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Composite Dirac fermions in graphene
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Generalizing the notion of composite fermions to the case of ”pseudo-relativistic” Quantum Hall
phenomena in graphene, we discuss a possible emergence of compressible states at the filling factors
ν = ±1/2,±3/2. This analysis is further extended to the nearby incompressible states viewed as
Integer Quantum Hall Effect of composite Dirac fermions, as well as those that might occur at
ν = 0,±1 as a result of (pseudo)spin-singlet pairing between the latter.

The traditional interest in Quantum Hall Effect has
been rekindled by the recent experiments on mono- and
double-layers of graphene where the interplay between
unscreened Coulomb interactions and pseudo-relativistic
kinematics of the Dirac quasiparticles has long been ex-
pected to harbor a host of novel phenomena1.

In graphene mono-layers, the Integer Quantum Hall
Effect (IQHE) plateaus were found at the integer values
σxy = ν = (4n + 2), n = 0,±1,±2, . . .2 (hereafter, we
put h̄ = e = c = 1, and measure all the conductivities
in units of e2/h ≡ 1/2π). Elaborating on the earlier in-
sight of Refs.1, this observation was readily explained3

by treating the low-energy excitations in graphene as
(pseudo)relativistic Dirac fermions with linear dispersion
and speed vF ∼ 106m/s. These quasiparticles carry a
physical spin s = 1/2 and possess an additional orbital
(”pseudo-spin” or ”valley”) quantum number (hereafter
referred to as R and L) corresponding to the double de-
generacy of the electronic Bloch states in graphene.

The resulting SU(4) symmetry of the non-interacting
Hamiltonian survives the long-range Coulomb interac-
tions, although it gets broken in the presence of the Zee-
man and various additional short-range (Hubbard-like)
interaction terms. A number of implications of this sym-
metry which generalizes independent rotations in the spin
and valley subspaces have been explored in several recent
papers4.

For one, by drawing a parallel with the previous stud-
ies of spin-unpolarized double-layer Quantum Hall sys-
tems, it was argued that, apart from the Dirac kinemat-
ics, the situation in graphene is similar to that occurring
in the double-layer systems in the limit of vanishing inter-
layer tunneling. Thus, a graphene analog of the Quantum
Hall Ferromagnet was predicted to occur, which type of
strongly correlated states would manifest itself as addi-
tional (interaction-induced) plateaus at all the integer
filling factors4.

In a recent experiment, additional plateaus were indeed
observed at σxy = 0,±1, . . .5, thus suggesting a complete
lifting of the spin and valley degeneracies at the lowest
(n = 0) relativistic Landau level (LL). As an alterna-
tive interpretation, it was pointed out6 that the behavior
reported in Ref.5 can also be explained by invoking the
”magnetic catalysis” scenario of Ref.7 where, contrary to
the predictions of Refs.4, the valley degeneracy gets lifted
only at the 0th LL, in agreement with the data of Ref.5.

Still awaiting its observation, however, is a graphene

counterpart of the Fractional Quantum Hall Effect
(FQHE). By analogy with FQHE in the conven-
tional (”non-relativistic”) two-dimensional electron gas
(2DEG) with parabolic quasiparticle dispersion, one
might expect that its graphene analog can also be stud-
ied by adapting the idea of statistical flux attachement
to the case of the Dirac fermions.

In the present Letter, we discuss such a procedure,
thereby setting the stage for a systematic analysis of the
(potentially, much richer than in the case of the conven-
tional 2DEG) realm of FQHE phenomena in graphene.

The flux attachment recipe would usually be applied
to a half-(or, more generally, 1/2p-, where p is an inte-
ger) filled uppermost LL, while the rest of the system
would be treated as an inert incompressible background.
In a generic SU(N)-invariant system, the Chern-Simons
Lagrangian implementing a transformation from the orig-
inal electrons to N -component composite Dirac fermions
(CDFs) takes the form

L =

N
∑

α

∫

r

Ψ†
αγ̂α(i∂

i+aiα+Ai)Ψα+
1

4π

N
∑

α,β

∫

r

K−1
αβ ǫijka

i
α∂

jakβ

+
vF
4π

N
∑

α,β

∫

r

∫

r′

Ψ†
α(r

′)Ψα(r
′)

g

|r− r′|Ψ
†
β(r)Ψβ(r) (1)

Here g0 = 2πe2/ǫ0vF ∼ 3 is the bare Coulomb cou-
pling, the vector potential Ai = (0,−By/2, Bx/2) rep-
resents an external magnetic field, and the matrices
γ̂α = (1, σ̂x, (−1)ασ̂y) act in the space of spinors Ψα

composed of the values of the CDF wave functions on
the two sublattices of the bi-partite lattice of graphene.

