M iω ωε ρ=

0

ω  

[6-10].  Next, Eq. (2) leads to K1-model frequency response [7,9,18].  Here β  is both the 

stretching factor in the time domain as well as the parameter that determines the shape of K0-model 

frequency response.  The corresponding K1 shape parameter, unequal to , is identified as 0β 1β .  

Although both the K0 and K1 model responses must actually be calculated numerically for 
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arbitrary kβ  values, the free LEVM CNLS computer program allows the parameters of these 

models to be very accurately determined for both data fitting and simulation tasks [19].   

 Unlike the K1 model, which involves the non-zero high-frequency-limiting effective 

dielectric constant 1Cε ∞

0 10' ( ) 0C C

 of Eq. (3), conductive-system K0 response involves no such limiting value 

and so ε ε∞ ≡ =

1C D

 [6,9].  But for experimental data that are well fitted by the K1 model, the 

actual total high-frequency-limiting dielectric constant implicit in the data is ε ε ε∞ ∞ ∞= + , and it 

will be this value, rather than just , that is estimated by the Dε ∞ xε  free parameter that must be 

included in fitting using the K0 model.  Such a composite model has been designated the CK0, 

where the “C” here represents the capacitance associated with  [7,9].   xε

 For most data situations, one should also include in a composite fitting model a separate 

electrode-effects model in series with that representing bulk conductive-system dispersion.  The 

electrode model should represent the effect of partial or complete blocking of mobile charges at the 

electrodes.  Surprisingly, it has been shown that such effects can sometimes be important at high 

frequencies, as well as at the low-frequency end of the data range [8].  Since electrode effects may 

thus appreciably influence experimental data, as demonstrated in Section III-B below as well as in 

Ref. 8, it is important to initially include this possibility in a composite fitting model and evaluate 

the need for such inclusion.   

 In recent work [9], CNLS fitting results, using several different Kohlrausch and other fitting 

models, with and without electrode-effect contributions, have been compared using experimental 

data for a glass in single-crystal form.  The inclusion of electrode effects led to important 

improvements in fit accuracy for most of the model fits, particularly for the best-fit K0 and K1 

ones.  Even when not mentioned explicitly in the following work, it should be understood that the 
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fits of experimental data sets discussed herein included not only a bulk-dispersion model such as 

the K1 or U one, but also a series electrode-model contribution.     

  

2.   Two different K1 models 

a.  The original-modulus-formalism fitting model 

The widely used pioneering treatment of Ref. [14], now termed the original modulus 

formalism (OMF) approach and involving the 1k =  K1 response model defined in Eq. (2), is 

unfortunately critically flawed by its improper identification of the  of Eq. (2) as '( )ε ε∞ ≡Zε ∞

1C

, a 

quantity that includes all contributions to the high-frequency-limiting dielectric constant [18].  

Since the authors did not recognize the existence of , their  was considered to be just ε ∞ ε∞ Dε ∞ , 

rather than ε 1C Dε ε∞ ∞ ∞= +

x

.  In the usual case where both quantities are non-zero, data fitting 

would yield an estimate of , identified as , but actually including both contributions to ε ε∞= Dε ∞

ε∞

x

 [7,9,18].  The failure to distinguish between these two quantities by not including a separate fit 

parameter such as ε  leads to an inappropriate mixing of dipolar dielectric effects and those 

associated only with mobile charge, and thus to both theoretical and experimental inconsistencies 

[7,9,18].   

Many hundreds of published data fits and analyses since 1973 of ''( )M ω  data using the 

OMF, and thus the K1 model alone, have yielded strong dependence of the estimated 1β  values on 

ionic concentration and appreciable temperature dependence as well.  For example, as the ionic 

concentration approaches zero, OMF fits lead to 1β  estimates that approach unity [e.g., 20].  This is 

because then 1 0Cε ∞→ , Dε ε∞ ∞→

0 and 

,  and true dispersive effects become more and more negligible 

compared to Debye-type relaxation involving only , response that necessarily involves Dσ ε ∞
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a β  value of unity.  It is clear that all OMF fits should be fully discounted, and such fitting 

replaced by a consistent approach such as the corrected modulus one described below. 

