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Abstract: We propose methods for estimating parameters in two types of models

for discrete longitudinal data in the presence of nonignorable missing responses

and covariates. We first present the generalized linear model with random effects,

also known as the generalized linear mixed model. We specify a missing data

mechanism and a missing covariate distribution and incorporate them into the

complete data log-likelihood. Parameters are estimated via maximum likelihood

using the Gibbs sampler and a Monte Carlo EM algorithm. The second model is a

marginal model for correlated binary responses and discrete covariates with finite

range, both of which may be nonignorably missing. We incorporate the missing

data mechanism and the missing covariate distribution into the multivariate probit

model defined by Chib and Greenberg (1998). We use the EM by method of weights

(Ibrahim, 1990) and sample the latent normal variables conditional on a particular

response and covariate pattern. The M-steps for each model are like a complete

data maximization problem, and standard methods are used. Standard errors for

the parameter estimates are computed using the multiple imputation method of

Goetghebeur and Ryan (2000). We discuss the advantages and disadvantages of

each model and give some guidance as to when one model might be chosen over

the other. We illustrate both models using data from an environmental study of

dyspnea in Chinese cotton factory workers.

Key words and phrases: Generalized linear mixed model, Gibbs sampling, Monte

Carlo EM algorithm, multivariate probit model, nonignorable missing data.

1. Introduction

Correlated discrete observations arise in a variety of settings. For exam-

ple, in many clinical trials, a dichotomous response to treatment is measured

repeatedly over time. In toxicology studies, ordinal or count responses are often

measured on animals that are correlated within litter. Various complete data

methods have been proposed for modeling discrete correlated data. Two com-

mon approaches are generalized estimating equations (GEEs) (Liang and Zeger

(1986)) and generalized linear models with random effects, often referred to as

generalized linear mixed models (GLMMs) (see, for example, Zeger and Karim
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(1991) and Breslow and Clayton (1993)). Others have used latent variable mod-

els, where the joint distribution of the binary responses is specified by relating it

to the joint distribution of some underlying latent continuous responses. When

the joint continuous distribution is taken to be multivariate normal, the model

is referred to as a multivariate probit model (Ashford and Sowden (1970) and

Ochi and Prentice (1984)).

A common problem in the analysis of this type of data involves missingness

with a possibly nonignorable response mechanism. Subjects often drop out of

longitudinal studies or may miss visits intermittently. When nonresponse is un-

related to the values of the missing variables and the parameters of the missing

data mechanism are distinct from the response (sampling) model, the nonre-

sponse is called ignorable, and likelihood-based methods or GEEs with slight

modifications (see Robins, Rotnitzky and Zhao (1995)) can be used. However,

if conditional on the observed data, nonresponse depends on the missing

values, the nonresponse is termed nonignorable, and methods that do not

model the missingness mechanism are subject to bias. Many likelihood-based

methods have been proposed for handling nonignorably missing correlated dis-

crete responses. Approaches using selection models include Baker (1995), Fitz-

maurice, Laird and Zahner (1996), Molenberghs, Kenward and Lesaffre (1997),

and Ibrahim, Chen and Lipsitz (2001). Approaches based on pattern-mixture

models have been taken by Ekholm and Skinner (1998), Fitzmaurice and Laird

(2000) and Birmingham and Fitzmaurice (2002). Many of these models as-

sume monotone patterns of missingness, commonly referred to as dropout.

Follmann and Wu (1995) propose a class of shared parameter models for non-

ignorable nonresponse that can be specified as a random effects model for the

primary response, combined with a model for the missingness in which the ran-

dom effects are treated as covariates. They condition on the data that describes

missingness and use a conditional model for inference. Rotnitzky, Robins and

Scharfstein (1998) develop a class of estimators for generalized linear models

(GLMs) with nonignorable missing responses that are based on inverse probabil-

ity weighted estimating equations.

The previous estimation methods have all been developed for data involving

nonignorably missing discrete responses, while the covariates are assumed to be

completely observed. There is less literature on maximum likelihood estimation

with missing covariates. Lipsitz and Ibrahim (1996) present a conditional model

for missing at random (MAR) covariates in parametric regression models, and

Ibrahim, Lipsitz and Chen (1999) propose a method for estimating parameters

in GLMs with missing covariates and a nonignorable missing data mechanism.

Roy and Lin (2002) and Stubbendick and Ibrahim (2003) propose maximum like-

lihood methods for nonignorable missing responses and covariates in the normal
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random effects model, where the response variable is continuous. However, their

methodologies rely on continuity of the response and cannot be easily extended

to discrete data. Hence, none of the literature has examined maximum likelihood

estimation for correlated discrete responses when both the responses and the co-

variates may be nonignorably missing. This is a very common occurrence in

longitudinal studies, as discrete outcomes are commonly measured and the prob-

ability of missing a scheduled visit may depend on the value of both the missing

response and covariates at that time point. In addition, a subject’s response and

covariate values can be nonignorably missing at one time point and then mea-

sured at the next, resulting in arbitrary, nonmonotone patterns of missingness in

both variables.

In this paper, we propose two models for correlated discrete data and dis-

cuss estimation with nonignorable missing responses and covariates. The first

model is very general and can be used for various types of discrete data when

the objective is to make inferences about individuals rather than population av-

erages. We estimate parameters in the generalized linear mixed model (GLMM)

with nonignorable missing responses and covariates by specifying a missing data

mechanism and a missing covariate distribution and incorporating them into the

complete data log-likelihood. We use the Monte Carlo EM algorithm (MCEM)

and draw samples from the joint distribution of the missing data given the ob-

served data and current parameter estimates. The method is very general and

can be used with various link functions. In addition, there are no restrictions

on the covariates; they can be discrete, continuous, and time-varying. However,

because the random effects are treated as missing data, the method may not be

computationally feasible for models with more than one or two random effects.

Also, a high degree of autocorrelation typically results when doing Gibbs sam-

pling with random effects (see Gelfand, Sahu and Carlin (1996)). This can cause

problems in the Gibbs sampler and may result in lack of convergence.

Therefore, we consider an alternative marginal model for correlated bi-

nary responses that does not involve random effects and avoids many of

the issues mentioned above. We incorporate the missing data mechanism and

the missing covariate distribution into the multivariate probit model defined by

Chib and Greenberg (1998). We use the EM by method of weights (Ibrahim

(1990)) and sample the latent normal variables conditional on a particular re-

sponse and covariate pattern. We assign weights to each sample based on the

probability of each pattern and sum over all possible patterns. While this model

is not as general as the GLMM and the method cannot accommodate continuous

covariates, it may be applicable in many situations and offers an alternative to

the GLMM when one is interested in making inferences about population aver-

ages. The M-steps for each model are like a complete data maximization problem
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and standard methods are used. Standard errors for the parameter estimates

are computed using the multiple imputation method of Goetghebeur and Ryan

(2000).

The rest of the paper is organized as follows. In the next section, we discuss

the GLMM and show how maximum likelihood estimation can be done in the

presence of nonignorable missing response and covariate data. In Section 3, we

focus on the multivariate probit model and again use maximum likelihood for

estimation with nonignorable missing responses and covariates. In Section 4, we

demonstrate the two models using data from a study of Chinese cotton factory

workers, and in Section 5, we give some discussion of the models.