In a multi-component system, the statistical flux pro-
vided by the Chern-Simons fields aiα can be attached in
a number of different ways, the choice between which
should ultimately be determined by the nature of the
ground state in question. Accordingly, there exist dif-
ferent choices of the integer-valued matrix K̂, the only
condition imposed upon which is that the transformed
CDFs retain their (mutual) fermionic statistics. This re-
quirement can be readily satisfied, provided that all the
matrix elements of K̂ are even integers, though.

By varying Eq.(1) with respect to the Lagrange multi-
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pliers a0α, one obtains a set of constraints

ρα =< Ψ†
αΨα >=

1

2π

N
∑

β

K−1
αβ < ∇× aβ > (2)

which determine the average values of the effective fields
bα = B− < ∇×aα > experienced by the CDF α-species.
In the FQHE states viewed as the CDF IQHE, each

of the CDF species occupies an integer number να =
2πρα/bα = mα of the effective LLs. The total electronic
filling factor is then given by the expression

ν =
N
∑

α

2πρα
B

= Tr(1+ K̂m̂)−1m̂ (3)

where m̂ = diag[m1, . . . ,mN ].
Integrating the CDFs out in the standard manner, one

obtains a quadratic Lagrangian for the vector fields

Leff [aα, A] =
1

2

N
∑

α

(aiα +Ai)Πα
ij(a

j
α +Aj)

+
1

4π

N
∑

α,β

ǫijkK
−1
αβ a

i
α∂

jakβ (4)

where Πα
ij(ω,q) is the CDF polarization operator.

Next, by eliminating all the statistical fields, one de-
rives the RPA-like formula for the physical electromag-
netic response function χ̂−1

ij (q) = Π̂−1
ij (q)+2πK̂ǫijkq

k/q2

where qk = (ω,q). Quantized values of the Hall conduc-
tivity corresponding to the putative FQHE plateaus are
given by the formula

σxy =

N
∑

α

σH
α −

N
∑

α,β

σH
α (σ̂H + K̂−1)−1

αβσ
H
β (5)

where σ̂H = (2π/ω)ImΠ̂xy|ω,q→0 is a tensor of the CDF
Hall conductivities.
As one important example of this general construction,

attaching two units of the α-type flux (
∫

r
< ∇× aα >=

±4π) to the CDFs of the same type is equivalent to choos-

ing K̂ = ±diag[2, . . . , 2], in which case Eq.(3) yields

σxy =

N
∑

α

να
2να ± 1

(6)

Notably, the overall Hall conductivity (6) is given by a
”parallel” combination of the conductivities of the indi-
vidual species (each of which is, in turn, given by a ”se-
ries” combination of the responses to the physical electro-
magnetic A and the corresponding statistical field aα).
This composition rule should be contrasted against the

naive one, σxy =
∑N

α να/(2
∑N

α να+1) (see, e.g., the last
reference in Ref.3), which would have resulted from a se-
ries connection between the response to A and a parallel

combination of all the statistical fields (or a single field
that couples symmetrically to all the fermion species).

A more general case of the diagonal matrix K̂ =
diag[2p1, . . . , 2pN ] gives rise to a formula similar to
Eq.(6) (with the factor of 2 replaced by 2pα in the denom-
inator of the α-term). Furthermore, any ”entangled” way

of attaching the fluxes described by a non-diagonal K̂-
matrix yields an expression different from Eq.(6). Such

alternative choices of the K̂-matrix (which we do not
consider in this work) would be physically appropriate if
different CDF species formed mutually coherent states.
In the spin-polarized (N = 2) case, one example of this

sort is provided by the matrix K̂ =

(

0 2
2 0

)

which has

been previously discussed in the context of the double-
layer ν = 1/2 system.
The SU(4)-symmetry of Eq.(1) gets lowered in the

