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Solvable Groups, Free Divisors and Nonisolated Matrix
Singularities II: Vanishing Topology

JAMES DAMON

BRIAN PIKE

In this paper we use the results from the first part to compute the vanishing
topology for matrix singularities based on certain spaces of matrices. We place the
variety of singular matrices in a geometric configuration offree divisors which are
the “exceptional orbit varieties” for representations of solvable groups. Because
there are towers of representations for towers of solvable groups, the free divisors
actually form a tower of free divisorsEn, and we give an inductive procedure
for computing the vanishing topology of the matrix singularities. The inductive
procedure we use is an extension of that introduced by Lê–Greuel for computing
the Milnor number of an ICIS. Instead of linear subspaces, weuse free divisors
arising from the geometric configuration and which correspond to subgroups of
the solvable groups.

Here the vanishing topology involves a singular version of the Milnor fiber; how-
ever, it still has the good connectivity properties and is homotopy equivalent to
a bouquet of spheres, whose number is called the singular Milnor number. We
give formulas for this singular Milnor number in terms of singular Milnor num-
bers of various free divisors on smooth subspaces, which canbe computed as
lengths of determinantal modules. In addition to being applied to symmetric,
general and skew-symmetric matrix singularities, the results are also applied to
Cohen–Macaulay singularities defined as 2× 3 matrix singularities. We compute
the Milnor number of isolated Cohen–Macaulay surface singularities of this type
in C4 and the difference of Betti numbers of Milnor fibers for isolated Cohen–
Macaulay 3–fold singularities of this type inC5 .

32S30; 17B66, 14M05, 14M12

Introduction

In this paper we make use of the results from the first part of the paper [DP1] to
introduce a method for computing the “vanishing topology” of nonisolated complex
matrix singularities. A complex matrix singularity arisesfrom a holomorphic germ
f0 : Cn,0 → M,0, whereM denotes the space ofm× m complex matrices, which
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may be either symmetric or skew-symmetric (and thenm is even), or more general
m×p complex matrices. IfV denotes the “determinantal variety” of singular matrices,
thenV0 = f−1

0 (V) is the corresponding matrix singularity. We shall also refer to the
mapping f0 as defining a matrix singularity; it can also be viewed as a “nonlinear
section ofV ” (although we also allown ≥ dim(M)). In part I, we indicated many
examples of matrix singularities for the classification of various types of singularities.

For m× m matrices, ifn ≤ codim(sing(V)) and f0 is transverse toV off the origin,
thenV0 has an isolated singularity, defined byH ◦ f0, whereH : M → C denotes the
determinant, or the Pfaffian in the skew-symmetric case (m even). Using algebraic
resolutions, Goryunov–Mond [GM] showed that for isolated matrix singularities in
all three cases, the Milnor number equaledτ , which is aKH –deformation theoretic
codimension, with a correction term given by a two term Eulercharacteristic for an
appropriate Tor complex.

µ(H ◦ f0) = τ + (β0 − β1) .

This explained an observed result of Bruce [Br] for simple symmetric matrix singular-
ities for n = 2 = codim(sing(V))− 1.

Although the Milnor number in the isolated case can be computed from Milnor’s
formula, the relation between it and the deformation theoretic codimension suggests
there may exist such a relation in the nonisolated case, where there are no known general
results about the topology of the Milnor fiber. However, the difficulty in determining
the vanishing topology of matrix singularities in general is due to their highly singular
structure. Hence, by the Kato–Matsumoto Theorem, its Milnor fiber will have very
low connectivity and can have homology in many dimensions.

We overcome this problem by viewingf0 : Cn,0 → M,0 as a nonlinear section of
V and consider instead the “singular Milnor fiber”. It is obtained as a “stabilization
of f0” and is homotopy equivalent to a bouquet of spheres of real dimensionn− 1.
The number of such spheresµV (f0) is called the “singular Milnor number” off0 , and
it can be computed for free divisorsV (in the sense of Saito [Sa]) by a Milnor-type
formula as the length of of a determinantal module, [DM] and [D2]. In the case when
n < dim(sing(V)), thenV0 is an isolated singularity and these are the usual Milnor
fiber and Milnor number. That matrix singularitiesV are essentially never free divisors
explains the need for a correction term in [GM] for the isolated case.

Instead we shall introduce an inductive method which extends that introduced by
Lê–Greuel [LGr] for computing the Milnor number of an ICIS. Their method uses a
geometric configuration formed from a flag of linear subspaces transverse to the map
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germ which we replace with a tower of linear free divisors constructed in Part I [DP1].
These arise from a tower of (modified) Cholesky-type representations of solvable linear
algebraic groups. This allows us to adjoin a linear free divisor to the determinantal
varietyV to obtain another linear free divisor, providing a “free completion” of V .

