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1 Introduction

Expected stock returns are related to the business cycle as shown in papers by Fama and

French (1989), Fama (1990), Kandel and Stambaugh (1990), and Harrison and Zhang (1999),

and others. In fact, expected returns are countercyclical: higher in recessions and lower in

booms. Much of this research has focused on identifying the cyclicality of expected returns

without attempting to explain it. ‘Standard’ models with time separable utility and exoge-

nous endowment processes tend to generate procyclical returns. This is the finding reported

in Kandel and Stambaugh (1990). This result is robust to a variety of extensions. Balvers,

Cosimano, and McDonald (1990) introduce production, and Zhang (1997) introduces hetero-

geneous agents and incomplete markets with short-sale constraints into the model examined

by Kandel and Stambaugh (1990), both finding that expected stock returns remain procycli-

cal.

Campbell and Cochrane (1999) show that relaxing time separability in preferences can

generate countercyclical returns. The mechanism they propose is a slow-moving, non-linear

external habit. The representative agent’s utility is now a function of current private con-

sumption as well as current and past aggregate consumption. Since the habit is external,

individual agents do not consider the effects of current consumption on future utility. The

set-up is similar in spirit to Abel’s (1990) ‘catching up with the Joneses’ framework. The

habit process moves more slowly than consumption so that in a downturn, consumption falls

faster than the habit resulting in an increase in local risk aversion. In an expansion, the

opposite happens. The countercyclical effect on risk aversion results in a countercyclical

pattern for risk premia and therefore countercyclical expected returns. This explanation is

consistent with Black (1990) who argues that risk aversion should be higher in recessions

when wealth is low. However, Ljungqvist and Uhlig (1999) show that the Campbell and

Cochrane specification implies consumption bunching. This is the result of the habit moving

negatively with consumption with these preferences when consumption is endogenous. More

standard ‘catching up with the Joneses’ preferences have consumption and habit moving

together. In a Campbell and Cochrane world, a benevolent government counteracts the

externality by inducing cycles while in a more standard catching-up world, the benevolent

government stabilizes the economy (Ljungqvist and Uhlig (2000)).

In this paper, we estimate the model proposed by Campbell and Cochrane (1999). We

use the efficient method of moments (EMM) proposed by Gallant and Tauchen (1996). The

EMM is in the same spirit to the ‘Indirect Inference’ method proposed by Smith (1993)

and Gourieroux, Monfort, and Renault (1993). This not only allows us to pin down the

structural parameters of interest, but also permits a detailed assessment of the performance
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of the economic model in matching observed stock returns. The estimation method is based

on simulation and allows us to handle the unobserved external habit with relative ease. In a

similar situation, Eichenbaum and Hansen (1990) propose that an initial guess for the unob-

served variable be used and then the Generalized Method of Moments (GMM) be applied.

Following this approach in our case may lead to poor estimates and statistical inference. In

particular, the external habit is extremely persistent. Given the small sample size, initial

conditions will have a strong effect on the estimates of the other parameters. Since the EMM

estimator is simulation-based, we can remove the effect of initial conditions on the persistent

habit process by discarding a long series of simulated realizations of returns before we start

to collect observations used in our EMM estimation. Specifically, for numerical tractability,

we take a two-step approach by first estimating the exogenous driving processes consisting of

consumption growth and dividend growth using a vector autoregression. We then estimate

the structural parameters such as the discount factor, the risk aversion coefficient, and the

persistence parameter for the surplus consumption ratio using the EMM and the exogenous

driving processes estimated in the first step.

Using the estimated structural parameters, we then investigate the cyclicality of expected

stock returns implied by the economic model at various holding intervals. We first provide

some benchmark results on the cyclical behavior of expected returns of the S&P 500 index

portfolio at various holding intervals from one quarter to five years. This is done in two

steps. In the first step, we obtain the expected holding returns by regressing compounded

stock returns on a set of information variables such as the dividend yield, earning-price

ratio, default premium, and term premium. In the second step, we regress the expected

holding returns on a business cycle proxy as in Harrison and Zhang (1999) to quantify

the comovements with business cycles. To examine the cylicality of expected stock returns

implied by the economic model, we obtain long series of the expected holding returns at

the same holding intervals as for the data using Monte Carlo integration. We then regress

the expected holding returns on the business cycle dummy variables constructed for the

economic model using the methodology suggested in Rouwenhorst (1995) to quantify their

cyclical behavior.

We find that the estimated subjective discount factor is slightly and statistically signif-

icantly above one. This result supports the finding reported in Kocherlakota (1990). The

estimated persistence parameter for the surplus consumption ratio is statistically signifi-

cantly above 0.9 indicating the existence of a slow-moving external habit. The economic

model with the external habit is rejected at the 1 percent level (but not at the 0.1 percent

level). Detailed examination of the moment conditions (both the scores and the conventional

moments) indicates that the economic model matches reasonably well the mean stock returns
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but it fails to match the higher order moments such as variance, skewness, and kurtosis. The

external habit implied by the estimated structural parameters generates countercyclical ex-

pected stock returns at longer horizons such as one year, two years, and five years. This

is driven by the fact that the surplus consumption ratio reacts strongly positively to the

contemporaneous consumption growth rate. This implies that the external habit moves at a

much slower rate than consumption. The consumption and habit differential thus decreases

and agents’ local risk aversion increases in recessions. High expected returns are needed to

induce agents to hold stocks. Finally, the curvature parameter (the coefficient of relative

risk aversion in a time separable environment) has a point estimate of 6.27 which is more

than three times the value chosen by Campbell and Cochrane and outside what is generally

considered to be the reasonable range for this parameter.

Consistent with the finding that the economic model can match the mean stock returns

reasonably well, we also find that the expected simulated stock returns during non-recession

periods are comparable to the expected S&P 500 index returns at various holding horizons

ranging from one quarter to five years. The spread in expected returns between recession and

non-recession periods implied in the economic model is much smaller than the counterpart

for the S&P 500 index. This is consistent with the finding that the economic model is unable

to match the variance of the observed stock returns.

The rest of the paper is organized as follows. Section 2 presents the model and defines

the law of motion for exogenous forcing variables. Section 3 presents and discusses the EMM

estimation results and evaluates the performance of the model. Section 4 investigates the

cyclicality of expected returns implied in the model, and Section 5 concludes the paper.

