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ABSTRACT

Progesterone is essential for endometrial receptivity and successful establishment
of pregnancy. Either an insufficient progesterone concentration or an insufficient response
to progesterone, therefore can lead to infertility and pregnancy loss. Assessment of the role
that either progesterone insufficiency or inadequate progesterone response plays in human
reproductive failure has been difficult to assess because serum progesterone concentrations
fluctuate markedly, limiting the ability to characterize sufficiency of progesterone, and
there are no highly reliable markers of endometrial function available. Recent evidence
demonstrates exquisite sensitivity of normal endometrium to very low levels of progester-
one stimulation, suggesting that progesterone insufficiency should not be a common cause
of reproductive failure. Further evidence suggests that women with endometriosis, and
possibly polycystic ovarian syndrome, have an altered progesterone response, which may
explain some of the clinical features of these disorders and supports the hypothesis that
progesterone resistance underlies some cases of human reproductive failure.
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implantation, endometriosis

Progesterone (P) is a sex steroid essential for
pregnancy and lactation produced almost entirely by
the ovarian corpus luteum (CL) and the placenta.
Normal endometrial function requires both estrogen
(E), which mediates cell growth and induction of
progesterone receptors (PR), and P, which counteracts
E stimulation and downregulates the receptors for E
and P. The normal balance achieved by sequential
actions of E and P is essential to the normal cyclic
functions of human endometrium, and disruption of
this balance is a significant factor in the pathogenesis
and/or pathophysiology of many clinical problems,
including endometriosis, infertility, abnormal bleeding,
pregnancy loss, and cancer.

The mechanisms governing P action on endome-
trium are complex, involving at least two receptor sub-
types (PR-A and PR-B), with distinct expression
patterns and functional profiles as well as other putative
P receptors, whose identity and function remain an
active area of research.1 The effects of PR-A and
PR-B are further modulated by differential expression
and activation of coregulators such as SRC1–3.
Furthermore, many of P’s important effects on endome-
trium are indirect, via paracrine and autocrine factors.

Although mechanistically complex, P is essential
for successful embryo implantation and pregnancy main-
tenance. Therefore, levels of circulating P below some
undefined threshold or resistance of endometrium to
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otherwise adequate P will result in infertility or preg-
nancy loss. This concept of insufficiency of P action on
endometrium comprises the pathophysiological concept
of luteal phase deficiency. However, whether sufficiently
low P or sufficiently resistant endometrium is encoun-
tered clinically remains to be demonstrated definitively.
In this article, we focus on the role of sex steroids in
endometrial function in women and review the evidence
for P insufficiency versus P resistance, using clinical
examples that illustrate the importance of appropriate
P action.

HISTORY
The importance of sex steroids was first recorded by
Aristotle in 350 BCE when he reported the dramatic
changes in the cockerel following removal of the gonads.
Berthold2 transplanted testes into a capon and demon-
strated comb growth. In the 1920s, Allen and Doisy
demonstrated that follicular fluid from porcine ovaries
was capable of inducing estrus in the female.3 Hisaw and
colleagues showed how these extracts also inhibited
ovulation4 and induced deciduomata formation.5 Allen
and Corner performed classic studies on the requirement
for CL extract on secretory transformation and preg-
nancy maintenance.6 These early studies identified what
would later be known as estrogen and progesterone, and
they illustrated their complex counterregulatory func-
tions in reproduction.

The subsequent discovery of specific receptors for
E and P allowed researchers to define tissue sensitivity in
molecular terms.7–10 For the most part, nontarget tissues
lacked receptors, and responsive tissues expressed and
regulated the levels of these proteins. Recognition of
hormone effects in cell types adjacent to those with
receptors led to the appreciation of paracrine effects of
steroid hormones.11–14 Further refinement of our under-
standing of sex hormone effects came with the develop-
ment of the estrogen receptor (ER) null-mutation
‘‘knockout’’ mouse,15,16 which ironically was published
the same year that a human subject was identified who
lacked functional ER-a.17 Subsequent development of
the PR knockout18 further facilitated our ability to
assign specific actions to each steroid hormone.19,20

The availability of cells derived from each type of mouse
provided confirming evidence regarding the paracrine
actions of both E21 and P22 in the mouse uterus.