The general form of the formula which we give expressesµV (f0) as a linear combination
with integer coefficients

(0–1) µV (f0) =
∑

i

aiµWi (f0)

where theWi are free divisors on linear subspaces ofM . Thus, we can expressµV (f0)
as a linear combination of singular Milnor numbers, each of which can be computed
using results from [D2] as lengths of determinantal modules.

If we view these singular Milnor numbers as functions on the space of germsf0
transverse to the varieties off 0, then (0–1) can be written more simply as

(0–2) µV =
∑

i

aiµWi .

Furthermore, the method allows us to compute more generallythe singular Milnor
numbers for nonisolated matrix singularities on an ICISX. There is a metatheorem
which states that ifX is defined byϕ : Cn,0→ Cp,0, and the formula (0–2) for µV

is obtained by the inductive process then the process also yields the formula

(0–3) µϕ,V =
∑

i

aiµϕ,Wi

whereµϕ,V(f0), respectivelyµϕ,Wi (f0), are the singular Milnor numbers forf0|X as
nonlinear sections ofV , resp.Wi , and can again be computed in terms of lengths of
determinantal modules using a generalization of the Lê–Greuel theorem given in [D2].

These formulas are applied in §6, 7, and9 to obtain explicit formulas for symmetric
and general 2× 2 and 3× 3 matrices, and 4× 4 skew-symmetric matrices.

Furthermore, general 2× 3 matrix singularities are not complete intersection singular-
ities; however they are Cohen–Macaulay singularities by the Hilbert–Burch Theorem
[Hi, Bh]. We next apply these methods in §8 to obtain the singular vanishing Euler
characteristic ˜χV as a linear combination as in (0–2). We then deduce a formula for
the Milnor number of isolated 2×3 Cohen–Macaulay surface singularities inC4 as an
alternating sum of lengths of determinantal modules (Theorem 8.3). Furthermore, for
isolated 3–fold 2×3 Cohen–Macaulay singularities, we give an analogous formula for
the difference between the second and third Betti numbersb3− b2 of the Milnor fiber
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(Theorem 8.4). This formula is also valid for 2× 3 Cohen–Macaulay singularities
defined as matrix singularities defined on an ICIS.

This formula has been programmed in Macaulay2 by the second author [P2] and has
been used to compute for the simple isolated Cohen–Macaulaysingularities, classified
by Frühbis-Kr̈uger–Neumer [FN], the Milnor numbers for those inC4 and the differ-
ence of Betti numbers for the Milnor fiber for the 3–fold singularities inC5. In §11,
these computer calculations are applied to verify a conjecture relatingµ and τ for
the surface case, and discover unexpected behavior ofb3 − b2 and τ for the 3–fold
singularities.

Besides obtaining general formulas as in (0–2) for the various cases, we also introduce
two methods of reduction. In the case of 2× 2 symmetric matrices, the terms in the
linear combination represent the lengths of determinantalmodules and the algebraic
relations between these modules then allow us to combine them into a “Jacobian
formula”. This is a first step to finding more general reduction formulas to simplify
(0–2).

The second method of “generic reduction” can be applied to all cases and uses the
“defining codimensions” of theWi in M . We may rewrite (0–2) in the form

(0–4) µV = λ0 + λ1 + · · ·+ λN−1 (N = dim(M))

whereλj denotes the sum of the terms in (0–2) for which the defining codimension of
Wi is j . If codim(Im(df0(0))) = k and we may apply a generic matrix transformation
to f0 so that Im(df0(0)) projects submersively onto all of the defining linear subspaces
of codimension≥ k associated to theWi , thenλi(f0) = 0 for i ≥ k, and the formula
(0–4) can be reduced to

(0–5) µV (f0) = λ0(f0) + λ1(f0) + · · ·+ λk−1(f0) .

In essence the remaining terms are “higher order terms” which do not contribute in the
generic case. We deduce a number of consequences of this reduction for the different
types of matrices, and obtainµ = τ type results for generic corank 1 mappings
defining matrix singularities of the various types (Theorem 11.3).

In this paper we have only derived the specific formulas for small matrices of various
types. These required an understanding of the roles of certain subgroups and block
representations on subspaces and their relation with the intersection of orbits of the
subgroups with the spaces of singular matrices. To continuethe analysis to more
general matrices requires a more thorough analysis of such subgroups and their block
representations on subspaces. This work is ongoing. Because the method applies quite
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generally to the exceptional orbit varieties for representations of solvable linear alge-
braic groups which form “block representations” having associated “H–holonomic”
free divisors, these results will then as well extend to manyother representations of
solvable linear algebraic groups.