2 Preferences with an External Habit

There is an infinitely-lived representative agent who derives utility from consuming a single

consumption good. Consumer’s preferences depend on both the current consumption and

some habit level. Let Ct be the representative agent’s consumption at time t and Xt be the

agent’s habit level at time t. Following Campbell and Cochrane, we assume that Xt depends

on economy wide per capita consumption rather than the agent’s own consumption though

in equilibrium the two are equal. The agent’s objective is to maximize the expected sum of

discounted future utility given as follows:

maxE

[
∞∑

t=0

βt (Ct −Xt)
1−γ − 1

1 − γ

]
(1)
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where β is the subjective discount factor and γ is the curvature parameter.1

The habit level Xt will evolve as specified by Campbell and Cochrane. It will be treated

by individual agents as beyond their control and therefore a function of aggregate per capita

consumption. It will follow a non-linear process in order to keep the habit below consumption

(Xt < Ct). Let St denote the surplus consumption ratio:

St =
Ct −Xt

Ct

. (2)

We will use lowercase letters to denote the natural logs of variables (x = logX). As in

Campbell and Cochrane, we assume that the surplus consumption ratio evolves according

to:

st+1 = (1 − φ)s̄+ φst + λ(st)(c̄t+1 − c̄t − g) (3)

where φ determines the persistence of the surplus consumption ratio, s̄ is the steady state

surplus consumption ratio, λ(st) is the sensitivity function of the surplus consumption ratio

to the contemporaneous per capita consumption growth rate, c̄t is the log of per capita

consumption which equals the consumption of the agent in equilibrium, and g is the average

economy wide per capita consumption growth rate.

The sensitivity function, λ(st), takes the same form as in Campbell and Cochrane:

λ(st) =





(1/S̄)
√

1 − 2(st − s̄) − 1, st < smax

0 st ≥ smax

(4)

where S̄, the steady state surplus consumption ratio, is given by σ
√

γ

1−φ
where σ is the

standard deviation of consumption growth rate and smax, the upper limit for the surplus

consumption ratio, is given by

smax = s̄+
1

2
(1 − S̄2). (5)

The implication of the above specification is that the risk-free rate is constant when the

consumption growth rate is a log normal i.i.d. random variable, and the habit moves non-

negatively with consumption.

We consider a stock with dividend process Dt. The equilibrium stock price, denoted by

1Because of the presence of the external habit, the agent’s local risk aversion coefficient is no longer γ
but rather a function of consumption and habit level.
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Pt, can then be expressed as:

Pt = Et

[
β(
Ct+1 −Xt+1

Ct −Xt

)−γ(Pt+1 +Dt+1)
]

= Et

[
β(
St+1

St

)−γ(
Ct+1

Ct

)−γ(Pt+1 +Dt+1)
]
. (6)

As in Campbell and Cochrane, we model consumption and dividends as separate processes.

Since the growth rates of dividends and consumption are only weakly correlated in US data,

it can be important to model dividends and consumption separately.

To induce stationarity, we normalize the stock price by dividends (Dt). The normalization

yields

P̃t = Et

[
β(
St+1

St

)−γ(
Ct+1

Ct

)−γ(P̃t+1 + 1)(
Dt+1

Dt

)
]

(7)

where P̃t = Pt/Dt.

Comparing the pricing function above with the one without the external habit, we have

introduced the term (St+1/St)
−γ which decreases as the growth of the surplus consumption

ratio increases. Since the growth of the surplus consumption ratio enters the pricing function

exactly as consumption growth, we expect the former to affect the stock price and expected

stock returns in the same way as the latter does. The important issue is how the surplus con-

sumption ratio evolves as a function of contemporaneous consumption growth. If the growth

of the surplus consumption ratio is highly correlated with per capita consumption growth,

the stock price will be strongly procyclical and expected stock returns countercyclical.

The exogenous forcing variables in the model consist of the per capita consumption

growth rate (∆ct = c̄t − c̄t−1) and dividend growth rate (∆dt). We assume that the con-

sumption and dividend growth rates follow a bivariate vector autoregressive (VAR) process

with one lag,2 i.e.,


 ∆ct+1

∆dt+1


 =


 a1

a2


 +


 b11 b12

b21 b22





 ∆ct

∆dt


 +


 ǫ1t+1

ǫ2t+1


 (8)

where [ǫ1t, ǫ2t]
′ ∼ N(0,Σ). The sufficient state space for the above problem thus consists of

consumption and dividend growth rates, and the surplus consumption ratio of the previous

period. Denote by zt = [∆ct,∆dt]
′ the vector of exogenous state variables. The one-step

2Campbell and Cochrane (1999) suggest that it would be better to make consumption and dividends
cointegrated. They report that imposing cointegration does not significantly change their results while
complicating some of calculations by introducing an additional state variable. Campbell and Cochrane
assume that consumption and dividend growth rates are i.i.d., potentially correlated and have identical
means. We relax the i.i.d. and identical mean assumptions in our specification, but we do not impose
cointegration.
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ahead conditional density for zt is therefore a Gaussian with mean


 a1

a2


 +


 b11 b12

b21 b22





 ∆ct

∆dt




and covariance matrix Σ. We can thus represent the state space by (zt, St−1). The stock

price can then be written as

P̃ (zt, St−1) = E{β[
S(zt+1, S(zt, St−1))

S(zt, St−1)
]−γ exp(∆ct+1)

−γ

[P̃ (zt+1, S(zt, St−1)) + 1] exp(∆dt+1)|zt, St−1}. (9)

To estimate the bivariate VAR specification for the exogenous state variables, we con-

struct quarterly per capita consumption growth rate of non-durables and services and per

capita dividend growth rate adjusted by the population growth (age 16 and above) using

the CITIBASE data from 1947:Q2 to 1995:Q3. Table 1 presents the estimation results. We

make the following observations. Consumption growth at time t is positively related to both

consumption and dividend growth rates at time t− 1. The estimates are statistically signif-

icant at the 5 percent level. While the dividend growth rate is also positively related to the

lagged consumption and dividend growth rates, the estimates are not statistically significant

at the conventional test level. In the next section, we formally estimate the economic model

with the external habit and provide a statistical assessment of its performance in matching

the observed stock returns.

3 EMM Estimation of Structural Parameters

3.1 The EMM Estimator

Our goal here is to jointly estimate the Euler equation and the law of motion for the external

habit for a given exogenous driving force:3

P̃t = Et

[
β(
St+1

St

)−γ(
Ct+1

Ct

)−γ(P̃t+1 + 1)
Dt+1

Dt

]
, (10)

st+1 = (1 − φ)s̄+ φst + λ(st)(∆c̄t+1 − g), (11)

3The vector autoregressive process for the exogenous forcing variables is fixed at the point estimates
reported in Table 1 when we estimate the structural parameters governing preferences. Thus, sampling
errors in the first step estimation are not explicitly accounted for.
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λ(st) =





(1/s̄)
√

1 − 2(st − s̄) − 1, st < smax

0, st ≥ smax.
(12)

Because the external habit is not observed, to apply the GMM as in Eichenbaum and Hansen

(1990), one needs to jointly estimate the initial surplus consumption ratio (s0) and the other

structural parameters. Using the S&P 500 value weighted returns and the returns of ten

decile portfolios in combination with the risk-free rate as the moment conditions, we find that

the curvature parameter (γ) estimate is in general quite small (less than 1.0 in most cases).