Clinical examples of deficiency of sex steroids or
their receptors have also been well described. For exam-
ple, inactivating mutations of the androgen receptor in
the XY fetus results in a female appearance.23,24

Although deficiency of functional receptors for the other
sex steroids are exceedingly rare,17 deficiency of E itself
forms the basis for the wide range of disorders seen in
rare women with deficient aromatase enzyme activity
and all women at menopause. P deficiency states also

occur frequently in women with anovulation.25–28 More
subtle defects in P deficiency have long been postulated
as a root cause of infertility and pregnancy wastage.29,30

More recently, deficiencies in P action rather than P
amount have been suggested as a cause of infertility
and pregnancy loss associated with the diagnosis of
endometriosis.31

PROGESTERONE AND ENDOMETRIAL
PROTEINS
The action of P in the endometrium is predicated on E
priming. In response to E, endometrial cells acquire the
PRs that increase in number throughout the proliferative
phase.32 P counters the action of E by reducing E
receptors and inducing E-metabolizing enzymes. At
the same time, P limits its own direct effect on endo-
metrial epithelium but not stroma by greatly limiting
expression of PR. These disparate effects on the stroma
and epithelium drive the endometrium to a state of
receptivity to embryo implantation. In nonconception
cycles, further effects of P prepare the endometrium for
menstruation and with P withdrawal, orchestrate the
induction of a myriad of proteins responsible for diges-
tion and shedding of the spent endometrium.

These changes in endometrial response to P have
been recently characterized using advanced molecular
microarray techniques.33,34 Such advancements could
not have occurred, however, without the many sentinel
studies on endometrial proteins that preceded them.
Two of the first major endometrial proteins discovered
were insulinlike growth factor-binding protein 1
(IGFBP-1, also known as placental protein 12) and
glycodelin (also known as progesterone-associated en-
dometrial protein or placental protein 14). Glycodelin
and IGFBP-1 represent the most abundantly expressed
proteins in response to P, and both were initially but
erroneously thought to originate from the placenta.35–43

As the name implies, IGFBP-1 binds the insulinlike
growth factors, IGF-I and IGF-2, and can alter the
growth factors’ interactions with cognate receptors
IGFR1 and IGFR2.44–46 IGFR1 and 2 are present in
the epithelial compartment with maximal expression
during the late secretory phase extending into preg-
nancy.47–49 IGFBP-1 is a major secretory product of
the decidua in response to P,50–52 increased by epidermal
growth factor (EGF) but inhibited by insulin. IGFBP-1
inhibits mitosis in endometrial stromal cells,53 and it
may have a role in embryo attachment as well as
invasion.54

Glycodelin is maximally produced during the
midsecretory phase in response to P. Aside from being
a marker of P action,55–57 glycodelin likely plays a role in
preventing late fertilization of oocytes,58 contributes to
the immune response in pregnancy,59–61 and plays a role
in epithelial differentiation.60 Glycodelin is associated
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with pinopode structures on receptive endometrium,
and its expression is associated with downregulation of
the PR-B isoform.61 Although the physiological roles
for glycodelin and an understanding of its relative
importance remains incomplete, the usefulness of this
molecule to scientists lies in its close association with
the actions of P, providing a noninvasive measure of
P activity during the menstrual cycle.

Complement proteins represent a major group of
proteins that appear in the endometrium at the time of
peak P. We and others have demonstrated that expres-
sion of complement C3 subunit, factor B, and decay
accelerating factor are all associated with the midsecre-
tory phase endometrium, suggesting an important role
for the alternative pathway during this cycle phase.62–65

Integrins, osteopontin, and CD44, also expressed during
this time in the cycle,66,67 have been implicated as having
a role in limiting complement activation.68–70 Thus,
under physiological conditions, the effects of comple-
ment on the embryo are likely muted, but under certain
conditions such as endometriosis, increased complement
expression has been noted.71–73 Increased complement
activation is associated with fetal wastage in animal
models, leading some to speculate that this may be an
underlying cause of pregnancy loss.74–76

A recent series of reports highlighted the expres-
sion of a class of innate immune receptors, the Toll-like
receptors (TLRs), in the endometrium.77–80 Interest-
ingly, one TLR, TLR3, appears to be limited largely to
the epithelial layer of endometrium and cycle regulated
in its expression with maximal expression during the mid
and late secretory phases. The role of TLR3 at this time
remains unclear, although it may simply be associated
with increased innate immune activity to compensate for
the relatively muted adaptive immune response. Inter-
estingly, activation of TLR3 leads to a very robust
expression of type I interferons, which are known to be
important in embryo implantation of ruminant species,
suggesting a potential role for TLR3 in the implantation
process.