Acknowledgments The authors would like to thank David Mond, Shrawan Kumar,
and Jonathan Wahl for several very helpful conversations and the referee for the careful
reading of the paper and his suggestions for a number of improvements to the paper.

The first author was partially supported by the Simons Foundation grant 230298, and
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the second author’s Ph.D. dissertation at the University ofNorth Carolina at Chapel
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1 Outline of the method

We begin by outlining how we extend the Lê–Greuel method to apply to matrix sin-
gularities, and then illustrate the calculation for the simplest case of 2× 2 symmetric
matrices.

Let M be the space ofm×mcomplex matrices which are symmetric or skew-symmetric,
or m× p general matrices. We also letV denote the subvariety of singular matrices in
M (by which we mean more singular than the generic matrix inM ).

Definition 1.1 A matrix singularity is defined by a holomorphic germ

(1–1) f0 : Cn,0−→ M,0

(or more generally,f0 : X,0→ M,0 for an analytic germX,0). The pull-back variety
V0 = f−1

0 (V) is thematrix singularitydefined byf0.

(1–2)

Cn,0
f0

−−−−→ M,0
x

x

f−1
0 (V) V0,0 −−−−→ V,0

For these singularities we require thatf0 is transverse toV off 0 ∈ Cn (i.e. to
the canonical Whitney stratification ofV ). The determinantal varietiesV are highly
singular. The singular set of the determinantal varieties has codimension inM equal
to 3 (symmetric case), 4 generalm×m case, or 6 for the skew-symmetric case (m
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even); and by the Kato–Matsumoto Theorem [KM], the Milnor fiber ofV0 will only
be guaranteed to be 1–connected (symmetric case), 2–connected (general case), or
4–connected (skew-symmetric case).

To describe their vanishing topology, we initially replacethe Milnor fiber by the
“singular Milnor fiber”. As f0 : Cn,0 → M,0 is transverse toV off 0, we may use
instead a stabilizationft : Bε → M of f0. This means that fort 6= 0, ft is transverse to
V on Bε . Thesingular Milnor fiberis then the fiberVt = f−1

t (V). By results in [DM]
and [D2] (using a result of L̂e), which are valid for any hypersurfaceV , the singular
Milnor fiber Vt is homotopy equivalent to a bouquet of spheres of real dimension
n− 1, whose number we denote byµV (f0) and which we call the “singular Milnor
number”. If V is instead a complete intersection, or iff0 : X,0 → M,0 for an ICIS
X,0, the singular Milnor fiber continues to be homotopy equivalent to a bouquet of
spheres [D2]. If V is not a complete intersection, the singular Milnor fiber need not
be homotopy equivalent to a bouquet of spheres, so we consider instead thesingular
vanishing Euler characteristic̃χV (f0) = χ(Vt) − 1. The singular Milnor numbers
µV (f0) have Milnor-type formulas ifV is a free divisor or a free divisor on a smooth
subspace (see §3).

However, in general the determinantal varieties consisting of singular matrices are not
free divisors. Consequently, we will proceed by modifying the method of L̂e–Greuel
to compute them inductively using free divisors. We recall how the L̂e–Greuel formula
is used to compute the Milnor number of an ICIS.

1.1 Computing Milnor Numbers of ICIS via Geometric Configurations

For an isolated hypersurface singularity defined byf : Cn,0 → C,0, the Milnor
number is computed by Milnor’s algebraic formula

µ(f ) = dimC

(
OCn,0/Jac(f )

)
,

where Jac(f ) is the ideal generated by the partials
∂f
∂xi

, i = 1, . . . ,n. By contrast,

except in the weighted homogeneous case, there is no analogous Milnor-type formula
for computing the Milnor number of an ICISf : Cn,0→ Cp,0. Instead, for a general
ICIS, the L̂e–Greuel formula provides an inductive method as follows.

We choose a geometric configuration which consists of a complete flag of subspaces
0 ⊂ C ⊂ C2 ⊂ · · · ⊂ Cp transverse tof off 0. If (y1, . . . , yp) denote coordinates
defining these subspaces, we letµy1,...,yk(f ) = µ(πk ◦ f ), whereπk denote projection
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onto the subspaceCk × {0}. Then, the Milnor numberµ(f ) can be computed as an
alternating sum

(1–3) µ(f ) =
(
µy1,...,yp(f ) + µy1,...,yp−1(f )

)
−
(
µy1,...,yp−1(f ) + µy1,...,yp−2(f )

)

+ . . . ±
((

(µy1,y2(f ) + µy1(f )
)
− µy1(f )

)
,

where each 2–term sum in parentheses represents the Milnor number of an isolated
singularity on an ICIS and can be computed using the Lê–Greuel Theorem (withµy1(f )
computed by Milnor’s formula).