 

b.  The corrected-modulus-formalism approach 

The corrected modulus formalism (CMF) also uses the K1 model but includes a free xε  

parameter, therefore denoted the CK1 model.  For this model, x Dε ε ∞=  because 1Cε ∞

0 1o, ,  and 

is not a free 

parameter of the fit and is completely determined, as in Eq. (3), by the estimates of the K1-model 

free parameters: σ τ β

1

.  It has been found that CK1 fits for a variety of materials, ionic 

concentrations, and temperatures lead to virtually constant estimates of β , all very close to a value 

of 1/3, along with both better fitting and no inconsistencies [6-9,18,21].   

Let us temporarily replace the symbol 1 1 Cbyβ  to distinguish it from a β 1β  obtained from 

OMF fitting.  Then for the K1 model with 1C  in Eq. (2), Eq. (3) may be expressed as Zε ε= ∞

1 1
1 01 1 ( )a Ma C C                                           1 /C M x A Tε β β− −= < > = Γ =

( )

,              (4)  ε ε∞

appropriate for CK1 fits.  Here A is the term in square brackets at the right-side end of Eq. (3) and 

depends on ionic concentration but not appreciably on temperature [7]; Γ  is the Euler gamma 

function; and  is a value of 1Cβ 1β  obtained from fitting using the CMF with the separate free 

parameter  to estimate xε Dε ∞

0

.  It follows from Eq. (4) that when A is temperature independent, the 

thermally activated quantities Tσ  and oτ  each exhibit Arrhenius behavior and their product is 

itself temperature independent. 
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3.   The U model and some of its consequences 

a.   derivations 1β

 The U model, a simplification of the corrected modulus formalism approach, is particularly 

important both because of its simplicity (only two free parameters) and because of its universal 

character over a wide (but still limited) domain of applicability.  It is defined as a Kohlrausch K1 

model in which the important shape parameter, 1β , is fixed at the value of 1/3.  In practice, it will 

represent the conductive-system dispersive-model part of a composite fitting model that includes 

not only Dε ∞

1

 but also a part that accounts for electrode effects when important.   

 The criteria that define the extent of the universality of the U model are that it applies only 

for homogeneous materials that potentially allow conduction in all three dimensions and involve 

mobile charge carriers of a single type [21].  Only materials and data satisfying these conditions are 

discussed here for U-model applications.  Fitting results with the CK1 model and β  taken free to 

vary may be expected not to satisfy one or more of these criteria when the estimate of 1β  is 

appreciably different from 1/3. 

 In the past, data fitting with either the original or corrected modulus formalism, both of 

which involve the K1 model, has involved a 1β  parameter usually taken free to vary and therefore 

determined by the fit estimate.  For such analyses, either no physical explanation of 1β  values has 

been suggested or they have been improperly interpreted, on the basis of inappropriate original-

modulus-formalism fit results, as a measure of correlation between hopping ions [e.g., 22].  It is 

therefore of great importance to provide experimentally and physically based justifications for the 

fixed value of 1/3, one that cannot be interpreted as associated with variable ion-ion correlation.  

Three different approaches are presented below.  
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i.   Experimental.  

 Define n n  as the high-frequency-limiting log-log slopes of 0 1,  , and n '( )σ ω

'( )

 for data, and 

for the K0 and K1 models, respectively.   Data fitting and analysis show that these quantities are 

closely frequency-independent for sufficiently high frequencies in the absence of nearly constant 

loss and high-frequency electrode effects, and so they are the exponents of power-law responses 

and fitting with a power-law model is appropriate for determining n.  Good fits of σ ω

0

 

experimental and synthetic data extending to high-frequencies indeed show that all three of these 

slopes are equal as they should be, and for materials satisfying the present U-model criteria n is 

frequently found to be very close to 2/3 in value for many different glasses [23-25].   

 Fitting estimates of β  and  using the CK0 and CK1 models, lead to 1β 0 0n nβ = =

1 11 n n

 and to 

β− = = 1 0.  The usual relation [9,12] 1 β β− =

0 2 / 3

 follows immediately.  When the limiting 

slopes are 2/3, it follows that β = 1 1/ 3 and β = , the value used in the U model.  Therefore, it 

seems likely that the U model would be most appropriate for fitting all data for which n . 2 / 3

 ii.   Hopping theory.