PROGESTERONE AND UTERINE
RECEPTIVITY
P is absolutely essential for pregnancy as demonstrated
by the early removal of the CL81 or by administration of
PR antagonists such as RU-486 (mifepristone).82,83

During the early phases of the secretory phase, when
ERs and PRs are plentiful, the endometrium differ-
entiates into a secretory tissue, in response to both E
and P.84 By the midsecretory phase, ER abundance falls
in all compartments, PR B isoform is suppressed, and the
stroma becomes the focus of P action. This loss of E
action may determine which proteins are expressed in
the epithelium,85 and P-induced paracrine factors from
the stroma also dictate epithelial gene expression.86

What is clear from DNA microarray studies is that the
receptive endometrium is a specialized structure that is
both secretory and differentiated. Cell adhesion mole-
cules (CAMs) are increased at the apical surface and
loosened at the lateral attachments. Underlying stroma
becomes ‘‘epithelialized’’ in preparation for trophoblast
invasion. Specialized changes in the luminal epithelium
provide an opportunity for embryo–endometrial inter-
actions. None of these changes occur in the absence
of P.

Changes in the extracellular matrix (ECM)
have been described throughout the menstrual cycle87

extending into pregnancy,88 reflecting the role of
CAMs in embryo–endometrial interactions.89 Integ-
rins are cell-adhesion molecules that serve as receptors
for extracellular matrix.90 Dynamic changes occur in
integrin expression during the menstrual cycle and into
pregnancy.91–94 The three amino acid motif arg-
gly-asp (RGD) was implicated in implantation by
several investigators.95–97 RGD is present on many
ECM ligands in the receptive endometrium, including
osteopontin, IGFBP-1, and fibronectin.98–101 RGD
peptides were shown effectively to block implantation
or attachment of embryos in vitro, suggesting a critical
role of integrins and related ligands to endometrial
receptivity.100–104

P actively blocks the actions and effectiveness of
E in the endometrium.105 Aside from downregulation of
E receptor, P induces 17b-hydroxysteroid dehydrogen-
ase-type 2 (HSD17b2) in endometrium that mediates
the conversion of estradiol to the less active estrone.106

Thus both local E concentration and response are decre-
ased. A loss of E action appears critical to the acqui-
sition of endometrial receptivity, not only in humans, but
among most, if not all, placental mammals.

In women with endometriosis107 or polycystic
ovary syndrome (PCOS),108 increased E receptor abun-
dance during the secretory phase appears to be a primary
defect, suggesting the presence of P resistance. In both
endometriosis and PCOS,109,110 deficient levels of
HSD17b have also been described. Excessive production
of E via aberrant expression of aromatase may contribute
to this imbalance noted in certain pathological states.106

Whatever the mechanism, defects in P action alter the
balance between E and P activity and likely influences
numerous other steps in the acquisition of endometrial
receptivity for embryo implantation.

P interacts with its receptor and other transcrip-
tion factors including heat shock proteins, immunophi-
lins, and coactivators that facilitate gene expression in
target tissues. The immunophilin FKBP52 is a chaper-
one protein for PR and is critical to implantation in the
mouse.111,112 Intriguing studies from the baboon
model suggest that reduced FKBP52 is associated
with endometriosis. This defect may explain in part
the P resistance associated with this disease.31
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PROGESTERONE IN THE CLINIC
Although P is essential for pregnancy, the amount of
circulating or bioavailable P that is required is unknown.
Normal standards of midluteal P have been assigned
based on population studies, but the lower limits of P
have only recently been explored.113 In this section we
review the many facets of P deficiency and highlight the
obstacles to a better understanding of what P deficiency
actually implies.