presence of various symmetry-breaking terms of the form

δL =
∑N

α,β

∫

r
Ψ†

αΛαβΨβ which can be of both, single-

particle and many-body, nature (observe that these terms
retain their form after the statistical transformation, if
the matrix Λ̂ is diagonal).
At the mean-field (Hartree-Fock) level, the list of such

terms includes the (exchange-enhanced) Zeeman term

(Λ̂Z = EZ 1̂ ⊗ 1̂ ⊗ σ̂z) and a parity-odd mass term

(Λ̂M = ∆σ̂z ⊗ 1̂ ⊗ 1̂ or ∆σ̂z ⊗ 1̂ ⊗ σ̂z), where the first,
second, and third factors refer to the sublattice, valley,
and spin subspaces, correspondingly. These two terms
lift, respectively, the spin and valley degeneracies of the
0th LL, thereby splitting it into four individual sub-levels.
Notice that the parity-even mass terms (∼ σ̂z ⊗ σ̂z ⊗ 1̂

or σ̂z ⊗ σ̂z ⊗ σ̂z) which have been previously discussed in
the context of spin-orbit coupling and Spin Hall Effect
in graphene can only split the 0th LL into two sub-levels
(with the Zeeman term present).
The symmetry-breaking terms appear to be instrumen-

tal for describing, e.g., the plateau transitions 0 → ±1, in
which case all the four sub-levels of the 0th LL are fully
spin- and valley-resolved, as suggested by the strong-field
(B >∼ 20T ) data of Ref.5.
The nearby FQHE states at |ν| < 1 can then be con-

structed with the use of single-component (N = 1) CDFs
which occupy an integer number of the effective LLs.
Naturally, these states fall into the standard Jain’s se-
ries converging towards ν = ±1/2

σN=1
xy = ±ν±m = ± m

2m± 1
(7)

where m = 1, 2, . . . and the overall ± sign is not cor-
related with that in the definition of ν±m. Similar frac-
tions can occur near ν = ±3/2, thereby giving rise to the
FQHE plateaus at σxy = ±(1 + ν±m). Since the single-
particle CDF states are non-degenerate, a relative stabil-
ity of the even vs odd-numerator fractions (7) is not an
issue (cf. with the discussion in the last of Ref.9).
In the case of a residual SU(2) degeneracy of either

spin or valley origin, the number of relevant CDF species
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becomes N = 2. Conceivably, such a situation can occur

at the 0 → ±2 plateau transitions (where, say, ν↑L,R =

1/2 or ν↑,↓L = 1/2, depending on the relative magnitude
of EZ and ∆).
The data of Ref.5 suggest that at moderately strong

fields (10T <∼ B <∼ 20T ) the spin degeneracy gets lifted
first (at least, at the n = ±1 LLs). In this scenario,
the residual valley degeneracy gives rise to a series of
valley-unpolarized IQHE states of theN = 2 CDFs which
converge towards ν = ±1 and correspond to the plateaus

σN=2
xy = ±(1− ν∓m±1 + ν±m) = ± 2m

2m± 1
(8)

where ν±m is defined in Eq.(7).
In Eq.(8), we took into account the fact that the num-

bers of occupied (spin-polarized) effective LLs for the L−
and R−type CDFs differ by one as a result of the spec-
tral anomaly at the 0th CDF LL (the R-type states re-
side at the energy E = ∆, whereas the L-type ones are
at E = −∆). As a result, the partial Hall conductivities
of the R- and L-species as functions of chemical poten-
tial obey the relation σR

xy(−µ) = −σL
xy(µ), although their

sum σR
xy + σL

xy is, of course, an odd function of µ. It is
worth noting that, from a formal standpoint, the anoma-
lous IQHE observed in Refs.2 has the very same origin.
Lastly, SU(4)-invariant spin- and valley-unpolarized

states would be described in terms of N = 4 CDFs which
provide a mean-field picture of the −2 → 2 plateau tran-

sition in terms of the half-filled 0th LL (ν↑,↓L,R = 1/2)

which is appropriate at relatively weak fields (B <∼ 10T ),
according to the data of Ref.5.
Incompressible spin- and valley-unpolarized N = 4

CDF states would then correspond to the plateaus

σN=4
xy = 2(ν±m − ν∓m±1) = ± 2

2m± 1
(9)