 Although Phillips [1,26] has treated stretched exponential relaxation in great detail, his 

work primarily considered mechanical and dielectric relaxation results for non-conductors, with 

little consideration of 1β  estimates obtained from data involving frequency dispersion associated 

with mobile charge carriers.  As he discusses, however, several treatments of the trapping model 

involving fixed trapping sites lead to the result    

 /(2 )e ed dβ = +

ed

, (6) 

where  is the effective dimensionality of the configuration space in which dispersive effects 

occur.   
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3/ 2ed = For Coulomb interaction, the value  was derived, leading to 4 / 7β =

1ed

, while for 

spin glasses on cubic lattices a value of 1/3 was obtained with = .  The spin-glass model is not 

directly appropriate for the present situation, and the maximum-disorder universal-model 

treatments of Dyre and Schrøder [3] do not involve explicit Coulomb effects.  A value of 1.35ed =  

was found to be most appropriate by these authors.  Further, there is no reason to believe that the 

stretched-exponential correlation function, 0 ( )tφ  with 0 0 1β< ≤

1ed

, necessarily includes such effects.    

 The U model is consistent with a value of =  when Eq. (6) is applicable.  Some 

implications of the above results are as follows.  The Scher-Lax stochastic model, the microscopic 

basis for the K1 and U models [13], is a 3D one that treats all sites on a discrete lattice as 

equivalent and independent and leads to frequency response substantially different from that of a 

later on-off one-dimensional bond-percolation stochastic model [27,28].  Thus, the 1 1/ 3β =  value 

need not directly imply that the motion of the hopping charge carriers is one dimensional, but it 

implies that the stretched-exponential correlation function determining the K1 response is 

associated with a waiting-time distribution best interpreted in terms of correlated processes 

occurring in a configuration space with an effective dimension of unity.  In contrast, if Eq. (6) were 

applied directly to the K0 model, then the 0 2 / 3β =  value would be associated with an implausible 

effective dimensionality of 4.  These conclusions raise the need for a detailed microscopic 

treatment that justifies the U-model requirement that the effective dimensionality of its ion-ion 

correlation function be unity. 

 Although a recent geometric derivation of stretched-exponential response for mobile 

electrons leads to a continuously variable β  [29] and so is not relevant to the present results, a 

much earlier CTRW treatment [16,17], involving some elements of the Scher-Lax Eq. (2)-model 
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derivation, showed that the value of β  in stretched-exponential response was determined by the 

rate at which a hopping entity finds a new site.  Thus if (1)β  is the value of β  for one-dimensional 

hopping, then for motion in three dimensions, 3d =  and .  If we identify  as (3) 2 (1)β β= 0β (3)β  

and  as , as indicated by U-model fitting results, then we may write 1β (1)β (3) 1 (1) 2 (1)β β β== −

(1) 1/ 3

, 

whose solution is β = (1) 1/ 3.  Thus the above two relations require not only that  and β =

(3) 2 / 3β = (3) 2 (1) but they show that these are the only values consistent with .   β β=

iii.   Topological and conclusions 

 A pending treatment of the motion of ions of a single type in homogeneous materials makes 

use of physically based topological considerations [21], not to be confused with geometrical ones.  

The analysis starts with the recognition that a forcing electric field present between two charged 

plane-parallel electrodes induces a uniaxially anisotropic local dynamical metric.  Within a local 

polar coordinate frame there is a radial coordinate and ( 3d =1d )−  angular coordinates.  For the  

situation, local motion with respect to the azimuthal coordinate is irrelevant for homogeneous 

materials, so the effective dimensionality is 2ed = , while for streaming motion transverse to the 

electrodes .  When the approach is applied to temporal stretched-exponential behavior, it 

leads to just 

1ed =

/ed dβ = 2e, consistent with the present results if d =  for the K0 model and 1ed =  

for the K1 one.    

 A natural interpretation is that for high-frequencies, where hopping motion is local, both 

models should lead to a limiting slope of 2/3, as observed for both synthetic and experimental data.  

The motion of the charges at very low frequencies should be of streaming one-dimensional 

character, consistent with the K1 correlation function involving 1 1/ 3β =  and with the observation 
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that synthetic K1-model response transformed to the time domain is not of stretched-exponential 

character except in the limit of long times where its stretching parameter is indeed 1/3.     