Theorem 1.2 (Lê–Greuel) For an ICISf = (f1, f2) : Cn,0→ Ck+1,0, with f2 : Cn,0→
Ck,0 also an ICIS,

µ(f ) + µ(f2) = dimC

(
On/(f ∗2 mk + Jac(f ))

)
.

whereJac(f ) now denotes the ideal generated by the(k+ 1)× (k+ 1) minors ofdf .

Thus, µ(f ) is not computed directly, but rather as an alternating sum of lengths of
algebras which are defined using a configuration of subspacesin Cp.

1.2 Inductive Procedure for Computing Singular Milnor Numbers via
Free Completions

We will use an analogous approach for computing the singularMilnor number of a ma-
trix singularity. We give an inductive approach, for which the geometric configuration
is given by a free divisorEm appearing in one of the towers of free divisors from Part
I [DP1] (seeTable 2). This provides a “free completion” of the determinantal variety
Dm of singular matrices,Em = π∗Em−1 ∪ Dm.

Quite generally we define

Definition 1.3 A hypersurface singularityW,0⊂ CN,0 has afree completionif there
is a free divisorV,0⊂ CN,0 such thatV ∪W,0 is again a free divisor.

Then, we may apply (3–4) of Lemma 3.7to obtain

(1–4) µDm(f0) = µEm(f0) − µπ∗Em−1(f0) + (−1)n−1 χ̃π∗Em−1∩Dm(f0) .

In our situations, all of theπ∗Em areH–holonomic (see beginning of §3 and §4). Thus,
theµπ∗Em can be computed as lengths of determinantal modules byTheorem 3.1. This
reduces the calculation ofµDm(f0) to computing ˜χπ∗Em−1∩Dm(f0).
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We proceed inductively to decomposeπ∗Em−1 ∩Dm into a union of components each
of which can be represented as divisors on ICIS. We then use either free completions for
these divisors or completions by divisors which themselveshave free completions. We
may again inductively applyLemma 3.7to further reduce to computing the vanishing
Euler characteristics for divisors on ICIS, where we repeatthe inductive process.
Eventually we are reduced to computing the singular Milnor numbers of almost free
divisors on ICIS, which we can compute using eitherTheorem 3.1or Theorem 3.3.

In analogy with the notation used to explain the case of ICIS,to represent the sin-
gular Milnor number off0 for a variety defined by (g1, . . . ,gr ), we use the notation
µg1,...,gr (f0). The final form the formula will take is that of (0–2), where eachµWi is
given in the form just described.

If instead we consider matrix singularitiesf0 : X,0 → M,0 on an ICISX,0 defined
by ϕ : Cn,0→ Cp,0, then the same arguments may be repeated to obtain a formula
of the form (0–3).

1.3 2× 2 Symmetric Matrix Singularities

As an initial example to illustrate these ideas, we considerthe 2×2 symmetric matrices,

denoted Sym2, and use coordinates

(
a b
b c

)
. The variety of singular matrices isDsy

2

defined byac− b2 = 0. Then, by Theorem 6.2 of [DP1], it has a free completion
Esy

2 = π∗Esy
1 ∪ D

sy
2 , whereEsy

2 is defined bya
(
ac− b2

)
= 0 andπ∗Esy

1 by a = 0.

By the preceding, it is sufficient to determine ˜χπ∗Esy
1 ∩Dsy

2
(f0). Then, set-theoretically,

π∗Esy
1 ∩ D

sy
2 = V

(
a,ac− b2)

= V(a,b) .

Hence,
χ̃π∗Esy

1 ∩Dsy
2

= (−1)n−2µa,b .

Sinceµπ∗Esy
1

(f0) = µa(f0), by substituting into (1–4) we obtain

(1–5) µDsy
2

(f0) = µEsy
2

(f0) −
(
µa(f0) + µa,b(f0)

)

where µEsy
2

(f0) can be computed viaTheorem 3.1as the length of a determinantal
module andµa(f0) + µa,b(f0), by the L̂e–Greuel formula (Theorem 1.2). A complete
statement is given inTheorem 6.1.