It gets larger when the initial surplus consumption is fixed at the steady state level but it is

still usually less than 3.0. All the models have a high p-value consistently above 10 percent

implying that the model with an external habit cannot be rejected at conventional test

levels. However, this may simply reflect that the model is poorly estimated when the surplus

consumption ratio process is highly persistent and the sample size is too small. Indeed, the

estimated persistence parameter (φ) is consistently above 0.98 implying strong persistence

in the surplus consumption ratio process. The high persistence parameter estimate coupled

with a relatively small sample size thus render the GMM estimation unreliable in this case.4

A simulation based generalization of GMM proposed in Bansal, Gallant, Hussey and

Tauchen (1994) and Gallant and Tauchen (1996), the EMM, is well suited to the problem at

hand. It allows us to remove the effect of the initial value of the surplus consumption ratio

when the habit process is highly persistent and the sample size is small. This is achieved by

first simulating a long series of exogenous variables, the consumption and dividend growth

rates, and then recursively computing the surplus consumption ratio and the stock returns

starting from an initial guess for the surplus consumption ratio. We discard the first several

thousand simulated stock returns before we collect data for our EMM estimation. The idea

of the EMM is to use the expectation under the structural model of the scores from an

auxiliary model (called a score generator) as the vector of moment conditions. The scores

are the derivatives of the log likelihood function of the auxiliary model with respect to its

parameters. The estimator is defined as follows.

Let {ỹt, x̃t−1}
n
t=1 denote the observed data set (in our case, {ỹt} represents the S&P 500

index return series), where x̃t−1 = (ỹt−L, · · · , ỹt−1)
′, L ≥ 1. Let f(ỹt|x̃t−1, θ), θ ∈ Θ ⊂ ℜlθ , be

the one-step conditional density function which is the auxiliary model that generates scores

for the economic model to match. Let ρ ∈ ̺ ⊂ ℜlρ be the vector of structural parameters to

be estimated, and {ŷτ (ρ), x̂τ−1(ρ)}
N
τ=1 be the counterpart of the observed data simulated from

4The GMM results are not reported to save space and are available upon request. Interestingly, the
results are broadly consistent with the findings reported in Ferson and Constantinides (1991) for a model
with an internal habit formation using quarterly data.
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the structural model given the structural parameters ρ. The simulated data can be obtained

by numerically solving equations (10), (11), and (12) jointly for a given exogenous driving

force. We choose to implement the parameterized expectations algorithm proposed by Den

Haan and Marcet (1990), and applied in Bansal, Gallant, Hussey and Tauchen (1993) in

connection with the simulated method of moments estimation. Specifically, we parameterize

the right-hand-side of equation (10) as follows:

Et

[
β(
St+1

St

)−γ(
Ct+1

Ct

)−γ(P̃t+1 + 1)
Dt+1

Dt

]
= exp[h(zt, St−1;ψ)] (13)

where h(zt, St−1;ψ) is a polynomial in state variables (zt, St−1)
′ and ψ is a vector of param-

eters for the polynomial. In our application, we find the following quadratic polynomial to

work very well:

h(zt, St−1;ψ) = ψ0 + ψ1∆ct + ψ2∆dt + ψ3St−1 + ψ4∆c
2
t + ψ5∆d

2
t + ψ6S

2
t−1. (14)

We first estimate the auxiliary parameter θ using quasi-maximum likelihood estimation:

θ̃n = argmaxθ∈Θ

1

n

n∑

t=1

ln f(ỹt|x̃t−1, θ). (15)

This is achieved by solving the following set of first-order conditions:

1

n

n∑

t=1

(∂/∂θ) ln f [ỹt|x̃t−1, θ̃n] = 0. (16)

The basic idea of EMM estimation is that under the null hypothesis that the structural model

is correctly specified, there exists a true parameter vector ρ0 ∈ ̺ such that the simulated

data {ŷτ (ρ
0), x̂τ−1(ρ

0)}N
τ=1 also satisfy the above first-order conditions.

We thus introduce the moment conditions as follows:

mn(ρ, θ̃n) =
1

N

N∑

τ=1

(∂/∂θ) ln f [ŷτ (ρ)|x̂τ−1(ρ), θ̃n]. (17)

The EMM estimator of the structural parameter vector is then defined analogously to the

GMM estimator as follows:

ρ̂n = argminρ∈̺m
′

n(ρ, θ̃n)(Ĩn)−1mn(ρ, θ̃n) (18)
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where (Ĩn)−1 is the weighting matrix and is given by the outer-product-of-gradient formula

Ĩn =
1

n

n∑

t=1

[(∂/∂θ) ln f(ỹt|x̃t−1, θ̃n)][(∂/∂θ) ln f(ỹt|x̃t−1, θ̃n)]′. (19)

Gallant and Tauchen (1996) show that the EMM estimator defined above is consistent and

asymptotically normal, and the normalized objective value

s̃n(ρ̂n) = nm′

n(ρ̂n, θ̃n)(Ĩn)−1mn(ρ̂n, θ̃n) (20)

has an asymptotic chi-square distribution with degrees of freedom lθ − lρ, where lθ and lρ are

the numbers of parameters in auxiliary and economic models, respectively.

Because the conditional density function, which serves as the auxiliary model, is usu-

ally unknown, in practice, it needs to be estimated. We employ the Gallant and Tauchen

(1989) seminonparametric (SNP) method to estimate f(ỹt|x̃t−1, θ) along with the auxiliary

parameter vector, θ. Next, we provide the empirical estimation results.

3.2 Empirical Results

3.2.1 SNP Density Estimate of Real Stock Returns

In their baseline formulation, Campbell and Cochrane (1999) choose the sensitivity function

λ(st) so that the risk-free rate is constant and the habit moves nonnegatively with con-

sumption. In an alternative formulation, they allow the risk-free rate to vary with the state

variable, for instance, let the risk-free rate be a linear function of (st−s̄). However, Campbell

and Cochrane show that adding interest rate variation in this way has very little effect on

the stock market results. Following Campbell and Cochrane, we focus on the stock returns.5

Specifically, the series that we choose to match for our economic model is the quarterly real

returns of the S&P 500 index portfolio. The data spans the period from the second quarter

of 1947 to the third quarter of 1995. The ex post real returns are obtained by adjusting the

nominal returns of the S&P 500 index portfolio by inflation. We estimate the conditional

density function for the real returns using the SNP method which we briefly discuss below.

The SNP method is based on the notion that a Hermite expansion can be used as a

general purpose approximation to a density function. This basic approach can be adapted

to the estimation of the conditional density of the return series, denoted {yt}, that has a

Markovian structure – where the conditional density of yt given the entire history {yt−l}
∞

l=1

depends only on L lags from the most recent past. Collecting these lags together in a single

5The implications for the risk-free rate will be discussed below.
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vector gives a L-vector denoted as xt−1:

xt−1 = (yt−L, · · · , yt−2, yt−1)
′.