 The three disparate approaches above all lead to the same unique value of 1 1/ 3β =  for the 

U-model and to the corresponding K0 value of 0 2 / 3β = .  Although both models involve the same 

high-frequency limiting slope of 2/3, their responses are different except in the extreme high-

frequency region, and one generally finds that U-model fits of appropriate experimental data are 

much better than K0 ones with  fixed at 2/3 or free to vary.  0β

 

b.  Consequences of the 1 1/ 3β =  requirement and the BNN relation 

 Now when one sets 1β  fixed at 1/3 in the K1 model of Eqs. (2) and (4) to obtain the U 

response model, one finds that 1C Ma6ε ε∞ 10 60C, = Ma , and so 1 10 1 54C C C Maε ε ε ε∞ε ε= ε∆ ≡ − = = ∆ , 

since Dε ∞ 0 subtracts out from the experimental ε ε ε∞∆ ≡ − , one of the virtues of using ε∆  rather 

than either of its two components.  In addition, if one defines 1 1 0'' ( ) '' ( ) ( / )C S C Vε ω ε ω σ ω≡ −

/ 2 0.01122 /2p p

ε , then 

the resulting dielectric loss arising from charge motion rather than from dipolar dispersion involves 

a peak response at oν ω π≡ ≅ 1'' ( ) 14.405C S p Maπτ , with  ε ω ε≅  for the peak value. 

 An empirical expression that has been of considerable importance in the past is that of 

Barton [30], Nakjima [31], and Namikawa [32], commonly known as the BNN relation, 

 0 V ppσ ε εω= ∆

p

, (5) 

where p is a numerical constant of order 1, and ω  is the radial frequency dielectric loss peak, only 

equal to the value listed above for the U model.  For that model, however, it follows that 

, a universal value for all data that are well fitted by the U model.   1/(0.01122x54) 1.65p = ≅
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 Figure 3 in Ref. 3 is a log-log BNN-related plot that indicates that most estimates of p are 

close to the above value, a satisfying result in view of the usual uncertainties associated with 

estimates of ε∆  and pω  from experimental data.  Although Porto et al. [33] have recently 

questioned the applicability of the BNN relation under changes in charge carrier concentration, 

excellent U-model fittings for wide concentration variation [7], and the results discussed below, 

show that estimates of p from such fits confirm the 1.65 value.   Thus, it will usually be appropriate 

in future to replace the BNN relation by any of those listed above that connect effective dielectric 

quantities, such as , to .    1Cε ∞ Maε

 

III.  FITTING AND SCALING RESULTS FOR THE U MODEL 

 

 When one has available an excellent fitting model applicable for a particular experimental 

and material domain, there is no need for scaling since data fitting with such a model leads to 

explicit parameter estimates and thus to more information than does development of a master 

scaling model.  Although the U model is thus superior to scaling within its domain of applicability, 

it is instructive to discuss scaling parameters following from it and to show their applicability for 

data that include variation of both temperature and relative ionic concentration, cx .  For this 

purpose, data for the following materials will be used, as listed in Table I:  [34], 

 [20], and + 0.7  [35].   

30.5Li 0.5La TiO• •

2 2K O (1- GeO)c cx x• 2 20.3(0.6Na O 0.4Li O) • 2 3B O
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A.   Scaling possibilities and limitations 

Before presenting fitting and scaling results for these materials, it is desirable to consider 

scaling approaches.  It has been customary to write a general scaling relation in the form 

0 0'( ) / '( ) '( ) '( / )S SF Fσ ω σ ρ σ ω ωτ ν ν≡ = ≡

1/(2 )S S

 , (7) 

where the left-hand parts refer to data and the right-hand ones to a fitting model, and ν πτ≡  

is the scaling frequency.  The essence of good scaling then involves choosing appropriate Sν  

scaling values.  Usually, no fitting is actually carried out, and an equation such as (7) is merely 

written to define the type of scaling to be used for '( )σ ω S data.  Various explicit choices for ν  and 

discussions of the historical background of scaling appear in Refs 2, 3, 6, and 33.  Here, scaling 

will be carried out employing a fully complex version of Eq. (7) for fitting, one that may be used to 

fit complex data at any immittance level and may include non-hopping processes. 