Luteal Phase Defect

Luteal phase defect (LPD) is a disorder thought to be
characterized by insufficient P production resulting in
inadequate endometrial receptivity leading to infertility
and pregnancy wastage. For many years, the histological
appearance of the endometrium was assumed to be a
sensitive measure of P action and thus endometrial
function. The histological changes in the endometrium
in response to ovulation were first examined by Rock and
Bartlett in 1937.114 The hypothesis that alterations in
endometrial histology would reflect functional capacity
and thus fertility was first hypothesized by Georgeanna
Seegar Jones in 1949.115 The criteria that defined the
chronological dating of secretory endometrium was
published a year later in 1950, in what has become the
most cited paper in gynecologic literature.116 The endo-
metrial biopsy was proposed as the most direct approach
for the assessment of P effect. From the standpoint of
the embryo, the end result and cumulative effects of P are
manifest in an endometrium that is functional and ready
to accept the nascent embryo.

Based on the Noyes criteria, endometrial dating
had been touted to be good predictive value for chrono-
logical dating.117,118 Unfortunately, the timing of the
endometrial biopsy has changed over time; late endo-
metrial biopsies were advocated prior to the availability
of urinary ovulation predictor kits, whereas earlier biop-
sies are now advocated to maintain proximity to the
window of implantation.119 Timing of the biopsy ap-
pears to alter the degree of variability in histological
dating appearance, and the variability of histological
dating has been shown to be so large that accuracy and
reliability are not sufficient to justify the use of endo-
metrial dating as a bioassay for P action.120–123 Thus,
despite 60 years of study, the usefulness of endometrial
histology for the assessment of infertility remains in
doubt.

Because the theory of LPD centers on inadequate
P production, it stands to reason that low circulating P
concentrations at the midluteal phase might be consid-
ered the sine qua non for the diagnosis of LPD.
Certainly a myriad of studies have examined the use of
serum P in the evaluation of LPD.124 Using frequent P
measurements, researchers have suggested that inte-
grated P levels correlate with the quality (histology) of

the secretory endometrium.125–128 Abraham suggested
that three determinations of P >15 ng/dL was sufficient
to exclude LPD.127 Others suggest that single determi-
nations of P4 are sufficient.128 Levels as low as 3 ng/mL
or as high as 10 ng/mL have been proposed. However, P
is secreted in pulses and cleared relatively rapidly, result-
ing in large excursions in serum concentration.129 Thus,
one or even a few measurements of serum P are not likely
to be a reliable determinant of endometrial function.
Furthermore, most of the evidence has rested on changes
in endometrial histology, which, as discussed earlier,
lacks sensitivity and specificity as tests of fertility.

If P insufficiency exists, alterations in CL func-
tion would likely be a cause.130 The functional capacity
of the CL may depend on the follicle from which it was
derived, and poor folliculogenesis could be a result of a
poor quality oocyte and/or pituitary problems. Alterna-
tively, delayed implantation due to endometrial dysfunc-
tion could lead to a delay in human chorionic
gonadotropin signaling to the waiting CL. In this case,
a perfectly normal CL may produce inadequate P by
virtue of a late rescue from a tardy embryo. Such a
mechanism appears quite likely based on population
studies involving the timing of implantation.131 Any
systemic disorder that alters ovulatory or endometrial
function could potentially alter the quality of the fol-
licular maturation, CL formation, CL rescue, or acquis-
ition of uterine receptivity.

Other endocrine conditions may also impact on
reproductive function. Hyperprolactinemia is an ex-
ample of a systemic disorder linked to LPD. Wenner
was the first to suggest the association between hyper-
prolactinemia and LPD.132 Subsequently, other au-
thors have reported the finding of a shortened or
inadequate luteal phase in hyperprolactinemia.133–138

Hypothyroidism may likewise alter the hypothalamic-
pituitary-ovarian axis and can be associated with ele-
vated prolactin levels,139 leading to reduced P action
and possibly LPD.140 Elevated androgen levels, such
as those seen in PCOS, have been associated with
LPD,141 suggesting a mechanism for the poor repro-
ductive performance noted in this diagnosis.141 Even
recreational running may lead to evidence of P
insufficiency.142

As can be appreciated from the preceding dis-
cussion, problems with investigation of LPD include
potential heterogeneity and overlap with other repro-
ductive disorders. Furthermore, normal and abnormal
individuals may be intrinsically different, so that a
response to a defined amount of P in one woman may
be significantly less than the response in someone else.
To address the heterogeneity as well as the imprecision
of serum P measurements, we recently studied normal
fertile controls in an artificial hormonally controlled
cycle.113 These normal individuals maintained normal
midsecretory endometrial histology as well as expression
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of selected marker genes despite steady-state levels of
P of �4 ng/mL.