2. The Generalized Linear Mixed Model

2.1. Model and notation

The generalized linear model (GLM) with random effects, also known as

the generalized linear mixed model (GLMM), is the GLM generalization of the

normal linear random effects model described by Laird and Ware (1982). It is

commonly defined as follows. For a given individual i with j = 1, . . . , ni repeated

measurements, outcome yij is modeled as

f(yij|β, bi, τ) = exp [τ{yijθ(ηij) − g(θ(ηij))} + c(yij, τ)] , (2.1.1)

where yi is ni × 1, τ is a scalar dispersion parameter, θ(·) is the link function,

ηij = x′

ijβ +z′ijbi is the linear predictor, β is a p×1 vector of unknown regression

parameters, x′

ij is the jth row of the ni×p matrix of fixed covariates Xi, and z′ij is

the jth row of Zi, the ni×q matrix of fixed covariates for the q×1 vector of random

effects bi. The link is said to be the canonical link when θ(ηij) = ηij. Without

loss of generality, we assume that τ = τ0, where τ0 is known, as τ0 = 1 in logistic

and Poisson regression. Hence, we write c(y, τ0) = c(y) and f(yij|β, bi, τ0) =

f(yij|β, bi) in (2.1.1). Furthermore, we assume throughout that bi ∼ Nq(0, D),

where D is a q × q unknown covariance matrix. If we have complete data, and

letting y = (y11, . . . , yNnN
)′, X = (X ′

1, . . . , X
′

N )′, Z = diag(Z1, . . . , ZN ), and

b = (b′1, . . . , b
′

N )′, then the likelihood based on N subjects for the GLMM is

given by

f(y, b|β,D) =

N∏

i=1

ni∏

j=1

f(yij|β, bi) f(bi|D) .

Inference is based on the marginal likelihood of (β,D) with the random

effects integrated out. This is given by

f(y|β,D) =

∫

RNq

f(y, b|β,D) db , (2.1.2)
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where RNq denotes the Nq-dimensional Euclidean space. Thus, even with com-

plete data, the likelihood function involves very high-dimensional integration,

and in general, (2.1.2) does not have a closed form. Only in certain special cases

with certain link functions can the random effects be integrated out. When some

components of y and/or X are nonignorably missing, estimation based on the

observed data likelihood becomes even more complex. Two additional integra-

tions over the missing response and covariate data are needed, and a missing data

mechanism, as well as a model for the covariates, must be introduced. There-

fore, we present an MCEM algorithm that makes estimation of the parameters

in GLMMs with nonignorable missing response and covariate data feasible.

2.2. Estimation with nonignorable missing response and covariate data

We combine methodologies put forth in previous papers and propose

a method for likelihood-based inference in GLMMs with nonignorable missing

response and covariate data. The method can accommodate missing discrete re-

sponses, as well as missing covariates that are either discrete or continuous, and

time-varying. This extension presents numerous modeling and computational

challenges. The missing data mechanism depends on both the missing responses

and covariates, and the missing covariate distribution must be able to accommo-

date both discrete and continuous longitudinal variables. As shown above, the

random effects cannot be eliminated easily in a general GLMM, so they must be

accounted for in estimation. We emphasize that the model is very general and

can accommodate any GLMM with nonignorable missing response and covariate

data.

Under selection modeling, a parametric model for the missing data mecha-

nism conditional on potentially missing values is incorporated into the complete

data log-likelihood. As in Stubbendick and Ibrahim (2003), we let ri = (ui, vi)
′,

and we define the missing data mechanism as the distribution of the (ni+nip)×1

random vector ri, where uij = 1 if yij is missing, 0 otherwise, and vijk = 1 if xijk

is missing, 0 otherwise, i = 1, . . . , N , j = 1, . . . , ni, k = 1, . . . , p. This distribu-

tion is indexed by the parameter vector φ and is a multinomial distribution with

2ni+nip cell probabilities. Hence, the complete data density for subject i is given

by

f(yi, Xi, bi, ri|β, α,D, φ) = f(yi|β,Xi, bi)f(Xi|α)f(bi|D)f(ri|φ, yi, Xi) . (2.2.1)

We assume throughout that the distributions of Xi and ri do not depend on

bi and, in this sense, we do not consider the most general nonignorable missing

data mechanisms but rather a smaller class of nonignorable missing data mech-

anisms in which the the probability of missingness can only depend on yi, Xi, or
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both. We specify the distributions for Xi and ri via a sequence of one-dimensional

conditional distributions (see Stubbendick and Ibrahim (2003)) and approximate

a correlation structure that would be induced by the inclusion of random effects.

We also assume that the columns of Zi are a subset of the fixed and observed

columns of Xi, so Zi will be suppressed when writing out conditional distribu-

tions. This is a reasonable assumption, since Zi is usually the design on time.

Hence, the complete data log-likelihood based on (2.2.1) is given by

l(γ) =

N∑

i=1

log [f(yi|β,Xi, bi)]+log [f(Xi|α)]+log [f(bi|D)]+log [f(ri|φ, yi, Xi)] ,

where γ = (β, α,D, φ) denotes all of the parameters. Estimation of (β,D) is of

interest, with (α, φ) being viewed as nuisance parameters.

For ease of exposition, write yi = (ymis,i, yobs,i), where ymis,i is the si ×

1 vector of missing components of yi. Also, write Vec(Xi) = (xmis,i, xobs,i),

where xmis,i is the wi × 1 vector of missing components of Xi, and xobs,i is

the (nip−wi)× 1 vector of observed components of Xi. Assuming arbitrary and

nonmonotone patterns of missing data in yi and Xi means that some permutation

of the indices of yi and Vec(Xi) can be written as (ymis,i, yobs,i) and (xmis,i, xobs,i),

respectively. The E-step of the EM algorithm consists of calculating the expected

value of the complete data log-likelihood given the observed data and current

parameter estimates. Since bi is also unobserved, we can view it as missing data

and integrate over it in the E-step. Thus, the E-step for the ith observation at

the (t + 1)st iteration is

Qi(γ|γ
(t))

= E[l(γ; yi, Xi, bi, ri)|γ
(t), yobs,i, xobsi

, ri]

=

∫∫∫
log[f(yi|β,Xi, bi)]f(bi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dbidymis,idxmis,i

+

∫∫∫
log[f(Xi|α)]f(bi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dbidymis,idxmis,i

+

∫∫∫
log[f(bi|D)]f(bi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dbidymis,idxmis,i

+

∫∫∫
log[f(ri|φ, yi, Xi)]f(bi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dbidymis,idxmis,i,

(2.2.2)

where γ(t) = (β(t), α(t), D(t), φ(t)) and f(bi, ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri) rep-

resents the conditional distribution of the missing data given the observed data

and the current parameter estimates. Note that f(Xi|α) can be factored as
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f(xmis,i|α, xobs,i)f(xobs,i|α), and since f(xobs,i|α) does not depend on any of the

unobserved quantities, it is fixed and will not affect the E- or M-step. Hence, the

completely observed covariates do not need to be modeled, and f(Xi|α) can be

replaced with f(xmis,i|α, xobs,i).