 Of the many past choices for Sν , we here consider only those of  Sidebottom [5], Dyre and 

Schrøder [3], Macdonald [6], and Roling and Martiny [2].  The first two are essentially equivalent, 

are both related to the BNN relation, and when expressed in terms of  are: Maε 1( / )S Ma oν ε ε τ −≡ ∆

( / ) /(2 )S Ma o

 

and ν ε ε πτ≡ ∆ S, respectively.  For the U model, where τ  becomes the explicit 

characteristic response time of the model, , estimated from data fitting, these results lead to oτ

0.0185 /S oν τ= 0.00295 /S o and ν τ=

o

, respectively.  In contrast, the earlier work of the author [6] 

involved just the τ  quantity derived from CMF fits of the K1 model.  For the U model, that result 

becomes 1/(2 ) 0.1592 /S o oν πτ τ≡ = S p.  Finally, Roling and Martiny set ν ν≡ p, where ν  is the 

frequency at the peak of the mobile-charge dielectric loss response, discussed in Section II-B.  For 

the U model, the frequency of the 1'' ( )C S pε ω 0.001786 /p o peak is ν τ= , a factor of exactly the U-

model BNN p value of 1.65 smaller than the Dyre and Schrøder result, 
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 The differences in the numerical values of the numerators of the expressions for all of the 

above scaling quantities are not significant for scaling, so they are all equivalent in this sense. 

Nevertheless, the choice of a proper value of oτ  is of the greatest importance for good scaling.  

Note, however, that since ε∆  and pν  may be directly estimated from experimental data without 

fitting, a good estimate of  is not actually necessary to form a scaling value of oτ Sν  when a value 

of  is available, also necessary for scaling of  itself.   0σ '( )σ ω

 But consider the following:  the estimation of ε∆  from data requires separate estimated 

values of both  and .  Estimation of both of these quantities, especially that of 0ε ε∞ 0ε , is rendered 

uncertain by the usual presence of electrode effects, as demonstrated in the next section; in addition 

the data often do not extend to high enough frequencies to yield a good estimate of ε∞

S p

.  Further, 

estimation of  ν ν≡ 0 requires subtraction using a good estimate of σ  and then the determination 

of the frequency of the peak of a curve that usually varies slowly in the neighbourhood of the peak, 

again an inherently inaccurate process for ordinary experimental data.   

 

B.   U-model fitting 

 The above discussion shows that the usual determination of scaling factors may depend on 

the use of only one or two points of the data, rendering results uncertain.  On the other hand, CNLS  

estimation of values of , , and 0σ oτ Cε 1∞  from U-model fitting makes use of all the data in an 

optimum way, also provides an estimate of Dε ∞ , and allows electrode effects to be adequately 

accounted for as part of the fitting.  Therefore, scaling with values of these quantities so estimated 

is much more appropriate than are other approaches.  Let us define the resulting scaled variables as 

0/σ σ σ− ≡ /o S and  ν ωτ ω ν ν− −≡ ≡ ≡ 1/(2 )S o . , where ν πτ≡
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Fitting results are presented in Table I.  All fits of experimental data shown here used the U 

model with an extra free parameter to estimate Dε ∞  and usually with additional free parameters 

(not shown) to account for electrode polarization effects.  Other fits of the present data using the 

K1 model with 1β  free to vary led to estimates of it that were, as usual, very close to 1/3.  See also 

the fitting results of Refs. 7 and 21 for results for other materials.  Even when the relative standard 

deviation, , of one of these fits with FS 1β  free was slightly smaller than that obtained with it fixed 

at 1/3, the relative standard deviations of the free parameters were smaller than those with it free, 

indicating a more significant fit.  It is also worth emphasizing that comparison of the oτ  estimates 

for the two types of fit show that they are far less stable than those of 1β  since a small change in 

the estimate of the latter results in an appreciable change in the corresponding  estimate.   oτ

The results shown in the A and B and C and D rows in the table are consistent with earlier 

work where K1-model fits of the present kind led to 1 1/ 3β ≅  estimates that were nearly 

independent of both temperature and ionic concentration, making it reasonable to use the fixed 

value of 1 1/ 3β =

1C

 in the present work.  It is worth noting, however, that the A and B row estimates 

of ε ∞ T

1

 are not exactly proportional here to 1/ , as expected from Eq. (4) and from earlier work 

[7].  Although this discrepancy may be associated with the large role that electrode effects play in 

the present data, as indicated in the response curves presented below, it is somewhat more likely to 

be associated with non-Arrhenius behavior stemming from a physically reasonable low-end cutoff 

of the K1 distribution of relaxation times.  