The SNP approximation of a density takes the following form:

f(yt|xt−1, θ) =
1

ξ
[P (zt, xt−1)]

2n(yt|µxt−1
, σxt−1

) (21)

where ξ is a scalar that makes the density integrate to one,6 zt = σ−1
xt−1

(yt − µxt−1
) is an

innovation, P (zt, xt−1) denotes a polynomial in zt of degree Kz whose coefficients are poly-

nomials of degree Kx in xt−1, n(yt|µxt−1
, σxt−1

) is a normal distribution with mean µxt−1
(the

location function) and standard deviation σxt−1
(the scale function) whose values depend on

xt−1. The constant term of the polynomial is put to one to obtain a unique representation.

This normalization means that the leading term of the entire expansion is n(yt|µxt−1
, σxt−1

).7

The location function µxt−1
is given by an autoregression

µxt−1
= b0 +Bxt−1. (22)

It is assumed to depend on Lµ ≤ L lags. The scale function σxt−1
is given by

σxt−1
= ρ0 + P |e∗t−1| (23)

where e∗t−1 = [(yt−Lr
− µxt−Lr−1

), · · · , (yt−1 − µxt−2
)], and | · | denotes elementwise absolute

value. The scale function depends on Lr lagged (unnormalized) innovations (yt − µxt−1
) and

(Lµ + Lr) ≤ L lagged yt in total. This is an ARCH–type process akin to that proposed by

Nelson (1991).

The Hermite polynomial P (zt, xt−1) is given by

P (zt, xt−1) =
Kz∑

α=0

(
Kx∑

β=0

aαβx
β
t−1)z

α
t (24)

where α ≤ Kz and β ≤ Kx are non-negative integers. It is assumed that the polynomial

depends on Lp ≤ L lags of y from x.

6Therefore ξ = 1/
∫

[P (s, x)]2φ(s)ds.
7The vector θ of f(yt|xt−1, θ) consists of the coefficients of the polynomial plus µxt−1

and σxt−1
and

is estimated by maximum likelihood. Equivalent to maximum likelihood, but more stable numerically,
is to estimate θ in a sample of size n by minimizing sn(θ) = − 1

n

∑n

t=1
log[f(yt|xt−1, θ)]. If the number of

parameters pθ grows with the sample size n, then the true density, its derivatives, and moments are estimated
consistently as shown in Gallant and Nychka (1987).
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When Kz is positive, the resulting density function is a modification of the Gaussian due

to the multiplication by the polynomial {P (zt)}
2. When Kx is positive, the shape of the

density will depend on xt−1. Thus, all moments can depend on xt−1 and the density can

approximate any form of conditional heterogeneity (Gallant and Tauchen, 1989). The shape

modifications are rich enough to accurately approximate densities from a large class that

includes densities that have fat tails, thin tails, or are skewed.8

For notational convenience, hereafter, the hierarchical SNP structure is denoted as SNP(Lµ,

Lr,Lp,Kz,Kx). To illustrate, consider first the model with Lµ = 4, Lr = 4, Lp = 0, Kz = 4,

and Kx = 0. The polynomial is of the form

P (zt) =
4∑

α=0

aαz
α
t (25)

where the a0, a1, · · · , a4 are the polynomial coefficients with the constant term a0 = 1 to

achieve a unique representation. Both µxt−1
and σxt−1

are linear in yt−1, · · · , yt−4. The model

has fourteen free parameters: the four free polynomial parameters, the intercept and four

slope parameters in µxt−1
, and the intercept and four slope parameters of σxt−1

.

Now consider Lp = 1 and Kx = 1 but everything else the same. The polynomial becomes

P (zt, xt−1) =
4∑

α=0

(a0α + a1αyt−1)z
α
t . (26)

The normalization is a00 = 1. The polynomial has nine free parameters, yielding nineteen

free parameters in total.

To select the optimal SNP model for the real returns, the following strategy is adopted.

We start with a VAR process, SNP(10100), and gradually expand Lµ until certain model

selection criterion reaches a minimum. Three model selection criteria are calculated for each

SNP fit: the Schwarz criterion [sn + pθ

2n
ln(n)], the Hannan-Quinn criterion [sn + pθ

n
ln[ln(n)]],

and the Akaike criterion [sn + pθ

n
]. We then introduce ARCH by increasing Lr, introduce

non-Gaussian ARCH by increasing Kz, and finally bring in general nonlinear processes by

increasing Lp and Kx.

The preferred models are then subject to a battery of diagnostic tests to determine the

goodness-of-fit. The diagnostic tests entail checking for predictability in the residuals from

8Fenton and Gallant (1996) assess the qualitative behavior of SNP in finite samples using the Marron and
Wand (1992) test suite. For each of the fifteen densities proposed by Marron and Wand, Fenton and Gallant
generate samples at sizes 400, 900, 1600, 2500, and 5625. To each they fit a kernel and SNP. For both kernel
and SNP, they compute a Riemann sum of the absolute value of the distance between the estimated density
and the true density on 1024 points evenly spaced over the interval [−3, 3]. Their results suggest that the
SNP estimator for a univariate series is both qualitatively and asymptotically similar to the kernel estimator.
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each SNP model. Residuals are examined for both short term and long term predictability

of the mean (residual levels) and variance (squared residuals). For the long term tests,

the residuals and their squares are projected onto annual dummy variables. For the short

term tests, the residuals and their squares are projected onto a space formed by the linear,

quadratic, and cubic terms of past variables (three lags are used). If an SNP model is the

true density, the residuals should be orthogonal to the above regressors. Therefore, for a

given SNP specification, the smaller the R-squared of the regressions, the better the SNP

model approximates the true density.

Table 2 presents the SNP estimation results along with the model selection criteria.

Both the Schwarz and Hannan-Quinn preferred model is SNP(11120). It is a non-Gaussian

ARCH model with mean and variance functions depending linearly on xt−1 with one lag.

The model also has a quadratic polynomial in the innovations. The Akaike preferred model

is SNP(11141). It is a full nonlinear process with a quartic polynomial whose coefficients

are linear in xt−1 with one lag. We choose the SNP(11141) as our final fit based on the

diagnostic tests discussed above.9 The model has 13 parameters and a saturation ratio of

fifteen.10

3.2.2 Estimates of the Structural Parameters

We use the bivariate VAR(1) for consumption and dividend growth rates discussed in Section

2 as our exogenous driving force. The structural parameters that we are interested in esti-

mating consist of the discount factor (β), the curvature parameter (γ), and the persistence

of the surplus consumption ratio (φ). Thus, the ρ vector can be represented by ρ = (β, γ, φ)′.