We can use the MCEM algorithm given by Wei and Tanner (1990) to eval-

uate (2.2.2) at the (t + 1)st iteration of EM. To do this, we need to generate a

sample from

[bi, ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri]

for each i. This can be accomplished using the Gibbs sampler by sampling from

the following complete conditionals:

[bi|γ
(t), yobs,i, ymis,i, xobs,i, xmis,i, ri] ∝ [yi|β

(t), Xi, bi] [bi|D
(t)] , (2.2.3)

[ymis,i|γ
(t), yobs,i, xobs,i, xmis,i, bi, ri] ∝ [ri|φ

(t), yi, Xi] [yi|β
(t), Xi, bi] , (2.2.4)

[xmis,i|γ
(t), yobs,i, ymis,i, xobs,i, bi, ri] ∝ [ri|φ

(t), yi, Xi] [yi|β
(t), Xi, bi]

×[xmis,i|α
(t), xobs,i] . (2.2.5)

Note that [ri|φ
(t), yi, Xi] will be log-concave in xmis,i if each [rij|φ

(t), yi, Xi]

is taken to be either a logistic or probit regression model, due to the interchange-

ability of the covariates and regression coefficients arising from the structure of a

GLM (i.e., the density for any GLM depends on the covariates only through ηi =

Xiβ, see Ibrahim, Lipsitz and Chen (1999)). For the same reason, [yi|β
(t), Xi, bi]

will be log-concave in the components of xmis,i and bi, and since f(bi|D
(t)) is

a normal density, it will be log-concave in bi. Finally, [xmis,i|α
(t), xobs,i] will

be log-concave in the components of xmis,i if each [xmis,ijk|α
(t), xobs,i] is one

of many exponential family distributions. Log-concavity in the outcome vari-

able is a property of most continuous distributions in the exponential family (see

Stubbendick and Ibrahim (2003)). Thus, the products on the right side of (2.2.5)

and (2.2.3) are composed of log-concave densities, and since the sum of the logs

of log-concave densities is a concave function, the Gibbs sampler along with the

adaptive rejection algorithm of Gilks and Wild (1992) can be used to sample

from the complete conditionals. For the missing discrete responses and covari-

ates, the log-concavity property does not apply and rejection sampling does not

need to be done. One can simply sample directly from the appropriate discrete

distribution.

Let ai1, . . . , aimi
be a sample of size mi from the joint distribution of

[bi, ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri] obtained via the Gibbs sampler in conjunction

with the adaptive rejection algorithm as described above. Note that each aik will

be a (q + si + wi) × 1 vector for k = 1, . . . ,mi and that each aik depends on the
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iteration number which is suppressed. Also, let b
(k)
i be a vector composed of the

first q components of aik, let y
(k)
i = (y

(k)
mis,i, yobs,i), where y

(k)
mis,i is composed of

the next si components of aik, and let Vec(X
(k)
i ) = (x

(k)
mis,i, xobs,i), where x

(k)
mis,i

is composed of the last wi components of aik. The E-step for the ith observation

at the (t + 1)st iteration can now be written as

Qi(γ|γ
(t)) =

1

mi

mi∑

k=1

log [f(y
(k)
i |β,X

(k)
i , b

(k)
i )] +

1

mi

mi∑

k=1

log [f(x
(k)
mis,i|α, xobs,i)]

+
1

mi

mi∑

k=1

log [f(b
(k)
i |D)] +

1

mi

mi∑

k=1

log [f(ri|φ, y
(k)
i , X

(k)
i )] ,

and the E-step for all N observations is given by Q(γ|γ (t)) =
∑N

i=1 Qi(γ|γ
(t)).

Note that for each subject, each (bi, ymis,i, xmis,i) gets filled in by a set of

mi values, each contributing a weight of 1/mi. Thus, we are essentially us-

ing the EM by method of weights which was introduced by Ibrahim (1990).

A slight difference here is that instead of using exact weights for discrete co-

variate values, we sample all missing values and approximate the weights by∑mi

1 I(covariate pattern j)/mi, where I is an indicator variable. We have writ-

ten the E-step in its most general form. In most applications, one would set

mi = m for all i. However, one can also let m vary with each EM iteration.

Wei and Tanner (1990) recommend increasing m as the current approximation

moves closer to the true maximizer.

The resulting M-step is now a complete data maximization problem and is

straightforward to compute. The score vector is composed of the first derivatives

of Q(γ|γ(t)) with respect to each parameter in γ, and the Hessian matrix is simply

the matrix of the second derivatives of Q(γ|γ (t)). That is,

Q̇(γ | γ(t)) =

N∑

i=1

Q̇i(γ | γ(t)) =

N∑

i=1

1

mi

mi∑

k=1

∂l(γ; yobs,i, xobs,i, aik, ri)

∂γ
,

Q̈(γ | γ(t)) =

N∑

i=1

Q̈i(γ | γ(t)) =

N∑

i=1

1

mi

mi∑

k=1

∂2l(γ; yobs,i, xobs,i, aik, ri)

∂γ∂γ′
.

The complexity of estimation usually depends on the structure of D, but the

estimation of D, as well as of β, α and φ, corresponds to a complete data maxi-

mization problem. In principle, one can use any existing complete data software

to obtain the estimates.

To obtain the asymptotic covariance matrix of γ̂, the estimate of γ at EM

convergence, one can theoretically use the method of Louis (1982). The matrix
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of second derivatives of Q(γ̂|γ̂) will be block diagonal in β, D, α, and φ, since the

parameters are distinct. However, the method requires a large number of deriva-

tives, and the observed information matrix must be inverted. Computationally,

this can be extremely difficult and possibly numerically unstable, especially with

a large number of nuisance parameters. In addition, some error is introduced

by Gibbs sampling. For these reasons, Stubbendick and Ibrahim (2003) used

a bootstrap algorithm for obtaining standard errors of the parameters. Their

method, however, does not require sampling of the random effects which can be

very time-consuming and requires adequate storage space. A simpler variance

estimation method that can be used in the EM context has been proposed by

Goetghebeur and Ryan (2000). They impute possible values for the missing data

upon convergence of the EM algorithm. Each imputed data set yields naive point

and variance estimates for the parameters of interest. The variance of the EM

estimator can be found as a weighted sum of the mean of the imputation vari-

ances and the empirical variance of the imputation point estimates with weights

1 and (1 + 1/b), respectively, where b is the number of imputations. Hence, for

our model, variance estimation would proceed as follows.

(1) Obtain γ̂ by running the EM algorithm until convergence.

(2) Using γ̂, impute one value for each missing response, covariate, and ran-

dom effect (i.e., take one sample from [bi, ymis,i, xmis,i|γ̂, yobs,i, xobs,i, ri] after

a burn-in).

(3) Obtain parameter estimates and variances based on the information matrix

as if one has complete data.

(4) Repeat steps (2) and (3) b times.

(5) Obtain the final variance estimates as: (mean of the imputation variances)

+ (1+1/b)(empirical variance of the imputation point estimates).

3. The Multivariate Probit Model

For the general GLMM, we have shown that the MCEM algorithm is a

very powerful and necessary tool for evaluating the E-step given in (2.2.2). The

method, however, may not be computationally feasible if q, si, and/or wi are

large. In some cases, there may be a very large number of variables to sample in

the Gibbs sampler. A computational explosion arises when the random effects

need to be sampled in addition to the missing responses and covariates, and

there may not be enough storage space on most computers. Also, sampling of

the random effects may result in a high degree of autocorrelation that can cause

problems in the Gibbs sampler and lack of convergence. Thus, while the model

is very general, it does have some potentially major computational drawbacks.
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For these reasons, we propose a marginal model for correlated binary re-

sponses that does not involve random effects and avoids many of the issues men-

tioned above. By marginal, we mean that the expected response is modeled

conditional only on the covariates, not on other responses or the random effects.