The U line in the table involves only K1-model response with β  fixed at a value of 1/3 and 

the other two parameters each having their scaled values of 1.  When, in addition, Vε  is also set to 

the scaled value of 1, then from Eq. (3) 1 6Cε ∞
− = .  All of the K0 results in the table involved real-
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1Cε ∞
−

x

part fitting except the listed  value where full complex-data fitting was used.  Such fitting 

necessarily used both the K0 model and a free dielectric-constant ε  parameter to estimate the 

1 6Cε ∞
− = ) in the U-model scaled data.  The scaled '(σ ν−−  U-model data, designated UM, extended 

up to a maximum value of 10 , where the n slope was about 0.664, and was fitted to the K0 model 

using nonlinear least-squares.  The last column in the K0 row shows its 

5

0β  estimate in square 

brackets.  An appreciably larger frequency range would be needed for the resulting 0β  estimate to 

more closely approximate its limit of 2/3.   For much data where '( )σ ν−−  is no larger than 

, CMF CK1-model fitting still leads to 210  to 10 1 1/ 33 β

00.5 0.6

 estimates but CK0 fitting yields 

β< < '( ), even though power-law fitting of the part of the σ ω

1C

 data at the high frequency 

end usually results in n estimates much closer to 2/3. 

Note that although the present K0-model fit of the virtually exact K1 scaled synthetic data 

leads to a value of ε ∞
−

o reasonably close to the exact value of 6, the estimate of τ−  is about 18 

rather than 1.  Such a larger value than that for the K1 model is characteristic of K0 fits.  Finally, 

the other quantities in the last column of the table are percentage  values for fits of each set of A-

D data after subtracting the effects of estimated 

FS

Dε ∞  and electrode polarization parameters from the 

original data and then fitting the subtracted results to the scaled U model.  As expected, such 

subtraction of comparable quantities leads to less accurate fits than those involving the full data 

because it involves the subtraction of nearly equal large quantities to find their small differences.  

Nevertheless, the two parameter estimates of the model were very close to the exact U-model data 

values of unity for all four fits of subtracted data. 

 

 

 19



C.   U-model scaling 

Complex-plane plots of resistivity data are particularly useful in showing low-frequency 

electrode effects when present.  In order to compare curves for different materials and conditions, 

all the figures presented here involve data scaled as above using  and 0ρ oτ  values estimated from 

the unscaled U-model fits of Table I.   Figure 1 presents such results for the A and B material listed 

in the table.  In order to maximize clarity, not all points used in fitting are included in this and the 

other figures and in none does the size of a data symbol indicate its error bar.  In Figure 1 only 

about half of the data points are plotted, and, in addition, for the B data the right-hand spur 

extending to over 1.3 for the actual fitting was cutoff as shown.  No such cutoff was applied for the 

A results. 

The figure shows that the original (scaled) data lines for the two temperatures are similar 

for the high-frequency response region but begin to diverge at the lowest frequencies.  The 

remaining two curves are those for data from which the effects of Dε ∞  and electrode polarization 

have been subtracted before scaling, a simple procedure after LEVM fitting.  It is clear that in the 

present representation the contributions to the overall frequency response from non-hopping Dε ∞  

and series electrode-effects dominate the dispersive U-model hopping ones except at the high-

frequency end of the curves.  Further, we see that the remaining hopping points, identified by “sub” 

in the figure, fall closely on the U-model master-curve solid line, although those for the A situation 

show a bit more deviation than do the B ones.   

It is particularly important to emphasize that, to the degree that the non-hopping effects 

were adequately estimated by the fit of the full data, the hopping response shown here does not 

consist of points fitted to the master curve but instead it represents the best hopping-data estimates 

obtained from the fits of the full data.  The excellent agreement of the hopping points with the 
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exact U-model master curve for both temperatures shows not only that the present scaling is 

appropriate but that the hopping response is indeed very well described by the U model and its 

restriction to 1 1/ 3β = .  As we shall see, these conclusions are further confirmed by the results 

shown in the subsequent figures.  Fitting with a composite model to allow the non-hopping 

contributions to the full response to be subtracted does not guarantee that the resulting data points 

will lie close to the U-model hopping curve.  That they actually do so is confirmation that the U 

model represents the dispersive hopping part of the response adequately. 

Figure 2 shows a more stringent fitting situation; one where the unscaled dispersive part of 

the response is much smaller for the low-concentration D condition than that for the C one.  Here, 

in order to maximize resolution and clarity the y-axis-scale unit length is made greater than the x-

axis one; so this is not quite a traditional complex-plane plot.  Low-frequency electrode effects are 

somewhat less apparent for the present data than are those of Fig. 1, and the differences between 

the original-data curves and those representing only hopping arise primarily from the relative sizes 

of the dispersive contributions and those associated with the values of  and 0ρ Dε ∞

0

.  As the limit of 

zero concentration of mobile ions is approached, simple non-dispersive Debye relaxation behavior 

stemming entirely from ρ  and Dε ∞  becomes more and more dominant in the data, as discussed in 

Section II-B-2-a and demonstrated in detail below. 