Because the series to be matched is stock returns, we create a simulated stock return

series from the model by taking the following steps. First, we simulate a long series of

the exogenous variables including the consumption and dividend growth rates. We then

recursively calculate the corresponding surplus consumption ratio and the stock prices using

equations (10), (11), and (12) starting from the steady state surplus consumption ratio, s̄,

which is a function of the structural parameters, ρ. Finally, we calculate the simulated stock

returns as follows:

ri =
(P̃i + 1) Di

Di−1

P̃i−1

− 1, i = 1, 2, · · · , N (27)

where N is the length of simulation and is chosen to be 30,000 in our estimation. The first

9The results of diagnostic tests are not reported and are available upon request.
10The saturation ratio is defined as the total number of observations divided by the number of parameters

estimated. Portnoy (1985) gives the maximum number of parameters in a linear regression as a function of
sample size such that asymptotic normality of a linear function of the parameters is preserved. However, to
our knowledge, no similar studies have been done in a nonlinear analysis such as ours.
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8,000 simulations are discarded before we collect observations for our estimation to remove

possible transient effects of initial conditions. It is important to use a large N to get reliable

estimates when the persistence parameter is close to one.

Table 3 reports the EMM estimates for the structural parameters along with their numer-

ical Wald standard errors and t-ratios. The point estimate for the discount factor is 1.007

with a standard deviation of 0.004. This is higher than the discount factor used in Campbell

and Cochrane (0.971). While most research restricts the discount factor to be between 0

and 1, it is possible for competitive equilibria to prevail even when β is greater than 1 (see

Kocherlakota, 1990). The curvature parameter is found to be 6.274 with a standard devia-

tion of 0.14. This is much larger than the value of 2.0 used in Campbell and Cochrane and

is beyond the ‘reasonable’ range based on the existing literature, for instance, Hansen and

Singleton (1982, 1983). The estimated persistence parameter of the surplus consumption

ratio is 0.912 with a standard deviation of 0.0015 and is smaller than the value used by

Campbell and Cochrane (0.97). All three estimates are very highly statistically significant

as shown by large t-ratios for the estimates.

The implied steady state surplus consumption ratio (S̄) is 0.047 which implies a steady

state habit level of 95.3 percent of consumption. The upper limit for the surplus consump-

tion ratio is 0.077 which implies a minimum habit level of 92.3 percent of consumption. In

Figure 1, we plot the sensitivity function for the estimated model. It shows that values taken

by the sensitivity function λ is above 15 around the steady state surplus consumption ratio

(s̄ = −3.064) and is above 5.0 almost everywhere except for the tiny region around the upper

limit for the surplus consumption ratio (smax = −2.564). As we have discussed in Section

2, the cyclicality of expected stock returns is sensitive to how the surplus consumption ra-

tio reacts to contemporaneous consumption growth rate. If the surplus consumption ratio

reacts strongly to contemporaneous consumption growth rate (λ takes large values), then

expected stock returns are countercyclical. Otherwise, they are procyclical. The sensitiv-

ity function for our parameter estimates thus implies that the economic model is likely to

generate countercyclical expected stock returns.

The economic model is nonetheless rejected according to the chi-square statistic (χ2(10) =

25.585). The rejection is not overwhelming (The corresponding p-value is 0.0043. We thus

reject the model at the one percent but not at the 0.1 percent level) compared with tests of

other consumption-based equilibrium asset pricing models using GMM. This justifies why

Campbell and Cochrane find the model performing reasonably well in terms of explaining

some of the stylized facts on the stock market.

The model fails dramatically with regard to the implications for the risk-free rate. By

specifying i.i.d. consumption growth and a particular functional form for the evolution of the
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surplus consumption ratio, Campbell and Cochrane impose a constant risk-free rate on their

model. Considering the relatively small amount of variation in the data, especially relative

to equity returns, this is a very reasonable assumption. We adopted the same functional

form for the evolution of st, but allowed for predictability in consumption growth as well

as covariation with dividend growth. This resulted in a time varying risk-free rate. We did

not use data on the risk-free rate during estimation. The mean risk-free rate implied by our

point estimates is -22.94% with a standard deviation of 12.05%. This result is due in large

part to the high estimate for the curvature parameter. Using Campbell and Cochrane’s value

of γ = 2 along with our other point estimates results in an average risk-free rate of -8.99%.

We can further investigate which dimensions that the model fails to match by examining

the score functions of the auxiliary model. Table 4 presents the normalized mean SNP scores

along with the adjusted standard errors and the corresponding t-ratios for the estimated

model. The results show that the model does a reasonable job in matching the mean function

of the return series but it fails to match the variance and higher order moment functions as

indicated by the high adjusted t-ratios for the variance function and some of the Hermite

polynomial coefficients. The performance of the model can also be evaluated according to

the conventional moments of returns. In Table 5, we present the comparison of four moments

of the simulated stock returns and the real returns of S&P 500 index portfolio. We have

the following observations. The economic model matches the mean stock returns reasonably

well though not perfectly. The variance of the simulated stock returns is however lower

than its observed counterpart. The distribution of the simulated stock returns is skewed in

the opposite direction as the observed returns. The economic model also fails to create the

magnitude of the kurtosis observed in the real stock returns. While the real stock returns

exhibit excessive kurtosis, the simulated stock returns show almost the same kurtosis as a

normal distribution. Next, we discuss the robustness of our parameter estimates.

3.2.3 Robustness of Parameter Estimates

A number of recent studies (Andersen, Chung, and Sorensen, 1999, and Liu and Zhang,

1996) document that EMM estimation may be sensitive to the selection of auxiliary models.

To address the issue on robustness, we re-estimate our structural model using an alternative

auxiliary model, SNP(11121), in the EMM estimation. The alternative auxiliary model is

also a full nonlinear process and has a quadratic Hermite polynomial whose coefficients are

linear in xt−1 with one lag.

Table 6 presents the results of our EMM estimation with the alternative auxiliary model

SNP(11121). The point estimates for all three parameters are larger than the ones docu-
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mented above for the preferred auxiliary model SNP(11141). The estimate for the discount

factor goes up from 1.0071 to 1.0136, and the curvature parameter estimate increases from

6.274 to 8.731. The estimate for the persistence parameter, however, is only slightly larger

(from 0.912 to 0.929). The estimates also are less efficient than the ones estimated with our

preferred auxiliary model. The standard errors of all three parameter estimates are larger

than those estimated with the preferred SNP model while the t-ratios of the parameter es-

timates are all smaller than that estimated with the preferred SNP model. The structural

model is again rejected at the one percent test level according to the chi-squared test with

a p-value of 0.0062. While this is consistent with our early finding when the preferred SNP

model is used, it also seems to indicate that the economic model fits the data better as re-

flected in the higher p-value. A possible explanation is the following. The simpler auxiliary

model does not capture the higher order moment characteristics of the return data as well

as the more complicated preferred SNP model.11 Consequently, it is relatively easier for the

structural model to match the scores of the simpler model than to match the scores of the

more complicated model.

4 Cyclicality of Expected Stock Returns

In this section, we first document some benchmark results on the cyclical behavior of the

expected stock returns on the S&P 500 index portfolio. We then investigate the cyclicality

of the expected returns implied in our economic model using the structural parameters

estimated in the previous section.