The basic premise of marginal models is to make inferences about population

averages. The method, however, is only applicable to situations in which the

binary outcomes can be described in terms of a correlated Gaussian distribution

for latent variables that are manifested as discrete variables through a threshold

specification. We also assume that the covariates are random variables that come

from a discrete distribution with finite range. Nevertheless, both the responses

and covariates can be nonignorably missing and may follow nonmonotone pat-

terns of missingness. Such situations commonly arise in longitudinal studies, and

this method may be preferable to the general GLMM described in Section 2.

3.1. Model and notation

Chib and Greenberg (1998) propose a convenient formulation of the multi-

variate probit model in terms of Gaussian latent variables. Let yij denote a bi-

nary response for the ith subject at the jth occasion, i = 1, . . . , N , j = 1, . . . , n,

and let yi = (yi1, . . . , yin)′ denote the collection of responses for the ith subject.

Also, let zi = (zi1, . . . , zin)′ denote an n-variate normal vector with distribu-

tion zi ∼ Nn(Xiβ,Ω), where Xi = diag(x′

i1, . . . , x
′

in) is an n × p matrix of fixed

discrete covariates with finite range, p =
∑n

j=1 pj, β = (β1, . . . , βn)′ is a p × 1

unknown parameter vector, and Ω = {ωjk} is an unknown correlation matrix. It

is important to note that Ω must be in correlation form for identifiability reasons.

A parameterization in terms of covariances is not likelihood identified (see Chib

and Greenberg (1998, p.348)). If we let yij = I(zij > 0), j = 1, . . . , n, where

I(A) is the indicator function of the event A, then the probability that Yi = yi

conditional on Xi, β, and Ω is given by

pr(Yi = yi|β,Ω, Xi) ≡ f(yi|β,Ω, Xi) =

∫

Bin

· · ·

∫

Bi1

φn(zi|Xiβ,Ω) dzi ,

where φn(zi|Xiβ,Ω) is the density of an n-variate normal distribution with mean

vector Xiβ and correlation matrix Ω and

Bij =

{
(0,∞), if yij = 1,

(−∞, 0], if yij = 0.

Note that Bi = (Bi1, . . . , Bin)′ depends only on yi and not the parameters.

Chib and Greenberg (1998) use this form of the multivariate probit model and
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show how the MCEM algorithm can be used for maximum likelihood estimation

with complete data by sampling the latent normal data.

3.2. Estimation with nonignorable missing response and covariate data

In the presence of nonignorable missing response and covariate data, we

introduce a parametric model for the missing data mechanism and incorporate

it into the complete data log-likelihood. Again, we let ri = (ui, vi)
′, where

uij = 1 if yij is missing, 0 otherwise, and vijk = 1 if xijk is missing, 0 otherwise,

i = 1, . . . , N , j = 1, . . . , n, k = 1, . . . , p. The complete data density for subject i

is given by

f(yi, zi, Xi, ri|β,Ω, α, φ) = f(yi, zi|β,Ω, Xi) f(Xi|α) f(ri|φ, yi, Xi) .

Estimation of β, and possibly the parameters of Ω, is of interest with α and

φ being viewed as nuisance parameters. We write yi = (ymis,i, yobs,i), where

ymis,i is the si × 1 vector of missing components of yi, and we write Vec(Xi) =

(xmis,i, xobs,i), where xmis,i is the wi × 1 vector of missing components of Xi,

and xobs,i is the (np − wi) × 1 vector of observed components of Xi. Since we

have unobserved data, (zi, ymis,i, xmis,i), we use the EM algorithm to compute

the maximum likelihood estimates, and the E-step for the ith observation at the

(t + 1)st iteration is given by

Qi(γ|γ
(t)) = E[l(γ; yi, zi, Xi, ri)|γ

(t), yobs,i, xobsi
, ri]

=

∫∫∫
log[f(yi, zi|β,Ω, Xi)]f(zi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dzidymis,idxmis,i

+

∫∫∫
log[f(Xi|α)]f(zi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dzidymis,idxmis,i

+

∫∫∫
log[f(ri|φ, yi, Xi)]f(zi, ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)dzidymis,idxmis,i

≡I1 + I2 + I3 ,

where γ(t) = (β(t),Ω(t), α(t), φ(t)) and f(zi, ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri) repre-

sents the conditional distribution of the missing data given the observed data and

the current parameter estimates. Note that again, f(Xi|α) can be replaced with

f(xmis,i|α, xobs,i) in I2. As in Stubbendick and Ibrahim (2003) and the previous

section, we specify the distributions of f(xmis,i|α, xobs,i) and f(ri|φ, yi, Xi) via a

sequence of one-dimensional conditional distributions.

We write

f(zi, ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri)

= f(zi|γ
(t), yi, Xi, ri)f(ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri)
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and rewrite I1 as

I1 =

∫∫∫
log[f(yi, zi|β,Ω, Xi)] f(zi|γ

(t), yi, Xi, ri)dzi

×f(ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri)dymis,idxmis,i.

Note that

f(yi, zi|β,Ω, Xi) = f(yi|β,Ω, Xi, zi) f(zi|β,Ω, Xi)

= I(zi ∈ Bi) f(zi|β,Ω, Xi)

so that

I1 =

∫∫∫
log[f(zi|β,Ω, Xi)]f(zi|γ

(t), yi, Xi, ri)dzi

×f(ymis,i, xmis,i|γ
(t), yobs,i, xobs,i, ri)dymis,idxmis,i.

Since f(xmis,i|α, xobs,i) and f(ri|φ, yi, Xi) do not depend on zi, we can easily

integrate out zi from I2 and I3 and rewrite these integrals as

I2 =

∫∫
log[f(xmis,i|α, xobs,i)] f(ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri) dymis,i dxmis,i

I3 =

∫∫
log[f(ri|φ, yi, Xi)] f(ymis,i, xmis,i|γ

(t), yobs,i, xobs,i, ri) dymis,i dxmis,i .

Let (y
(l)
mis,i, x

(l)
mis,i) denote response/covariate pattern l, l = 1, . . . , L, and let

z
(ml)
i denote a sample taken from

f(zi|γ
(t), y

(l)
i , X

(l)
i , ri) = f(zi|γ

(t), y
(l)
i , X

(l)
i ) ,

where y
(l)
i =(y

(l)
mis,i, yobs,i) and Vec(X

(l)
i )=(x

(l)
mis,i, xobs,i). From Chib and Green-

berg (1998),

f(zi|γ
(t), y

(l)
i , X

(l)
i )

∝ φn(zi|β
(t),Ω(t), X

(l)
i )

n∏

j=1

{I(zij > 0)I(y
(l)
ij = 1) + I(zij ≤ 0)I(y

(l)
ij = 0)} .

This is a multivariate normal density truncated to the region specified by Bi.