Despite the lack of apparent difference between
normal and low P in otherwise normal women in our
protocol, P supplementation has proven benefit for
fertility. During in vitro fertilization (IVF) cycles,
P supplementation increases clinical pregnancy rates,
especially within cycles using gonadotropin-releasing
hormone analogues.143–145 Therefore, lowered P con-
centrations in IVF patients likely results in lowered
fertility, and P supplementation restores fertility.

Because P levels approaching the lowest of those
seen in ovulatory women supports normal endometrial
structural and functional maturation in normal individ-
uals, but infertility patients appear to benefit from higher
P concentrations, it is possible that it is a difference in P
response that determines LPD, rather than the absolute
P concentration (Fig. 1).146 The explanation may be as
simple as reduced or altered PR expression or as complex
as epigenetic changes in specific genes. In an early study
by McRae and Lyttle, steroid receptors for ER and PR
were initially found be similar between women with
normal cycles and those with LPD.147 Others report
that both ER and PR levels are lower in LPD and that
the PR:ER ratio is a reliable indicator of LPD.148 More
recent work in this area is extensively covered elsewhere
in this issue of Seminars in Reproductive Medicine.

Clearly, there remains much to study in this new area
of P resistance.

As can be well appreciated from the preceding
discussion, LPD, outside of an abnormally short luteal
phase, is impossible to diagnose accurately with currently
available clinical tools. Evidence suggests that assess-
ment of circulating P is subject to difficulties in measure-
ment. Furthermore, even if those difficulties could be
obviated by frequent or integrated serum or urinary
measurements, the critical issue of differences in endo-
metrial response to P would be missed. Therefore
biomarkers, whose endometrial production is inhibited
or increased by P, are the most logical area of develop-
ment for the diagnosis of LPD.

Biomarkers of Progesterone Action

Many biomarkers of P activity have been proposed over
the years. With the availability of specific mono- and
polyclonal antibodies, immunohistochemistry was pro-
posed to supplant histological dating.148–151 The advent
of DNA microarray techniques and other advanced
molecular techniques have dramatically increased the
number of candidate biomarkers of P action.152–155

Infertility and recurrent pregnancy loss are often attrib-
utable to defects in implantation.131,156,158 Given
the role of P on maintenance of pregnancy, and the

Figure 1 Progesterone (P) actions may be blocked in women with endometriosis or polycystic ovarian syndrome (PCOS). P,

derived from the corpus luteum, acts differentially in the stromal versus epithelial cells, resulting in altered expression of several

molecules important for embryo implantation. In epithelial cells, P downregulates all estrogen receptor (ER) and progesterone

receptor (PR) forms, whereas in stromal cells, ER and PR-A are downregulated while PR-B persists. In women with PCOS or

endometriosis, some of the actions of P may be altered, leading to diminished endometrial receptivity to embryo implantation.

COUP-TFII, chicken ovalbumin upstream promoter transcription factor II; BMP, bone morphogenetic protein; DAF, decay

accelerating factor; HB-EGF, heparin-binding EGF-like growth factor; IGFBP, insulin-like growth factor-binding protein.
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importance of synchronous interactions between the
endometrium, CL, and embryo, delayed implantation
for any reason could contribute to pregnancy was-
tage.131,157 It is estimated that 50% of all pregnancy
failures during IVF cycles are due to defects in uterine
receptivity.156,159 The use of biomarkers that measure
the activity of P in the endometrium has gained favor
and provides an alternative to histological dating
alone.160–163

The first endometrial biomarkers were identified
by two-dimensional electrophoresis using a radioactive
label.164,165 Patterns of secreted histones assayed by thin
layer chromatography were reported to be potential
markers of P’s effects on the endometrium.166,167 With
the advent of specific monoclonal and polyclonal anti-
bodies, and immunohistochemical methods as well as
microarray technology, there are now a greatly expanded
number of biomarkers to investigate.34,163,168–174