4.1 Cyclicality of Expected Stock Returns: Empirical Evidence

Many empirical studies12 have documented that stock returns can be predicted by means

of publicly available information such as time series data on financial and macroeconomic

variables with an important business cycle component. While a wide range of variables have

been used for predicting stock returns, four variables, the dividend yield, the earnings–price

ratio, the default premium, and the term premium, are consistently found to be important

predictors. We therefore choose the above four variables as our predictors for expected stock

11Fenton and Gallant (1996) document that high order polynomials of the Hermite expansion are needed
to accommodate highly skewed distributions. Similar results are also reported in Liu and Zhang (1996).

12An incomplete list includes Balvers, Cosimano, McDonald (1990), Bekaert and Hodrick (1992), Breen,
Glosten, and Jagannathan (1989), Campbell (1987), Cochrane (1991), Fama and French (1989), Ferson and
Harvey (1993), French, Schwert, and Stambaugh (1987), Glosten, Jagannathan, and Runkle (1993), Pesaran
and Timmermann (1995), among others.
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returns of the S&P 500 index portfolio.

For notational convenience, we denote r(t, t+τ) as the return of holding a stock purchased

at time t for τ periods, dyt as the dividend yield, ept as the earnings–price ratio, dpt as the

default premium, and tpt as the term premium. Let Xt = [dyt, ept, dpt, tpt]
′. Following Fama

and French (1989), to get expected returns, we regress the holding returns on the above four

variables, Xt, known at time t:

r(t, t+ τ) = α(τ) + β(τ)Xt + ǫt,t+τ . (28)

We use quarterly data from the first quarter of 1947 to the fourth quarter of 1993. The

data set consists of real S&P 500 value weighted returns, S&P 500 dividend yield, S&P 500

earnings–price ratio, the default premium measured by the difference between the average

yield of Baa and Aaa corporate bonds, and the term premium measured by the difference

between the average yield of Aaa corporate bonds and three month Treasury bill rates.

The real returns are created by adjusting the nominal returns for the consumer price index.

The term premium measure used here follows Kandel and Stambaugh (1990) and is slightly

different from that in Fama and French (1989) in which the term premium is defined as

the difference between the average yield of the long term government bonds and short term

treasury bills. The S&P 500 value weighted returns and three month treasury bill rates are

from CRSP database and the rest of series are from CITIBASE.

In Table 7 we present the results for the above regression for τ=1, 4, 8, and 20 which cor-

respond to quarterly, annual, two year, and five year stock returns. The Newey-West (1987)

estimate for the variance-covariance matrix is employed to correct for the heteroskedasticity

and serial correlation of the error terms. The following features emerge. The dividend yield

is consistently positive and statistically significant at the one percent level at all horizons re-

ported. The earnings–price ratio, on the other hand, is consistently negative and statistically

significant at the 5 percent level at a five year horizon. The default premium is positive at

a quarterly horizon and negative at all longer horizons (annual, two, and five years) but not

statistically significant. Finally the term premium is consistently positive and statistically

significant at short horizons (quarterly and annually) but not at long horizons (two and five

years).

Given the estimates of α(τ) and β(τ), the expected stock returns predicted by the linear

model, denoted ̂r(t, t+ τ), are obtained from

̂r(t, t+ τ) = α̂(τ) + β̂(τ)Xt. (29)

17



Figure 2 shows the expected stock returns along with the NBER classification of business

cycle turning points for one quarter, one year, two year, and five year holding periods. It

shows that the expected returns often reach the peak when the economy is in a recession.

The phenomenon becomes more pronounced as the horizon increases.

To explore how expected stock returns are related to business cycles quantitatively, we

estimate the following simple linear models as in Harrison and Zhang (1999):

̂r(t, t+ τ) = θ0 + θ1Dt + ut+1 (30)

where Dt is the dummy variable created according to the NBER classification of business

cycle turning points.13 It takes value one if period t is in a recession (between a peak and a

trough) and zero otherwise.

The top panel of Table 8 presents the regression results for the expected stock returns with

different holding periods. The estimated coefficients of the dummy variable are consistently

positive indicating that the expected stock returns are higher in recessions than in non-

recession periods at all horizons. Furthermore, the statistical significance of the recession

dummy increases as the horizon expands. At a quarterly horizon, the estimate is positive

and significant at the 3 percent level. However, at five year horizon, it is positive and

statistically significant at the 0.2% level. The forecasting power of the business cycle variable

also increases from about 1.9 percent to 5.1 percent as the horizon increases from a quarter

to five years.

4.2 Expected Stock Returns and the External Habit

To obtain expected stock returns implied by the economic model, we use a numerical simu-

lation method discussed below. Denote by re
τ (z(k), S(k)), τ = 1, · · · ,∞, the expected return

of holding the stock for τ periods starting from the state (z(k), S(k)). Let π(zτ |zτ−1) be the

transition matrix for the exogenous state variables (zt) as defined by equation (8). Given

the law of motion for the stock price as defined by equations (13) and (14) and the transi-

tion matrix for the exogenous state variables, the expected holding returns implied by the

economic model can then be obtained using the following Monte Carlo integration. Denote

by {z(k)}, k = 1, · · · , K + N, a long series of simulated exogenous state variables starting

from the unconditional mean. Let {S(k)}, k = 1, · · · , K + N be the corresponding sur-

plus consumption ratio computed using Equations (11) and (12) starting from the steady

13The qualitative features of the cyclical behavior of the expected stock returns are unchanged when
other business cycle proxies such as consumer confidence index and industrial product growth are used. See
Harrison and Zhang (1999).
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state value S̄. We drop the first N observations to remove possible transient effects. Let

{zj
i (k)}

τ
i=1, j = 1, 2, · · · , J , be J simulated realization path of the exogenous state variables

starting from z = z(k). Each path consists of τ simulated values for the exogenous state

variables using the transition matrix π(·|·). In other words, zj
1(k) is a random draw from

π(z′|z(k)), zj
2(k) is a random draw from π(z′|zj

1(k)), and so forth. We first compute the

surplus consumption ratio, {Sj
i (k)}

τ
i=1, j = 1, · · · , J , starting from S = S(k). We then re-

cursively compute the stock price, P̃ j
i (zj

i (k), S
j
i−1(k)) for i = 1, · · · , τ and j = 1, · · · , J . The

expected returns of holding the stock for τ periods corresponding to state (z(k), S(k)) can

thus be approximated as follows:

1 + re
τ (z(k), S(k)) ≈

1

J

J∑

j=1

P̃ j
1 + 1

P̃ (z(k), S(k))

P̃ j
2 + 1

P̃ j
1

· · ·
P̃ j

τ + 1

P̃ j
τ−1

exp(∆dj
1) · · · exp(∆dj

τ ). (31)

In our application, the length of the simulated series is set at K = 20, 000 with the initial

N = 8, 000 observations discarded to remove possible transient effects. To be consistent with

our empirical investigation, we compute the expected returns for τ = 1, 4, 8, and 20, which

corresponds to one quarter, one year, two year, and five year holding periods, respectively.