To sample this distribution, Geweke (1991) points out that, conditional on all

other elements of zi, the distribution of zij is a truncated normal distribution,

making the Gibbs sampler desirable. The parameters of each univariate untrun-

cated normal distribution are obtained from the usual conditional distribution

formulae, and a truncated version can be simulated by the inverse distribution
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function method (Devroye (1986)). Geweke (1991) also presents an alternative
algorithm for sampling a truncated univariate normal distribution.

The E-step for the ith observation at the (t+1)st iteration can now be written

as

Qi(γ|γ
(t)) =

L∑

l=1

wil

mi

mi∑

m=1

log [f(z
(ml)
i |β,Ω, X

(l)
i )]

+
L∑

l=1

wil log [f(x
(l)
mis,i|α, xobs,i)] +

L∑

l=1

wil log [f(ri|φ, y
(l)
i , X

(l)
i )] ,

where

wil =
f(ri|γ

(t), y
(l)
i , X

(l)
i )f(y

(l)
i |γ(t), X

(l)
i )f(x

(l)
mis,i|γ

(t), xobs,i)
∑L

l=1 f(ri|γ(t), y
(l)
i , X

(l)
i )f(y

(l)
i |γ(t), X

(l)
i )f(x

(l)
mis,i|γ

(t), xobs,i)
.

The E-step for all N observations is given by Q(γ|γ (t)) =
∑N

i=1 Qi(γ|γ
(t)).

Note that the latent variables are sampled assuming a specific response/

covariate pattern. Hence, continuous covariates would make the method com-
putationally impossible; the covariates must have a finite range. Each latent

variable sample is given a weight of wil/mi, and we sum over all possible re-
sponse/covariate patterns, L. Again, this is essentially the EM by method of

weights (Ibrahim (1990)). We have written the E-step in its most general form.

In most applications, one would set mi = m for all i, or one could also let m vary
with each EM iteration.

In the M-step of the algorithm, Q(γ|γ(t)) is maximized over γ to obtain
the new parameter vector γ(t+1). For the parameters of interest, (β,Ω), we

use the ECM algorithm (Meng and Rubin (1993)) and perform two conditional
maximizations. Specifically, we maximize Q(γ|γ (t)) over β, replacing Ω with Ω(t).

Then we replace β with β(t+1) and maximize Q(γ|γ(t)) over Ω. The procedure
for the M-step is as follows.

(i) Find φ(t+1) to maximize Qφ =
∑N

i=1

∑L
l=1 wil log[f(ri|φ, y

(l)
i , X

(l)
i )].

(ii) Find α(t+1) to maximize Qα =
∑N

i=1

∑L
l=1 wil log[f(x

(l)
mis,i|α, xobs,i)].

(iii) Find β(t+1) to minimize

Qβ =

N∑

i=1

L∑

l=1

wil

mi

mi∑

m=1

(z
(ml)
i − X

(l)
i β)′Ω(t)−1(z

(ml)
i − X

(l)
i β) ,

which yields

β(t+1) =

(
N∑

i=1

L∑

l=1

wilX
(l)′

i Ω(t)−1X
(l)
i

)−1( N∑

i=1

L∑

l=1

wil

mi

mi∑

m=1

X
(l)′

i Ω(t)−1z
(ml)
i

)
.
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(iv) Replace β(t) with β(t+1) and find Ω(t+1) to minimize

QΩ =

N∑

i=1

L∑

l=1

wil

mi

mi∑

m=1

1

2
log |Ω|+

1

2
(z

(ml)
i −X

(l)
i β(t+1))′Ω−1(z

(ml)
i −X

(l)
i β(t+1)).

For efficiency reasons, it would be preferable to resample zi from f(zi|γ
(t), y

(l)
i ,

X
(l)
i ) with β(t) replaced by β(t+1) and likewise, recalculate the weights, wil. How-

ever, improvements in efficiency need to be weighted against the additional com-

puting time that would be required.

A bootstrap algorithm may be used to obtain the covariance matrix of γ̂

(see Stubbendick and Ibrahim (2003)). Calculating the weights, however, can be

computationally intensive, and due to extensive computing times, the bootstrap

is not recommended. Alternatively, the method of Goetghebeur and Ryan (2000)

can again be used to obtain variance estimates of the parameters of interest. Let

γ̂ denote the estimate of γ at EM convergence. The estimation of the variance

of γ̂ proceeds as follows.

(1) Using γ̂, impute one value for the latent variable, zi, for each response/

covariate pattern l = 1, . . . , L (i.e., take one sample from [zi|γ̂, y
(l)
i , X

(l)
i ] after

a burn-in).

(2) Calculate the L weights using γ̂.

(3) Obtain parameter estimates and variances based on the information matrix

as if one has complete data. The formulas for β would be

β̂ =

(
N∑

i=1

L∑

l=1

wilX
(l)′

i Ω̂−1X
(l)
i

)−1( N∑

i=1

L∑

l=1

wilX
(l)′

i Ω̂−1z
(imp)
i

)

V̂ar (β̂) =

(
N∑

i=1

L∑

l=1

wilX
(l)′

i Ω̂−1X
(l)
i

)−1

,

where z
(imp)
i is the imputed value for the latent variable, zi.

(4) Repeat step (1) b times. Note that the weights will not change for different

samples of the zi’s.

(5) Obtain the final variance estimates as: (mean of the imputation variances)

+ (1+1/b)(empirical variance of the imputation point estimates).

4. Chinese Cotton Workers Data

We demonstrate the GLMM and the multivariate probit model in the pres-

ence of nonignorable missing responses and covariates using data from an envi-

ronmental study of Chinese cotton factory workers. The outcome of interest is



LIKELIHOOD-BASED INFERENCE 1157

whether or not a worker developed dyspnea, a condition involving shortness of

breath and difficulty breathing. Thus, we have a discrete response defined as 1

if the worker had dyspnea, 0 otherwise. There were 912 workers examined in

1981 that were followed up in 1986 and 1992. 14.0% of the observations were

missing in 1986 and 14.4% in 1992. The covariates of interest include an indica-

tor variable for exposure to cotton dust in the factory (exposurei, denoted 1 for

exposed, 0 for not exposed), a dichotomous variable for sex (sexi, denoted 1 for

male, 0 for female), a continuous variable for height, standardized by subtracting

the mean and dividing by the standard deviation (hgti), a continuous variable for

age, standardized (agei), a continuous variable for the number of years worked,

standardized (yrswrkij), and an indicator variable for smoking status (smokeij ,

denoted 1 for smoker, 0 for nonsmoker). Exposure, sex, height, and age were

all measured only at baseline, while number of years worked and smoking status

are time-varying. If a subject missed a response in 1986 and/or 1992, there is

also missing smoking status for that year. Number of years worked was imputed

based on baseline values. The percentage of subjects with at least one missing

observation was 23.1%, while the overall percentage of missing observations was

9.5%.

For this data, it is highly likely that both the dyspnea response and the

smoking covariate are nonignorably missing. Reasons for missing a measurement

may be related to both a subject’s dyspnea condition and his or her smoking

status. It is well known that patients sick with disease are less likely to make

scheduled follow-up visits. Also, smokers are less likely to return to have mea-

surements taken on their lungs and breathing abilities. A smoker generally does

not like to be reminded about the health of his or her lungs. Since the outcome

and covariate are simultaneously missing, we consider a missing data mecha-

nism that includes indicator variables for missingness in 1986 and 1992. That is,

ri = (ui2, ui3)
′, where

uij =

{
1, if the outcome and covariate are missing for subject i at time j,

0, otherwise,

and i = 1, . . . , 912, j = 2, 3. We construct the joint distribution for the missing

data indicators through a sequence of one-dimensional conditional distributions.