Notably, the series (9) includes (pseudo)spin-singlet
states at ν = 2/3 and 2/5, thus providing a possible
CDF picture of the exact ground states found at these
filling factors in the recent numerical studies9.
By analogy with the conventional 2DEG8, we conjec-

ture that the parent CDF states at ν(N=1) = k − 1/2,
(k = −1, 0, 1, 2), ν(N=2) = ±1 and ν(N=4) = 0 for
N = 1, 2, and 4, respectively, behave as compressible
”CDF metals” characterized by the presence of a Fermi
surface of radius k∗F = (2νB/N)1/2.
The mean-field CDF dispersion relation remains lin-

ear and the effective CDF velocity determined by the
strength of the Coulomb interaction, v∗F ∼ gvFN

1/2, is
comparable to vF for g and N of order one. Due to their
inherited Dirac kinematics, the Subnikov-de-Haas oscil-
lations of the CDF resistivity at small deviations from
the compressible fractions ν(N) are expected to show the
same Berry phase of π as that of the original Dirac quasi-
particles in weak fields2.
The CDF Fermi energy E∗

F = v∗F k
∗
F ∼ gvFB

1/2 ap-
pears to be of the same order as the distance E1 −E0 =

vF (2B)1/2 between the 0th and ±1th LLs, suggesting that
in graphene the LL mixing effects are potentially more
important than in the conventional 2DEG where they
get suppressed with increasing field. Moreover, the LL
mixing becomes stronger with an increasing number n of
the occupied electronic LLs, as the distance between the
adjacent levels decreases as ∼ |n|−1/2. It is, therefore,
likely that most favorable for the formation of the parent
CDF metals and their incompressible descendants is the
0th LL (cf. with the conclusions drawn in Refs.9 where
the LL mixing was neglected from the outset).

In the CDF IQHE states (7,8,9), the energy gaps for
well separated particle-hole excitations

∆m ≈ E∗
m−E∗

m−1 = v∗F (2B)1/2
m1/2 − (m− 1)1/2

(2m− 1)1/2
(10)

scale as ∼
√
B/m for large m, which dependence is

similar to that found in the conventional case of ”non-
relativistic” composite fermions where the effective mass
varies as ∼ B1/2 (see Ref.8). In contrast, for small m the
true lowest energy excitations are likely to be represented
by pairs of spin/valley (anti)skyrmions4,9.

Despite the general possibility for the compressible
states to emerge at any of the aforementioned fractions
ν(N), a relative stability of these states is strongly de-
pendent on the number N of the CDF species involved.
In order to proceed with the stability analysis one has
to go beyond the mean-field picture by including fluctu-
ations of the statistical fields aα controlled by the CDF
polarization operator.

In the regime where typical CDF energies and mo-
menta are small compared to k∗F and E∗

F , respectively,

Π̂ij(q) is similar to that of a ”non-relativistic” system
with the same kF and vF . In particular, its transverse
(with respect to the transferred momentum q) compo-
nent Π⊥(ω,q) = q × Π̄ × q/q2 = aq2 + ibω/q, where
a ∼ v∗F /k

∗
F and b ∼ k∗F , accounts for the Landau dia-

magnetism and damping in the CDF metal.

For N > 1 the CDF interactions are dominated by
N − 1 linear combinations of the transverse components
of the statistical fields which are orthogonal to the ”in-

phase” mode
∑N

α aiα. Unlike the latter, these combina-
tions are not affected by the unscreened Coulomb inter-
actions, and the effective coupling between different CDF
species (here Vq = g/q, (v⊥v

′
⊥) = (vv′)− (vq)(v′q)/q2)

Uαβ = (v⊥v
′
⊥)

q2Vq

(Nq2Vq +Π⊥)Π⊥
≈ (v⊥v

′
⊥)

1

NΠ⊥
(11)

is always attractive in the Cooper channel (v = −v′).
For N = 2 this interaction can facilitate the onset of s-
wave valley-singlet pairing10. Moreover, for N = 4 there
exists a possibility of more exotic (spin-valley coupled)
patterns of the SU(4)-symmetry breaking.