The second curve from the top of Fig. 2 shows scaled Debye response as a dashed line.  Just 

below it appears the D-material points denoted “sub el” obtained after subtraction of electrode 

effects from the top D-data curve.  The “sub el” points are exceptionally close indeed to the Debye 

response curve here.  When the effect of Dε ∞  is then subtracted from these points, however, the 

resulting D-material bulk dispersion points lie close to the U-model scaled response but show some 

scatter arising from stringent subtraction effects.  Without such subtraction, however, the resulting 
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original modulus formalism approach leads to a 1β  estimate of about 0.9 instead of 1/3 [6,7,20].  

Because the C data set involves appreciably smaller electrode effects relative to dispersion effects 

than does the D data, its points after all subtractions lie somewhat closer to the U-model master 

curve than do the D ones, but their final dispersive hopping responses still show some scatter.  

Nevertheless, it is clear that both the C and D results scale to the U-model data curve. 

Figure 3 presents scaled frequency-response results at the modulus level for the A and B 

situations.  The scaled master curve and the subtracted points all lie appreciably above the original 

data points primarily because of the subtraction of the effects of Dε ∞  [6,9].  The dispersive B points 

are poorer, however, than the A ones in the high-frequency region past the peak because electrode 

effects dominated the former data more than the latter, resulting in greater subtraction errors.  

Nevertheless, when the somewhat irregular B data points are fitted to the master curve with CNLS, 

the resulting open-circle points fit excellently. 

Figure 4 shows similar results for the C and D material.  Note that even with a 

magnification factor of 10 the original D data curve is appreciably smaller than the corresponding 

C one, resulting in greater deviations of the D dispersion points from the master curve than for the 

C points.  Nevertheless, the results shown in Figs. 3 and 4 verify both the scaling approach and the 

appropriateness of the U fitting model.  

In Fig. 5, a traditional log-log scaling plot involving scaled 'σ  and scaled frequency is 

presented for all four fits included in Table I.  In addition, a curve for a mixed alkali material with 

two types of mobile ions is included [35].  This curve was scaled to agree with the present master 

curve at its highest point, and it is evident that it then does not agree well with the single-ion U 

response curve, particularly in the low-frequency region where dispersion is just beginning to be 

evident.   
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The Fig.-5 plots of the scaled data and those in the magnified inset show appreciable 

electrode-polarization deviations from the master curve at low frequencies for all the data points, 

but note particularly the deviations appearing at high frequencies for the A data.  The slope of this 

curve is increasing and reaches a value of about 0.77 at its highest point, in full agreement with 

prior work on non-negligible high-frequency electrode effects [8,36]. It is thus evident that 

electrode polarization can be important even at high frequencies where it may sometimes be 

erroneously identified as arising from nearly constant loss processes [8,36,37].   

Finally, Fig. 6 shows scaled and fitted results for the dispersive-response parts of the A, B, 

C, and D data sets.  Symbols of different sizes have been used to allow easy identification of the 

various responses.  Although, as one would expect, the present scaling is limited only by the 

accuracy of the estimation of the scaling parameters from the original CNLS fits and is certainly 

near optimum, it is particularly gratifying that the estimated dispersive data points fit the master 

curve so well, thus verifying the appropriateness of the U model for these data sets.  In the past, 

scaling has not usually been attempted for data that involve significant electrode polarization 

effects, but the present results show that this need not be a limitation, and, as well, it is clear that 

scaling is unnecessary except to allow comparison of plots for different situations.  In most cases, 

one only need carry out CNLS fits of available data sets to obtain maximum information from 

them. 
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IV.  SUMMARY 

 

 The present work shows that for homogeneous materials involving mobile ions of a single 

type the important 1β  shape parameter of the K1 dispersive frequency-response model has a 

unique, constant value of 1/3, resulting in the U model, one whose high-frequency-limiting log-log  

'( )σ ν 2 / 3n =

1

 slope is .  These results are therefore inapplicable to mixed-alkali situations or to 

mixed electronic and ionic conduction.  For single-ion materials, CNLS fits of frequency-response 

data with β  taken as a free parameter in the K1 model have led to estimates very close to 1/3.  