Since the missing data may depend on both the missing response and the missing

covariate, we model the missing data mechanism as

f(ri|φ, yi, Xi)

= f(ui2, ui3|φ, yi, Xi)

= f(ui3|φ3, ui2, yi3, yi2, smokei3, smokei2, exposurei, sexi, agei, yrswrki3)

×f(ui2|φ2, yi2, yi1, smokei2, smokei1, exposurei, sexi, agei, yrswrki2). (4.0.1)
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We condition the probability of observing a response/covariate in 1992 on whether

or not the response/covariate was observed in 1986. We also allow the probabil-

ity of response to depend on the values of the possibly missing outcome variable

and covariate at the current time point, their values at the previous time point,

as well as other covariates that may affect the probability of response. Each

φj, j = 2, 3, is estimated using a logistic regression model. Other missing data

mechanisms are considered in the sensitivity analyses presented in Tables 3 and

4.

We construct the joint distribution for the missing covariates also through

a sequence of one-dimensional conditional distributions. We condition smoking

status in 1992 on smoking status in 1986 and 1981, as well as other covariates

that may affect the probability of smoking. That is,

f(xmis,i|α, xobs,i)

= f(smokei2, smokei3|α, xobs,i)

= f(smokei3|α3, smokei2, smokei1, exposurei, sexi, agei, yrswrki3)

×f(smokei2|α2, smokei1, exposurei, sexi, agei, yrswrki2) . (4.0.2)

The parameter vectors α2 and α3 are also estimated using logistic regression

models. Since all other covariates are observed, they do not need to be modeled.

Other missing covariate distributions are considered in the sensitivity analyses

presented in Tables 5 and 6.

For the GLMM, we use the logit link and consider the random effects model

at time j given by

logit[E(yij |bi)] = β0 + β1exposurei + β2sexi + β3hgti + β4agei + β5yrswrkij

+β6smokeij + β7timej + bi + eij , (4.0.3)

where timej = (0, 5, 11)′ for all i, ni = 3 is the number of intended responses for

each i, p = 8, q = 1, β = (β0, . . . , β7)
′, Zi = (1, 1, 1)′ for all i, and bi is a subject

specific random effect with bi ∼ N(0, σ2
b ). For the multivariate probit model,

we let zi = (zi1, . . . , zi3) denote a tri-variate normal vector with distribution

zi ∼ N(µzi,Ω), where

µzij = β0 + β1exposurei + β2sexi + β3hgti + β4agei + β5yrswrkij + β6smokeij

+β7timej (4.0.4)

and Ω is a 3× 3 unstructured correlation matrix with parameters (ω12, ω13, ω23).

Note that alternatively, we could have used the probit link for the GLMM. How-

ever, because the expected value of yij is conditional on the random effect, the



LIKELIHOOD-BASED INFERENCE 1159

parameters in the two models would not be comparable. The multivariate pro-
bit model is a marginal model, where the parameters represent a change in the

“population-averaged” response, rather than the change in any one subject’s
expected response.

Table 1. GLMM Maximum Likelihood Estimates (MLE) and Standard Errors (SE).

Complete

Cases

SAS NLMIXED

Procedure

Nonignorable Responses

and Covariates

Variable MLE SE p-value MLE SE p-value MLE SE p-value

Intercept -2.430 0.178 <0.001 -2.428 0.184 <0.001 -2.456 0.151 <0.001

Exposure 0.607 0.158 <0.001 0.602 0.152 <0.001 0.503 0.132 <0.001
Sex -0.405 0.273 0.138 -0.391 0.256 0.127 -0.461 0.234 0.049

Height -0.097 0.115 0.399 -0.083 0.105 0.431 -0.019 0.092 0.840

Age 0.545 0.161 <0.001 0.591 0.159 <0.001 0.498 0.142 <0.001

Yrs. Worked -0.100 0.156 0.523 -0.129 0.154 0.402 -0.055 0.139 0.693
Smoke 0.289 0.232 0.214 0.249 0.215 0.248 0.330 0.197 0.094

Time 0.005 0.015 0.728 0.007 0.014 0.601 0.055 0.013 <0.001

σ2

b
1.028 0.072 <0.001 1.002 0.279 <0.001 0.804 0.054 <0.001

Table 1 presents the GLMM maximum likelihood estimates of θ = (β, σ2
b )

based on the models presented in (4.0.1), (4.0.2), and (4.0.3). Standard errors and
p-values are also given. The estimates were obtained from the MCEM algorithm

outlined in Section 2.2, and the standard errors were obtained using the method
of Goetghebeur and Ryan (2000), also presented in Section 2.2. One hundred

Gibbs samples were taken within each EM iteration, and the average of the
samples from the previous EM iteration was used as the starting value for the
current Gibbs sampler. One hundred imputations, each with a burn-in of one

hundred, were used for the standard error estimation. Table 1 also includes a
complete case analysis, which assumes the data are missing completely at random

(MCAR), as well as estimates from the NLMIXED procedure in SAS, which is
valid under MAR.

Exposure and age are highly significant in the complete case analysis, and
the results from NLMIXED are similar. Results from the nonignorable model
are somewhat different, however. The most striking difference can be seen in

the time covariate, which is highly significant in the nonignorable model, but
is insignificant in the other two models. The sex covariate is now marginally

significant, and height is much less significant. The smoking covariate is slightly
more significant, but inference does not change at an α-level of 0.05. The effect on

the estimate and inference concerning the time covariate, however, indicates the
importance of modeling the missing data mechanism and the missing covariate

distribution in the presence of missing data that may be nonignorably missing.
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Table 2. Multivariate Probit Maximum Likelihood Estimates (MLE) and
Standard Errors (SE).

Complete

Cases

MAR Responses

and Covariates

Nonignorable Responses

and Covariates

Variable MLE SE p-value MLE SE p-value MLE SE p-value

Intercept -1.184 0.072 <0.001 -1.197 0.063 <0.001 -1.213 0.059 <0.001

Exposure 0.272 0.069 <0.001 0.281 0.058 <0.001 0.265 0.059 <0.001
Sex -0.197 0.113 0.080 -0.192 0.100 0.055 -0.197 0.097 0.043

Height -0.051 0.047 0.275 -0.038 0.040 0.348 -0.028 0.040 0.490

Age 0.274 0.073 <0.001 0.295 0.065 <0.001 0.276 0.064 <0.001

Yrs. Worked -0.060 0.068 0.377 -0.069 0.065 0.286 -0.060 0.063 0.342

Smoke 0.146 0.088 0.096 0.111 0.080 0.165 0.115 0.079 0.143
Time 0.001 0.006 0.907 0.002 0.004 0.610 0.010 0.004 0.013

Table 2 reports maximum likelihood estimates of β from the multivariate

probit model based on the models presented in (4.0.1), (4.0.2) and (4.0.4). The

estimates were obtained using the EM by method of weights procedure pre-

sented in Section 3.2, and the standard errors were obtained using the method of

Goetghebeur and Ryan (2000), also presented in Section 3.2. One hundred Gibbs

samples of the latent variables were taken for each response/covariate pattern

within each EM iteration. Again, the average of the samples from the previous

EM iteration was used as the starting value for the current Gibbs sampler. The

latent variables were not resampled for estimation of Ω, the 3 × 3 correlation

matrix. One hundred imputations, each with a burn-in of one hundred, were

used for the standard error estimation. Table 2 also includes a complete case

analysis, as well as an analysis that assumes the data are MAR.