The number of replications in computing the expected returns (J) is set at 20,000.

To investigate the cyclical behavior of the expected stock returns we first construct

dummy variables representing business cycles in the economic model. We then apply the

similar business cycle regressions as in the previous subsection to the expected simulated

stock returns. Following Rouwenhorst (1995), we define a recession as an episode starting

at a period that the consumption growth rate is negative for two consecutive quarters. An

alternative and more restrictive definition of a recession is that both the consumption and

dividend growth rates are negative for two consecutive quarters. The dummy variable then

takes value 1 if the economy is in a recession and 0 otherwise. We denote by D1 the business

cycle dummy corresponding to the first definition and by D2 to the second definition. In the

bottom panel of Table 8 we present the results of regressing the expected simulated returns

at various horizons on the business cycle dummy variables.

Comparing to the expected returns of the S&P 500 index portfolio, we have the following

observations. First, the magnitude of the expected simulated returns are comparable to

the observed counterpart at all four holding horizons during non-recession periods. For

instance, the average expected returns of the S&P 500 index during non-recession periods

are 2.01%, 8.48%, 17.68%, and 46.5% at one quarter, one year, two years, and five years,

respectively. The average expected simulated returns during non-recession periods are 1.82%,

7.11%, 14.59%, and 41.01%, for the same set of holding horizons, respectively, when the less
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stringent definition of recession (D1) is used. Similar results are also found for the more

stringent definition of a recession (D2) as demonstrated in the bottom half of the lower panel

in Table 8. This is consistent with our earlier finding that the model with the external habit

does a reasonable job matching the mean of stock returns. Second, the expected simulated

returns are procyclical at short holding horizon such as one quarter and countercyclical at

all other longer horizons such as one year, two years, and five years. The countercyclical

expected returns at longer horizons are consistent with the cyclical bahavior of the expected

returns of the data.

A possible explanation is as follows. First, consumption growth tends to drive the ex-

pected stock returns procyclically. This is because consumption growth is positively serially

correlated. A low consumption growth rate now (a recession) is likely to be followed by a low

consumption growth rate next period. This would push up the current stock price according

to the equilibrium stock pricing function and lead to a lower expected stock return. The

surplus consumption ratio, on the other hand, exerts its influence on the expected returns via

its impact on the growth rate of the surplus consumption ratio, which in turn depends on the

sensitivity of the surplus consumption ratio to contemporaneous consumption growth rate.

If the surplus consumption ratio is not sensitive to the consumption growth rate or the exter-

nal habit level moves at about the same rate as consumption and in the same direction, then

the growth rate of the surplus consumption ratio for the next period will not be significantly

affected. As a result, the expected stock returns is basically affected by the consumption

growth rate, which is procyclical. On the other hand, if the surplus consumption ratio reacts

strongly to the contemporaneous consumption growth rate, then when the economy is in a

recession, the current surplus consumption ratio will decrease significantly. The growth rate

of the surplus consumption ratio thus increases and the stock price goes down. The expected

stock return will be higher. When the latter effect dominates the former, the overall effect

will move the expected stock return countercyclically.

Furthermore, the spread of the expected returns between recession and non-recession

periods is much smaller for the simulated returns than for the observed returns. For instance,

the spread for the simulated returns is about 1%, 3%, and 8% at one year, two years, and

five years, respectively. The spread for the observed returns, however, is more than 4%, 7%,

and 27%, respectively, for the same holding horizons. This is consistent with our earlier

finding that the economic model fails to match the variance of observed stock returns. The

finding suggests that while we have limited success in replicating the cyclical behavior of

expected stock returns by introducing the external habit, it remains an important challenge

for economic models to match the large spread in expected returns between recession and

non-recession periods observed in the data.
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5 Conclusions

In this paper we extend the Campbell and Cochrane (1999) study by formally estimating

an equilibrium asset pricing model in which agents’ preferences have an unobserved exter-

nal habit using the efficient method of moments proposed by Bansal, Gallant, Hussey and

Tauchen (1994) and Gallant and Tauchen (1996). We find that the estimated subjective dis-

count factor to be slightly greater than one supporting the earlier finding by Kocherlakota

(1990). The surplus consumption ratio process is very persistent as reflected by a larger

than 0.9 persistence parameter in the law of motion for the surplus consumption ratio. Our

estimation results suggest that the surplus consumption ratio reacts strongly positively to

the contemporaneous consumption growth rate. This implies that the external habit moves

at a slower rate than consumption. The model with the external habit therefore generate

countercyclical expected stock returns at all longer holding periods such as one year, two

years, and five years. It also generates expected stock returns comparable to the expected

returns of the S&P 500 index portfolio for non-recession periods. This is consistent with the

limited success of the Campbell and Cochrane study in replicating some of the stylized facts

of the stock market using the model with the external habit.

The model, however, fails to create the large spread of expected returns between the

recession and non-recession periods observed in the S&P 500 index returns. Further, the

model is rejected at the one percent (but not at the 0.1 percent) significance level according

to the chi-square test. Detailed examination of the score functions of the auxiliary model

and the conventional moments indicates that while the model does a reasonable job in

matching the mean of the real returns, it fails to match the higher order moments. The

model implies negative risk-free rates using our point estimates indicating the sensitivity of

the specification of the law of motion for the surplus consumption ratio to small perturbations

of other dimensions of the model such as allowing for predictability of consumption growth

and covariation with dividend growth.
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Variable Const. Std. Errors Slopes Std. Errors Var.-covar. Matrix
∆c .0032 4.827e-4 .1720 .0267 .0709 .0128 2.849e-5 2.141e-5
∆d .0023 2.249e-3 .5942 .0558 .4046 .0728 .2141e-4 .9264e-3

Table 1: Table 1. Vector Autoregression Coefficients for Exogenous Processes. ∆c denotes
the per capita consumption growth rate of nondurables and services and ∆d represents the
per capita dividend growth rate. The bivariate VAR is estimated using quarterly data from
1947:Q2 to 1995:Q3 taken from the CITIBASE dataset.

Model pθ sn Schwarz H-Q Akaike
SNP(10100) 3 1.4143 1.4550 1.4399 1.4297
SNP(11100) 4 1.3985 1.4528 1.4328 1.4191
SNP(12100) 5 1.3979 1.4658 1.4407 1.4237
SNP(11120) 6 1.3675 1.4489 1.4189 1.3984
SNP(11140) 8 1.3531 1.4617 1.4217 1.3944
SNP(11121) 9 1.3507 1.4729 1.4277 1.3971
SNP(11141) 13 1.3130 1.4895 1.4244 1.3800
SNP(20100) 4 1.4109 1.4652 1.4452 1.4315

Table 2: Table 2. SNP Estimation of the Density Function. The ex post real returns of
the S&P 500 index portfolio is constructed using quarterly nominal returns of the S&P 500
index portfolio and inflation. The data spans the period from 1947:Q2 to 1995:Q3. The
return series is taken from the CRSP tape and the inflation series is from the CITIBASE.
pθ is the number of parameters in the SNP model. sn is the objective value. Schwarz, H-
Q, and Akaike are the Schwarz, Hannan and Quinn, and Akaike model selection criterion,
respectively.