This example is especially simple asπ∗Esy
1 ∩D

sy
2 is set-theoretically a complete intersec-

tion. In general it will require a number of inductive steps to decomposeπ∗Em−1∩Dm

and use auxiliary solvable group representations to construct additional free comple-
tions for the components.
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Remark 1.4 In order to apply the inductive method, we must have the germf0 : Cn,0→
M,0 transverse off 0 to each of the free divisors on the subspaces and their intersections.
We use the terminology thatf0 is transverse to the associated varietiesto indicate that
it is transverse to all of these associated free divisors andtheir intersections.

For matrix singularities, we only assume initially thatf0 is transverse off 0 to the
determinantal varietyD . To ensure thatf0 is also transverse to the associated varieties,
we may apply tof0 an element of the larger groups GLm or GLm×GLp which preserve
the determinantal variety of singular matrices. The actions of the groups GLm or GLm×

GLp are transitive on the strata of the determinantal varietyD (by the classification of
complex bilinear forms and echelon form for linear transformations). The complement
of D consists of matrices of maximal rank, and again by the classification, they belong
to a single orbit of these groups. Hence, by the parametrizedtransversality theorem,
for almost all elementsg of the appropriate group, the composition of the action of
g with f0, denotedg · f0, is transverse to the associated varieties. Hence, these will
preserveD and movef0 into general position off 0 relative to the associated varieties.

There are three essential ingredients which allow the general computations to be carried
out for the various matrix types in the later sections:

• First, the singular Milnor numbers are computed in terms of acertain defor-
mation theoretic codimension forKH –equivalence. In §2 we relate this to the
equivalenceKM for matrix singularities and a related equivalenceKV for view-
ing germs as nonlinear sections of the varietyV of singular matrices. We also
recall the formulas for codimensions as lengths of modules.

• Second, we recall in §3 the formulas for computing the singular Milnor numbers
and formulas involving them and singular vanishing Euler characteristics.

• Third, in §4 we summarize the results from part I which construct the towers of
free divisors and certain auxiliary free divisors needed for the various types of
matrix singularities.

2 Equivalence Groups for Matrix Singularities

There are several different equivalences that we shall consider for matrix singularities
f0 : Cn,0→ M,0 with V denoting the subvariety of singular matrices inM . The one
used in classifications isKM –equivalence: We suppose that we are given an action of
a group of matricesG on M . For symmetric or skew-symmetric matrices, it is the
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action of GLm(C) by B · A = B A BT . For generalm× p matrices, it is the action of
GLm(C) × GLp(C) by (B,C) · A = B A C−1. Given such an action, then the group
KM consists of pairs (ϕ,B), with ϕ a germ of a diffeomorphism ofCn,0 and B a
holomorphic germCn,0→ G, I . The action is given by

f0(x) 7→ f1(x) = B(x) ·
(
f0 ◦ ϕ

−1(x)
)
.

For one spaceM and groupG, we use the generic notationKM for any of these groups
of equivalence (Gervais had earlier considered this type ofequivalence, referring to it
asG–equivalence [Ge1, Ge2]).

In addition toKM , there are two other commonly used groups.

2.1 KV and KH –equivalence for Matrix Singularities

If we view f0 as a “nonlinear section ofV ” (even for a more general germV,0), KV –
equivalence is defined by the actions of pairs of diffeomorphisms (Φ, ϕ), preserving
Cn× V (see [D1]).

(2–1)

Cn× CN,0
Φ

−−−−→ Cn× CN,0
i

←−−−− Cn× V,0

π

y π

y

Cn,0
ϕ

−−−−→ Cn,0

For V0 = f−1
0 (V), it gives an ambient equivalence ofV0,0⊂ Cn,0.

There is a third equivalence,KH –equivalence, introduced in [DM], which requires
moreover thatΦ given above preserves all of the level sets ofH . HereH is chosen to
be a “good defining equation” forV , which means there is an “Euler-like vector field”
η such thatη(H) = H . In the weighted homogeneous case such as for determinantal
varieties, we use the Euler vector field (for generalV we may always replaceV by

V × C and
∂

∂t
is such a vector field for the defining equationet · H ).

All of these equivalence groups have corresponding unfolding groups and belong to
the class of geometric subgroups ofA or K , so all of the basic theorems of singularity
theory in the Thom–Mather sense are valid for them (see [D1, D3, D6]). In particular,
germs which have finite codimension for one of these groups have versal unfoldings,
and the deformation theoretic spaces for these groups play an important role.

We let θN denote the module of germs of vector fields onCN,0, andI (V) the ideal of
germs vanishing onV , and define, after Saito [Sa] the module oflogarithmic vector
fields

Derlog(V) = {ζ ∈ θN : ζ(I (V)) ⊆ I (V)}.
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For good defining equationH , we also define

Derlog(H) = {ζ ∈ θN : ζ(H) = 0}.