In the complete case analysis, exposure and age are highly significant, while

gender is marginally significant. Results are similar under the assumption of

MAR missingness. The nonignorable model shows some striking differences. Ex-

posure, sex, age, and time are all significant. Again, differing estimates and

inferences in the nonignorable model gives some indication that the missing data

in this study may be nonignorably missing. We note here that caution must be

used when interpreting results from nonigonrable missing data models. The para-

metric form of the assumed missing data mechanism itself is not “testable” from

the data, and thus the nonignorable modeling considered here can be viewed as

a sensitivity analysis concerning a more complicated model. Therefore, although

a model may have “passed” the tests for a certain missing data mechanism, this

does not mean that one has captured, even approximately, the correct missing

data mechanism. Further evidence for or against a specific nonignorable missing

data mechanism typically must come from external sources of information about

the data. Thus, it is very important to address the sensitivity of the modeling
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scheme to both the specification of the missing data mechanism and the missing

covariate distribution. With this in mind, we conducted sensitivity analyses for

both aspects of the model.

For the missing data mechanism sensitivity analysis, we used the covariate

distribution presented in (4.0.2) and varied the missing data mechanism. We

considered several different parameterizations for the missing data mechanism:

• MDM1: f(ui3|φ3, ui2, yi3, yi2, exposurei, sexi, agei, yrswrki3)

×f(ui2|φ2, yi2, yi1, exposurei, sexi, agei, yrswrki2)

• MDM2: f(ui3|φ3, yi3, yi2, smokei3, smokei2, exposurei, sexi, agei, yrswrki3)

×f(ui2|φ2, yi2, yi1, smokei2, smokei1, exposurei, sexi, agei, yrswrki2)

• MDM3: f(ui3|φ3, ui2, yi3, yi2, smokei3, smokei2)

×f(ui2|φ2, yi2, yi1, smokei2, smokei1)

• MDM4: f(ui3|φ3, ui2, yi3, smokei3)

×f(ui2|φ2, yi2, smokei2)

• MDM5: f(ui3|φ3, ui2, yi3, smokei3, exposurei, yi3 × exposurei,

smokei3 × exposurei) × f(ui2|φ2, yi2, smokei2, exposurei,

yi2 × exposurei, smokei2 × exposurei) .

Results from the sensitivity analysis are presented in Tables 3 and 4. In

Table 3, we see that the GLMM model is generally robust to variations in the

specification of the missing data mechanism. The estimates of the exposure effect

are similar, and the models all agree that exposure to cotton dust has a significant

effect on the probability that an individual will develop dyspnea. In addition,

all models agree that age and time are significantly associated with the outcome,

while smoking has no significant effect. Inference concerning gender at an α-

level of 0.05 does vary depending on the missing data mechanism. However, all

are marginally significant (at α=0.10), so there is some indication that females

have a higher risk of developing dyspnea. Table 4 shows that the multivariate

probit model is less robust to the specification of the missing data mechanism.

While all of the models agree that exposure to cotton dust and advanced age

significantly increase the risk of developing dyspnea, inference concerning gender

and time changes. For the original missing data mechanism, MD1, and MD2,

the probability of developing dyspnea significantly increases with time, whereas

MD3, MD4, and MD5 indicate there is no difference over time. Thus, we judge

the effect of time with caution. The results of our sensitivity analysis for the

missing data mechanism highlight the importance of gathering information on

the reasons for missingness and considering a variety of models.

We also conducted a sensitivity analysis of the missing covariate distribution.

In this case, we used the original missing data mechanism presented in (4.0.1) and

varied the parameterization of the missing covariate distribution. The following

models were considered.
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Table 3. GLMM estimates and (standard errors) from missing data mecha-

nism sensitivity analysis.

Original

MDM MDM1 MDM2 MDM3 MDM4 MDM5

Intercept
−2.456∗

(0.151)

−2.461∗

(0.155)

−2.477∗

(0.150)

−2.466∗

(0.152)

−2.456∗

(0.154)

−2.516∗

(0.159)

Exposure
0.502∗

(0.132)

0.499∗

(0.136)

0.458∗

(0.130)

0.501∗

(0.136)

0.528∗

(0.141)

0.558∗

(0.139)

Sex
−0.461∗

(0.234)

−0.419

(0.237)

−0.482∗

(0.228)

−0.446

(0.234)

−0.404

(0.235)

−0.401

(0.236)

Height
−0.019

(0.092)

−0.022

(0.095)

−0.007

(0.092)

−0.039

(0.097)

−0.050

(0.096)

−0.044

(0.097)

Age
0.498∗

(0.142)

0.493∗

(0.140)

0.473∗

(0.137)

0.500∗

(0.148)

0.538∗

(0.142)

0.508∗

(0.148)

Yrs. Worked
−0.055

(0.139)

−0.047

(0.139)

−0.034

(0.135)

−0.058

(0.144)

−0.095

(0.138)

−0.065

(0.144)

Smoke
0.330

(0.197)

0.261

(0.203)

0.327

(0.197)

0.322

(0.197)

0.270

(0.198)

0.281

(0.198)

Time
0.055∗

(0.013)

0.056∗

(0.013)

0.075∗

(0.013)

0.047∗

(0.013)

0.033∗

(0.014)

0.041∗

(0.014)

σ
2

b

0.804∗

(0.054)

0.837∗

(0.052)

0.856∗

(0.057)

0.875∗

(0.054)

0.853∗

(0.053)

0.933∗

(0.062)
∗
p < 0.05

Table 4. Multivariate Probit Estimates and (Standard Errors) from Missing

Data Mechanism Sensitivity Analysis.

Original

MDM MDM1 MDM2 MDM3 MDM4 MDM5

Intercept
−1.213∗

(0.059)

−1.222∗

(0.062)

−1.199∗

(0.061)

−1.210∗

(0.060)

−1.216∗

(0.063)

−1.216∗

(0.060)

Exposure
0.265∗

(0.059)

0.264∗

(0.056)

0.256∗

(0.057)

0.262∗

(0.059)

0.273∗

(0.059)

0.270∗

(0.059)

Sex
−0.197∗

(0.097)

−0.192

(0.101)

−0.197

(0.100)

−0.196∗

(0.098)

−0.184

(0.100)

−0.194

(0.100)

Height
−0.028

(0.040)

−0.026

(0.042)

−0.018

(0.040)

−0.029

(0.040)

−0.038

(0.041)

−0.033

(0.042)

Age
0.276∗

(0.064)

0.279∗

(0.063)

0.277∗

(0.064)

0.276∗

(0.065)

0.279∗

(0.067)

0.278∗

(0.066)

Yrs. Worked
−0.060

(0.063)

−0.062

(0.061)

−0.062

(0.062)

−0.065

(0.063)

−0.068

(0.068)

−0.066

(0.064)

Smoke
0.115

(0.079)

0.107

(0.079)

0.106

(0.080)

0.112

(0.078)

0.110

(0.080)

0.116

(0.079)

Time
0.010∗

(0.004)

0.010∗

(0.004)

0.011∗

(0.004)

0.007

(0.005)

0.003

(0.004)

0.005

(0.004)
∗
p < 0.05
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• CD1: f(smokei3|α3, exposurei, sexi, agei, yrswrki3)

×f(smokei2|α2, exposurei, sexi, agei, yrswrki2)

• CD2: f(smokei3|α3, smokei2, smokei1)

×f(smokei2|α2, smokei1)

• CD3: f(smokei3|α3, smokei2, exposurei, smokei2 × exposurei)

×f(smokei2|α2, smokei1, exposurei, smokei1 × exposurei) .