Integrins and Cell Adhesion Molecules

Dynamic changes in integrin expression during the
menstrual cycle provide the opportunity to examine the
functional quality of the endometrium during the time of
peak P secretion.91,92 Integrins are arguably the best
characterized markers of P effect on the endometrium.
In 1992 we described both constitutive and cycle-
dependent integrin changes that framed the window of
implantation.91,92 Three integrins (a1b1, a4b1, and
avb3) are coexpressed in receptive endometrium during
the time of maximal endometrial receptivity. The avb3
integrin appears at the opening of the window of
implantation around cycle day 20 or 21 and is present
on the apical pole of the luminal epithelium correspond-
ing to the site of pinopode expression. This integrin is
regulated by EGF and EGF-related molecules, and by
the transcription factor Hoxa10.65,175,176 Of note, the
appearance of this integrin corresponds closely to the
downregulation of ERa in receptive endometrium. In
cycles where P fails effectively to downregulate ER, this
integrin does not appear normally on cycle day 20.106

Recent data also suggests that avb3 integrin associates
with osteopontin. This secreted protein also appears
around days 19 to 20, is regulated by P, and may bind
to the a v/b 3 integrin through its RGD sequence.177

Selectins/Cadherins

L-selectin is a member of the selectin family and may be
a key molecule involved in the initial attachment of the
embryo.178 The ligand for this selectin, a sialyl glyco-
protein, is P regulated and appears on the receptive
endometrium at the midluteal phase, and it is recognized
by the monoclonal antibody MECA-79. The distribu-
tion of the antigen recognized by MECA79 has now
been studied in normal cycling women during the

menstrual cycle179 and may be a clinically useful marker
of endometrial receptivity and P action.180

Another class of cell-adhesion molecules in the
endometrium is the cadherins. These are calcium-
dependent transmembrane molecules that have been
designated as E-, P,- and N-cadherins. On most normal
epithelial cells E-cadherin is involved in lateral attach-
ments between cells and regulated by intracellular cal-
cium. The link to P in endometrium is likely through the
action of calcitonin, a P-induced protein in both human
and rodent endometrium.181,182 Calcitonin functions to
increase intracellular calcium that in turn attenuates
E-cadherin expression at the time of peak P and im-
plantation.183 Another cadherin, cadherin 11, is present
in endometrial stroma and also regulated by P. This key
marker of decidualization has been proposed as a medi-
ator of endometrial–trophoblast interaction.184,185

Growth Factors

P appears to regulate other key pathways through its
influence on growth factors or cytokines. The EGF
family of growth factors and their receptors play an
important role during implantation.186,187 In the mouse
uterus, heparin-binding EGF-like growth factor (HB-
EGF) is expressed around the blastocyst during early
implantation. HB-EGF has both a soluble and trans-
membrane forms. As a transmembrane ‘‘receptor,’’ HB-
EGF could serve as an embryonic receptor through the
EGF receptor on the embryonic epithelium.188 As a
soluble factor, HB-EGF significantly improves embry-
onic development.188 HB-EGF has been implicated in
the regulation of key endometrial receptivity pro-
teins.67,189 We showed that P regulates the expression
of HB-EGF in endometrial stroma and linked its
expression to the regulation of the a v/b 3 integrin via
HOXA10 using a paracrine mechanism of action.

SUMMARY REMARKS
P action on the endometrium is essential for embryo
implantation and pregnancy maintenance. These ‘‘pro-
gestational’’ functions of P are achieved by direct and
indirect regulation of many molecules known to play
important roles in embryo implantation. At some lower
threshold of concentration, there will not be sufficient P
action on the endometrium, resulting in infertility or
pregnancy loss. Recent evidence demonstrates that in
young fertile women, the minimum P concentration
required for normal endometrial maturation is very
low, perhaps lower than that seen in ovulatory women.
This finding suggests that low P, as an isolated abnor-
mality, is not likely to be a common cause of infertility or
pregnancy loss. Recent data demonstrating altered ef-
fects of P on endometrium of women with endometriosis
suggests that resistance to some actions of P may more

10 SEMINARS IN REPRODUCTIVE MEDICINE/VOLUME 28, NUMBER 1 2010

D
ow

nl
oa

de
d 

by
: W

or
ld

 H
ea

lth
 O

rg
an

iz
at

io
n 

( 
W

H
O

).
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



commonly underlie reproductive disorders. The hypoth-
esis of P resistance as an important pathophysiological
process remains an attractive, but unproven hypothesis
with currently unclear mechanisms. However, if
the hypothesis is proven, it will open a new avenue
of approach to clinical therapies for reproductive
disorders.
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