If H is a good defining equation,

Derlog(V) = Derlog(H) ⊕ OCN,0{η} .

These modules both appear in infinitesimal calculations forthe groups.

If Derlog(V) is generated byζ0, . . . , ζr , then the extended tangent space is given by

(2–2) TKV ,e · f0 = OCn,0

{
∂f0
∂x1

, . . . ,
∂f0
∂xn

, ζ0 ◦ f0, . . . , ζr ◦ f0

}
.

The analog of the deformation tangent spaceT1 is the extendedKV normal space

NKV ,e · f0 = θ(f0)/TKV,e · f0 ≃ O(p)
Cn,0/TKV,e · f0

where as usualθ(f0), the module of germs of holomorphic vector fields alongf0, is the

freeOCn,0 module generated by

{
∂

∂xi

}
, 1≤ i ≤ n. Likewise, if ζ0 denotes the Euler-

like vector field with the remainingζi generating Derlog(H), thenTKH,e is obtained
by deletingζ0 ◦ f0 in (2–2), with NKH,e denoting the corresponding quotient. As
usual, the dimensions of these extended normal spaces are the extended codimensions
KV ,e–codim(f0), resp.KH,e–codim(f0).

There is a direct relation between these groups andKM . The extended tangent space for
KM is obtained by an analogous formula to (2–2) except the generators of Derlog(V)
are replaced by vector fields for the matrix equivalence group G acting onM ≃ CN .

They are of the formξvi (x) =
∂

∂t
(exp(tvi ) · x)|t=0 , for {vi} a basis for the Lie algebra

g of G. In the terminology of part I, we refer to these as the “representation vector
fields”.

The reason these are so closely related for matrix singularities is due to a collec-
tion of results due to J́ozefiak [J], Józefiak–Pragacz [JP], and Gulliksen–Neg̊ard[GN].
Goryunov–Mond [GM] recognized that these results prove that for the three types of
m×m matrices (symmetric, skew-symmetric (withm even), or general matrices) that
the modules of vector fields generated by the representationvector fields are exactly
Derlog(V), for V the determinantal variety of singular matrices. It then follows that
KM andKV have the same tangent spaces; and when using the standard methods for
studying equivalence of singularities, they give the same equivalence.

In addition, as noted in [DM], if f0 is weighted homogeneous for the same set of
weights asV , then the extended tangent spaces off0 for KV andKH are the same.
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Hence,

(2–3) KM,e–codim(f0) = KV ,e–codim(f0) = KH,e–codim(f0) .

Thus, Bruce’s observed result [Br] about simple symmetric matrix singularities and
the result of Goryunov–Mond [GM] both concern the relation between the Milnor
numberµ(H ◦ f0) andKH,e–codim(f0). We next consider how this relates to the case
of nonisolated matrix singularities.

3 Singular Milnor Fibers and Singular Milnor Numbers

The singular Milnor numbers can be explicitly computed in the caseV is afree divisor.
This term was introduced by Saito [Sa] for hypersurface germsV,0 ⊂ CN,0 for which
Derlog(V) is a freeOCN –module, necessarily of rankN. In this case, iff0 : Cn→ M,0
is transverse toV off 0 (∈ Cn), we refer toV0 = f−1

0 (V) as analmost free divisor
(AFD).

A free divisor V is calledholonomicby Saito if at any pointz ∈ V the generators
of Derlog(V) evaluated atz span the tangent space of the stratum containingz of the
canonical Whitney stratification ofV . If this still holds true using Derlog(H) instead
then we say it isH–holonomic[D2].

Then, the results in [DM, Thm 5] (for locally weighted homogeneous free divisors) and
[D2, Thm 4.1] (extended toH–holonomic free divisors) combine to give the following
formula for the singular Milnor number.

Theorem 3.1 If V ⊂ CN is anH–holonomic free divisor, andf0 : Cn,0→ CN,0 is
transverse toV off 0, then

(3–1) µV (f0) = KH,e–codim(f0)

where the RHS is computed as the length of a determinantal module.