By contrast, for N = 1 the effective interaction is re-
pulsive in the Cooper channel, as it is between any CDF
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species of the same kind for N > 1,

Uαα = −(v⊥v
′
⊥)

(N − 1)q2Vq +Π⊥

(Nq2Vq +Π⊥)Π⊥
≈ −(v⊥v

′
⊥)

N − 1

NΠ⊥

(12)
Although there is still a possibility of p-wave pairing be-
tween the like CDFs, this potential instability (which is
also present for the ν = 1/2 state in the conventional
2DEG) tends to be much weaker11.
Since the inherent pairing instabilities make the N >

1 CDF metals prone to becoming incompressible paired
states, it is conceivable that the compressible states at
the filling factors ν(2,4) should, in general, be less robust
than those at ν(1). Likewise, the chances of observing
the novel series (8) and (9) might be rather limited, as
compared to the standard one given by Eq.(7).
The CDF metals would also be highly sensitive to dis-

order. In the presence of potential (short-range) impu-
rities of density ρi, the CDFs experience elastic scat-
tering off of an effective random magnetic field whose
vector potential is described by the Gaussian variance
< Ai(q)Aj(−q) >= 16π2ρi(δij − qiqj/q

2)/q28.
A transport rate for the CDF α-species can be esti-

mated as Γ∗ ∼ E∗
F ρi/|ρα|, and the above analysis (in-

cluding the role of the symmetry-breaking terms) per-
tains to the regime where EZ ,∆, v∗FB

1/2/|m| >∼ Γ∗. By
the same token, disorder makes it more difficult to resolve
metallic states at fractions ν ∼ 1/2p with p > 1.
Evaluating the longitudinal conductivity of the CDF

α-species as σ∗
xx ≈ max[|ρα|/ρi, 1], one obtains a rough

estimate for the physical conductivity of the CDF metals

σxx ≈ 1

4
min[

N
∑

α

ρi
|ρα|

, N ] (13)

which dependence should be contrasted with that at zero
field (in the case of Coulomb impurities, the latter is

proportional to the total electron density
∑N

α ρα
2). In-

terestingly enough, in the experiment of Ref.5 the con-
ductivity at the ν = 0 plateau was found to be of order
σxx ≈ 0.6, possibly suggesting a precursor of the forma-
tion of the N = 4 CDF metal at weak fields.
Also, by analogy with the situation in the conventional

2DEG12, we predict that the conductivity of the CDF
metals is going to be temperature dependent due to quan-
tum interference corrections which dominate over weak-
(anti)localization ones and behave as

δσxx ∝ − lnσ∗
xx ln

Γ

T
or − ln2

Γ

T
(14)

for N = 1 and N > 1, respectively, thus allowing one to
discriminate (in principal) between the single- and multi-
component CDF metals.

Furthermore, despite the ostensibly Fermi-liquid-like
properties of the CDF metals, the electron spectral func-
tion ImG(p, ǫ) exhibits a distinctly non-Fermi-liquid be-
havior. Repeating the calculations carried out in the case
of the conventional 2DEG13, we find a tunneling I − V
characteristics of the CDF metal

I(V ) ∝ exp[−Const(E∗
F /V )η] (15)

where η = 1 for N = 1 and 1/2 for N > 1.

To conclude, in addition to a wealth of its other re-
markable properties, graphene provides a natural venue
for the merger between the notions of pseudo-relativistic
quasiparticles and statistical transformation from elec-
trons to CDFs. We predict that compressible CDF states
are most likely to be observed at the |∆ν| = 1 plateau
transitions (e.g., 0 → 1) between the fully resolved sub-
levels of the 0th LL, since a stronger LL mixing makes it
more difficult for such states to form at the |n| 6= 0 LLs.

In contrast, the would-be CDF metals associated with
the |∆ν| = 2, 4 transitions are generally more fragile due
to their propensity towards pairing, which can drive these
states incompressible. Moreover, we predict that the in-
compressible CDF IQHE states can occur at both, the
standard (7) as well as novel (8,9), fractions.

As far as the practical possibility of testing these pre-
dictions is concerned, the detrimental effect of disorder
calls for performing experiments of Refs.2,5 in samples
of substantially higher mobility. The anticipated experi-
mental signatures of the CDF metals can then be probed
by such well-established techniques as bulk tunneling,
acoustic wave propagation, magnetic focusing, and other
geometric resonances8.

For one, if a compressible ν = 0 state were indeed
to occur at B <∼ 10T , its CDF excitations would be
amenable to conventional electrostatic gating. This pre-
diction should be contrasted with such a hallmark of the
zero-field Dirac kinematics as the celebrated Klein’s para-
dox that would hinder any possibility of electrostatic con-
finement of the electronic Dirac excitations with vanish-
ing Fermi momentum2.
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