Results from this sensitivity analysis are presented in Tables 5 and 6. Again,

all of the models agree that exposure to cotton dust and advanced age are sig-

nificantly associated with a greater risk of developing dyspnea. For the GLMM,

inference concerning gender is different for CD2 and CD3, and inference concern-

ing smoking status is different for CD1. When the observed covariates are not

included in the models for the missing smoke covariates, or when we assume a

smoking/exposure interaction, gender is no longer significantly associated with

the outcome. On the other hand, when the missing smoke covariates are as-

sumed to be independent, smoking status is significant. For the multivariate

probit model, all of the models agree that females have a higher risk of develop-

ing dyspnea, but again, inference changes for the smoking covariate under CD1.

The largest differences between the models, however, can be seen in the time

covariate. Not only do inferences change, but the estimated direction of effect is

Table 5. GLMM estimates and (standard errors) from covariate distribution
sensitivity analysis.

Original

CD CD1 CD2 CD3

Intercept
−2.456∗

(0.151)

−2.462∗

(0.154)

−2.477∗

(0.152)

−2.465∗

(0.150)

Exposure
0.502∗

(0.132)

0.504∗

(0.138)

0.518∗

(0.134)

0.510∗

(0.133)

Sex
−0.461∗

(0.234)

−0.636∗

(0.234)

−0.399

(0.233)

−0.442

(0.227)

Height
−0.019

(0.092)

−0.036

(0.094)

−0.030

(0.095)

−0.032

(0.093)

Age
0.498∗

(0.142)

0.523∗

(0.145)

0.498∗

(0.140)

0.497∗

(0.139)

Yrs. Worked
−0.055

(0.139)

−0.066

(0.139)

−0.058

(0.135)

−0.057

(0.136)

Smoke
0.330

(0.197)

0.599∗

(0.201)

0.276

(0.195)

0.318

(0.193)

Time
0.055∗

(0.013)

0.052∗

(0.013)

0.052∗

(0.013)

0.053∗

(0.013)

σ
2

b

0.804∗

(0.054)

0.827∗

(0.055)

0.811∗

(0.054)

0.799∗

(0.051)
∗
p < 0.05
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Table 6. Multivariate probit estimates and (standard errors) from covariate

distribution sensitivity analysis.

Original

CD CD1 CD2 CD3

Intercept
−1.213∗

(0.059)

−1.227∗

(0.060)

−1.222∗

(0.061)

−1.225∗

(0.062)

Exposure
0.265∗

(0.059)

0.270∗

(0.058)

0.277∗

(0.058)

0.275∗

(0.058)

Sex
−0.197∗

(0.097)

−0.236∗

(0.095)

−0.197∗

(0.098)

−0.199∗

(0.099)

Height
−0.028

(0.040)

−0.047

(0.041)

−0.041

(0.041)

−0.038

(0.042)

Age
0.276∗

(0.064)

0.292∗

(0.066)

0.286∗

(0.067)

0.282∗

(0.067)

Yrs. Worked
−0.060

(0.063)

−0.079

(0.066)

−0.077

(0.066)

−0.072

(0.065)

Smoke
0.115

(0.079)

0.236∗

(0.080)

0.148

(0.084)

0.147

(0.078)

Time
0.010∗

(0.004)

−0.003

(0.004)

−0.000

(0.004)

0.001

(0.004)
∗
p < 0.05

also different. Once should exercise caution when interpreting this variable in

the multivariate probit model.

The convergence criterion for the EM algorithm was that the distance be-

tween the tth and the (t + 5)th iteration for the β parameters was less than

10−2. Since the random effects or the latent normal variables must be sampled

for each subject, a more stringent criterion will usually not be possible due to

Gibbs sampling variation. A Gibbs sample size of 1,000 per EM iteration was

used to check the sensitivity of the parameter estimates to the choice of the Gibbs

sample size, and we also considered a burn-in of 100 with a Gibbs sample size of

100 per EM iteration. Estimates from these runs were very similar to those using

a Gibbs sample size of 100 with no burn-in (results not shown). In addition, we

monitored convergence of the Gibbs sampler for the random effect by examining

the Gelman and Rubin (1992) scale reduction factors and autocorrelations for

a few subjects at various EM iterations. With a Gibbs sample size of 100 (no

burn-in), all lag-50 autocorrelations were less than ±0.2, and the quantiles of the

scale reduction factors were all near one. Realistically, convergence of the Gibbs

sampler for all random effects cannot be monitored for each subject at each EM

iteration. However, lack of convergence in the Gibbs sampler will most likely

cause lack of convergence in the MCEM algorithm, and any serious problems
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should present themselves.

5. Discussion

We have proposed methods of estimation for the GLMM and the multivariate

probit model in the presence of nonignorable missing response and covariate

data. The GLMM is very general and can be used for various types of discrete

response data when the objective is to make inferences about individuals rather

than population averages. The missing covariates can be either continuous or

discrete, and time-varying. The drawbacks to this model involve the random

effects. Gibbs sampling of the random effects may be computationally intensive,

and a high degree of autocorrelation may cause problems with convergence. Also,

it is highly likely that some models may not be identifiable for certain values of q.

Depending on the missing data pattern and the assumed model for the missing

data mechanism, certain dimensions of q may result in a very flat likelihood and

hence, a nearly nonidentified model. In addition, parameters from a marginal

model may be of interest.

As an alternative, we also present a method of estimating parameters in the

multivariate probit model with nonignorable missing responses and covariates.

This model is appropriate for correlated binary responses and discrete covariates

with finite range. The major drawback to this model, beyond its restrictions on

the type of response and covariate data, is the amount of computing time required

to calculate the weights. For our example, the weights involved computation of

a 3-dimensional integral, and most of the models took over 30 hours to achieve

convergence. Nevertheless, this model offers an alternative to the GLMM and

avoids many of the issues that arise when doing Gibbs sampling with random

effects.

We also point out that the methods use a selection modeling approach, where

the probability of missingness is conditioned on the potentially missing responses

and/or covariates. Theoretical verification of model identifiability for these types

of models is a topic of further research. Additional research on Gibbs sampling

with random effects and nonidentifiability in mixed models with missing discrete

data is also warranted. In addition, sensitivity analyses for these models cannot

be done by simply varying certain parameters in the missing data mechanism

or the missing covariate distribution. As our example shows, it is important to

consider a variety of models and examine how inferences may be affected. We

reiterate that it is important to collect as much information as possible about

the reasons for missingness, so that each model can be given appropriate consid-

eration.
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