Parameter Estimate Std. Error t ratio
β 1.0071 0.0040 253.14
γ 6.2740 0.1400 44.809
φ 0.9119 0.0015 597.66

s̃n(ρ̂) χ2(10) = 25.585 p− value = 0.0043

Table 3: Table 3. EMM Estimates of Structural Parameters. The selected auxiliary model
is SNP(11141). β is the discount factor. γ is the curvature parameter. ψ is the persistence
parameter. s̃n(ρ̂) is the normalized objective value evaluated at the estimated structural
parameter values. p − value is the probability for the hypothesis test that the economic
model is correctly specified under the null.
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Score Adj. Std. Err. t ratio
Mean Function b0 0.4384 1.0042 0.437

b1 1.3141 1.0855 1.211
Variance Function r0 -3.4395 1.1113 -3.095

r1 -2.4692 1.1352 -2.175
Hermite Polynomial a(1) -0.3127 0.5546 -0.564

a(2) 3.6624 1.6867 2.171
a(3) -2.1406 1.5683 -1.365
a(4) 10.883 2.6153 4.161
a(5) -3.2638 2.2656 -1.441
a(6) 12.813 6.7345 1.903
a(7) -1.5308 7.1918 -0.213
a(8) 57.563 15.703 3.666
a(9) -10.669 16.732 -0.638

Table 4: Table 4. t Tests on Various Scores. The selected auxiliary model is SNP(11141).
The scores are evaluated using simulated returns when the structural parameters are set at
the

estimated values.

Moment Real Returns Simulated Returns
Mean 0.0216 0.0182

Std. Err. 0.0768 0.0461
Skewness -0.6450 0.2837
Kurtosis 4.4236 3.2869

Table 5: Table 5. Summary Statistics of Stock Returns: A Comparison. The real returns
are quarterly ex post real returns of the S&P 500 index portfolio from 1947:Q2 to 1995:Q3.
The simulated returns are obtained by setting the structural parameters at the estimated
values. The summary statistics of simulated returns are based on 30,000 realizations.

Parameter Estimate Std. Error t ratio
β 1.0136 0.0054 186.15
γ 8.7309 0.5341 16.346
φ 0.9294 0.0926 10.035

s̃n(ρ̂) χ2(6) = 18.015 p− value = 0.0062

Table 6: Table 6. EMM Estimates of Structural Parameters. The selected auxiliary model
is SNP(11121). β is the discount factor. γ is the curvature parameter. ψ is the persistence
parameter. s̃n(ρ̂) is the normalized objective value evaluated at the estimated structural
parameter values. p − value is the probability for the hypothesis test that the economic
model is correctly specified under the null.
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Variable Quarterly Annual Two Years Five Years
Constant -.0828 -.2947 -.4466 -1.3538

(.0267) (.0860) (.1373) (.2237)
dy 14.885 53.230 101.616 269.383

(5.505) (21.393) (33.415) (45.430)
ep -3.7041 -10.596 -20.338 -46.077

(2.127) (7.679) (11.906) (22.957)
dp .0084 -.0027 -.0445 -.0375

(.0159) (.0368) (.0430) (.1253)
tp .0099 .0308 .0244 .0365

(.0042) (.01445) (.0235) (.0436)

R
2

.0830 .2493 .3414 .6843

Table 7: Table 7. Regression of Real S&P Returns on Dividend Yield (dy), Earning Price
Ratio (ep), Default Premium (dp), and Term Premium (tp). The data set is quarterly from
1947:Q1 to 1993:Q4. The default premium is measured by the difference between the average
yield of Baa and Aaa corporate bonds, and the term premium is measured by the difference
between the average yield of Aaa corporate bonds and three month treasury bills. The real
returns are created by adjusting the nominal S&P 500 value weighted returns for inflation.
Note: Numbers in parentheses are standard errors.
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Param. Standard T for H0:
Horizon Variable Estimate Error β = 0 Prob > |T |

Data

Quarterly Constant .0201 .0020 10.220 .0001
DB .0102 .0047 2.157 .0323

1 Year Constant .0848 .0070 12.112 .0001
DB .0435 .0169 2.573 .0109

2 Years Constant .1768 .0120 14.699 .0001
DB .0759 .0291 2.611 .0098

5 Years Constant .4650 .0344 13.531 .0001
DB .2761 .0831 3.323 .0011

Simulated Returns

Quarterly Constant 0.0182 0.0001 141.69 0.0001
D1 -0.0070 0.0004 -18.75 0.0001

1 Year Constant 0.0711 0.0002 315.73 0.0001
D1 0.0098 0.0007 14.88 0.0001

2 Years Constant 0.1459 0.0004 411.82 0.0001
D1 0.0340 0.0010 32.75 0.0001

5 Years Constant 0.4101 0.0007 610.82 0.0001
D1 0.0854 0.0020 43.45 0.0001

Quarterly Constant 0.0178 0.0001 144.26 0.0001
D2 -0.0103 0.0006 -17.60 0.0001

1 Year Constant 0.0720 0.0002 330.90 0.0001
D2 0.0053 0.0010 5.19 0.0001

2 Years Constant 0.1485 0.0003 428.23 0.0001
D2 0.0300 0.0016 18.27 0.0001

5 Years Constant 0.4163 0.0007 627.14 0.0001
D2 0.0832 0.0031 26.51 0.0001

Table 8: Table 8. Regression of Expected Stock Returns on the Business Cycle Proxy. DB is
the business cycle dummy variable defined based on the NBER business cycle turning point
classification. It takes value 1 when the economy is between a peak and a trough and takes
value 0 otherwise. D1 is the first dummy variable defined for the economic model. It takes
value 1 if the consumption growth rate is negative for two consecutive quarters and takes
value 0 otherwise. D2 is the second dummy variable defined for the economic model. It
takes value 1 if both consumption growth rate and dividend growth rate are negative for two
consecutive quarters and takes value 0 otherwise.
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Figure 1: The sensitivity function (λ) versus the surplus consumption ratio. The vertical
axis is λ and the horizontal axis is the logarithm of surplus consumption ratio, st. The
dashed line corresponds to λ = 5.0.
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(A)                                                                                  (B)

(C)                                                                                  (D)

Figure 2: The expected stock returns at (A) quarterly, (B) annual, (C) two year, and (D)
five year horizons. The vertical grid lines are NBER business-cycle peaks and troughs.
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