Remark 3.2 We note by [D2, Lemma 2.10] that asV is H–holonomic,f0 is transverse
to V off 0 if and only if f0 has finiteKH,e–codimension.
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3.1 Almost Free Divisor (AFD) on an ICIS

This formula further extends to the casef0 : X,0→ CN,0 whereX,0 ⊂ Cn,0 is an
ICIS defined byϕ : Cn,0→ Cp,0. In our situation, we consider the case wheref0|X
is transverse to aH–holonomic free divisorV off 0. Then, as in §1, we consider
a stabilizationft : Bε → M of f0, for which ft|X ∩ Bε is transverse toV for t 6= 0.
For Vt = f−1

t (V), Vt ∩ X ∩ Bε is homotopy equivalent to a bouquet of spheres of real
dimensionn− p− 1 [D2, §7]. We denote byµϕ,V (f0) the number of such spheres and
refer to this number as thesingular Milnor number of f0|X. Then, the singular Milnor
number can be computed by the following generalization of the Lê–Greuel formula,
see [D2, §9] or [D3, §4].

Theorem 3.3 (AFD on an ICIS) Let V,0 ⊂ CN,0 be anH–holonomic free divisor
as above. SupposeX,0 ⊂ Cn,0 is an ICIS defined byϕ : Cn,0 → Cp,0, and that
f0|X is transverse toV off 0. Let F = (ϕ, f0) : Cn,0→ Cp+N,0. Then,
(3–2)

µϕ,V(f0) + µ(ϕ) = dimC

(
Op+N

X,0

/
OX,0

{
∂F
∂x1

, . . . ,
∂F
∂xn

, ζ1 ◦ f0, . . . , ζN−1 ◦ f0

})
,

whereDerlog(H) is generated byζi , i = 1, . . . ,N− 1.

With µ(ϕ) computed by the L̂e–Greuel formula, (3–2) then yields the singular Milnor
numberµϕ,V (f0). We also note that ifV = {0} then (3–2) yields a module version
of the Lê–Greuel formula. We next see that (3–2) can also be viewed as computing
the singular Milnor number ofF for a free divisor on a smooth subspaceCN ⊂ Cp+N .
This is the form that many terms on the RHS of (0–2) will take in the formulas we
obtain.

Proposition 3.4 Let V,0⊂ CN,0 be anH–holonomic free divisor.

(1) Let V ′ = V ×Cp,0⊂ CN+p,0, and supposef0 : Cn,0→ CN+p,0 is transverse
to V ′ off 0. Then forπ denoting the projectionCN+p→ CN ,

µV ′(f0) = µV (π ◦ f0) .

(2) Let V ′′,0 = V ×{0} ⊂ CN+p,0 be the image ofV,0 via the inclusionCN,0⊂
CN+p,0 (so thatV ′′ is a free divisor in a linear subspace ofCN+p). Suppose
f0 : Cn,0→ CN+p,0 is transverse toV ′′ off 0 and forπ′ denoting the projection
CN+p→ Cp, ϕ = π′ ◦ f0 : Cn,0→ Cp,0 is an ICIS. Then

µV ′′(f0) = µϕ,V(π ◦ f0) .
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Proof For (1), we first note thatV ′ is alsoH–holonomic. If {Si} are the strata of
the canonical Whitney stratification ofV , then {Si × Cp} are the strata forV ′ =

V × Cp. Also, if Derlog(V) has the set of free generatorsη1, . . . ηN−1 and we use
coordinates (w1, . . . ,wp) for Cp, then we can trivially extend theηi to CN+p and

adjoin

{
∂

∂w1
, . . .

∂

∂wp

}
to obtain a set of free generators for Derlog(V ′). Thus,V ′ is

alsoH–holonomic.

By a calculation similar to that forKV,e in [D3], it follows that for any germf0 : Cn,0→
CN+p, with π : CN+p → CN the projection,V defined byH , and V ′ defined by
H′ = H ◦ π , we have an isomorphism of normal spaces

KH′,e · f0 ≃ KH,e · π ◦ f0 .

Then, byTheorem 3.1we have (1).

For (2), we observe that if we choose a stabilizationf ′t of π ◦ f0 so that 0/∈ f ′−1
t (V)

for t 6= 0, thenFt = (ϕ, f ′t ) is a stabilization off0 for V ′′ . Thus, the singular Milnor
fiber of π ◦ f0|X for V , whereX = ϕ−1(0), is also the singular Milnor fiber off0 for
V ′′ . This yields (2).

Remark 3.5 In the formula (0–1), if Wi ⊂ CN has codimensionk, then if n < k,
the corresponding singular Milnor fiber off0 : Cn,0 → CN,0 for Wi will be empty
and hence have Euler characteristic 0. Likewise, ifn− p < k then for X,0 ⊂ Cn,0
an ICIS defined byϕ : Cn,0→ Cp,0, the singular Milnor fiber off0 : X,0→ CN,0
will be empty and hence have Euler characteristic 0. Thus, tomake all of the formulas
correct, we adopt the following convention:

Convention If n < k = codim(Wi), thenµWi (f0)
def
= (−1)n−k+1 . Likewise if n− p <

k = codim(Wi), thenµϕ,Wi (f0)
def
= (−1)n−p−k+1 .