Here it is shown that on fixing 1β  at 1/3, the U model leads to excellent fits of data independent of 

temperature and ion-concentration variation, as expected from several different analyses [6-9].  

Estimates of n at high frequencies by others [23-25, 38-40] have led to , independent of 

temperature and ionic concentration over the limited ranges considered, further confirmation of the 

appropriateness of the U model within its range of applicability. 

2 / 3n

( ),  ''( ),  and '( )M

 Scaling, using the U-model fit results of Table I for variable concentration and temperature, 

was carried out for ρ ν ν σ ν  data and resulted in the complex-plane and frequency-

response plots of Figs. 1-6.  Scaling was initially unsatisfactory for all these data sets because of 

the influence of non-dispersive effects associated with electrode polarization and with Dε ∞ .  When 

these effects were subtracted to give best estimates of only the dispersive response, however, 

scaling of the resulting data was successful and led to data points close to those of the exact scaled 

U model.  Fitting of these data points to this model then yielded scaled parameter values in 

excellent agreement with those of the model.  Even when the best available scaling parameters are 

used, these results suggest that fitting with a model that takes all processes influencing the data into 

 24



account may be necessary to yield meaningful scaling comparisons, as it certainly is in order to 

obtain good estimates of hopping and dielectric parameters from most data. 
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Table I.  Rows A-D: ( )ρ ω

FS

-level U-model CNLS fits to materials with different temperatures and 

ionic concentrations.  The K0 line involves real-part K0 fitting, and MA stands for mixed alkali.  All 

fits used modulus weighting except those of rows A and K0, where proportional weighting was used 

[19].  Here 100  is the percentage value of the relative standard deviation of a fit, and the last 

column lists its value for fits of the scaled and subtracted data to U-model hopping response..   

Type/  

Ref. 

       Material T  (K) F100S 0
710

 

7
oτρ−  

( cm)−Ω  

 10      

(s)  

        1Cε ∞ Dε ∞ F100S

0

   

or [β ] 

         

   U Scaled master: UM   ----   -----   10 7−    10  7    6    0  ----- 

 A/34 
30.5Li 0.5La TiO• •    179   0.98   6.25   233  25.27  65.01  1.65 

 B/34 
30.5Li 0.5La TiO• •    225   0.42  0.018   0.467  17.72  80.13  1.29 

 C/20 
2 20.2K O 0.8GeO•    414   1.13   22.8   87.4  2.60  9.29  1.68 

 D/20 
2 20.02K O 0.98GeO•    602   0.45   24.8   2.82  0.077  9.51  1.99 

 K0 Fit '( )σ ν− 8UM data   ----   6.6 9.6x10−  1.8x10  8   5.94  ----- [0.629] 

MA/35  
2 20.3(0.6Na O 0.4Li O) •

2 3 0.7B O+

'( )
 

                          Scaled to σ ν−  UM data 
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FIGURE CAPTIONS 

 

1. Complex-plane resistivity plots of scaled data for the A (T= 179 K) and B (T=225 K) rows 

of Table I, before and after subtraction of all non-hopping contributions and including comparison 

of the latter results with exact U-model hopping response. 

2. Stretched complex-plane resistivity plots of scaled variable-concentration data for the C and 

D rows of Table I, before and after subtraction of all non-hopping contributions for the C data 

(denoted “C sub”) and separate subtractions of electrode effects (“sub el” points) and then of Dε ∞  

effects for the D data (denoted “D sub”).  The sub el results are compared with pure Debye 

response, and the others with exact U-model dispersive response. 

3. Scaled l  frequency response of scaled 10og ''M  A and B data before and after subtraction of 

all non-hopping contributions and including comparison of the latter results with exact U-model 

hopping response.  In addition, the open circles show the results of fitting the noisy subtracted B 

data with the U model. 

 4. Scaled l  frequency response of scaled 10og ''M  C and D data before and after subtraction of 

all non-hopping contributions and including comparison of the latter results with exact U-model 

hopping response.   

5. Log-log scaled frequency response of scaled 'σ  A-D data sets, including comparison with 

exact U-model hopping response.  The solid-circle points are for the mixed-alkali data identified in 

Table I.  In addition, the low-frequency parts of the responses are shown with higher resolution in 

the inset graph.  

6.  Log-log scaled frequency response of scaled 'σ  A, B, C, and D data sets fitted to the U-

model master curve after subtraction of electrode-polarization contributions.  
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