Remark 3.6 The terms on the LHS of (3–2) can be viewed as computing the “relative
singular Milnor number”, which is given by rank(Hn−p−1(Xt ∩ Bε,Vt ∩ Xt ∩ Bε;Z)),
whereXt is the Milnor fiber ofϕ andVt = f−1

t (V). This follows becauseVt∩Xt∩Bε ≃

Vt ∩X∩Bε . Since each fiber is homotopy equivalent to a bouquet of spheres, the exact
sequence for a pair yields the sum on the LHS of (3–2).

3.2 Singular Vanishing Euler Characteristic

In the case thatV is not a complete intersection, we can still introduce a version of the
vanishing Euler characteristic for the singular Milnor fiber (which may no longer be
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homotopy equivalent to a bouquet of spheres). We suppose again that f0 : Cn,0→ M,0
is transverse toV off 0, and consider a stabilizationft : Bε → M of f0 . We let the
singular vanishing Euler characteristicbe defined by

χ̃V (f0)
def
= χ̃

(
f−1
t (V)

)
= χ

(
f−1
t (V)

)
− 1 .

As earlier,χ̃V (f0) is independent of stabilization.

Similarly, if X,0 is an ICIS defined byϕ : Cn,0 → Cp and f0 : X,0 → CN is
transverse toV off 0, we define

χ̃ϕ,V (f0)
def
= χ̃

(
f−1
t (V ∩ X)

)
= χ

(
f−1
t (V ∩ X)

)
− 1 .

This can be viewed as the singular vanishing Euler characteristic for the mapping
F0 = (ϕ, f0) : Cn,0→ Cp×CN,0 since ifft|X : X∩Bε → CN is transverse toV , then
Ft = (ϕ, ft) : Bε → Cp× CN is transverse to{0} × V . Thus,χ̃ϕ,V (f0) = χ̃{0}×V (F0).

We will compute singular Milnor numbers for nonlinear sections of hypersurface and
complete intersection singularities. However, we will do so by using simple Euler
characteristic arguments for the singular vanishing Eulercharacteristics combined
with their calculation in terms of singular Milnor numbers.These, in turn, can be
calculated algebraically using (3–1) andTheorem 3.3. The simplest version is for the
case of subvarietiesV,W ⊂ CN .

Lemma 3.7 Supposef0 : Cn,0 → CN,0 is transverse toV , W and V ∩ W off
0 ∈ Cn. Then,

(3–3) χ̃W∪V (f0) = χ̃W (f0) + χ̃V (f0) − χ̃W∩V (f0) .

In the case thatV andW are both hypersurface singularities we obtain from(3–3)

(3–4) µW (f0) = µW∪V (f0)− µV (f0) + (−1)n−1χ̃W∩V (f0) .

If instead X,0 is an ICIS defined byϕ : Cn,0 → Cp,0 and f0 : X,0 → CN,0 is
transverse toV andW off 0, then there are the analogs for(3–3) and (3–4)

(3–5) χ̃ϕ,W∪V (f0) = χ̃ϕ,W(f0) + χ̃ϕ,V(f0) − χ̃ϕ,W∩V(f0)

and

(3–6) µϕ,W(f0) = µϕ,W∪V(f0)− µϕ,V (f0) + (−1)n−p−1χ̃ϕ,W∩V(f0) .

Notation To simplify formulas, we will view singular Milnor numbers and singular
vanishing Euler characteristics as numerical functions onthe space of germs transverse
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to the appropriate set of subvarieties off 0. Hence, a formula such as (3–4) will be
written with evaluation onf0 understood so it will take the form

(3–7) µW = µW∪V − µV + (−1)n−1χ̃W∩V .

Also, we may applyProposition 3.4to obtain µπ∗E (f0) = µE (π ◦ f0), so with this
understanding, in all future formulas we will abbreviateµπ∗E to justµE .

Proof of Lemma 3.7 The addition-deletion type argument for reduced Euler charac-
teristics (χ̃ = χ−1) for subvarieties applied to the hypersurfacesW andV give (3–3).
Then, for a hypersurfaceW , we have ˜χW(f0) = (−1)n−1µW (f0). Substituting for ˜χ
for all of the hypersurfaces in (3–3) and rearranging yields (3–4).

The same Euler characteristic argument used in verifying (3–3) also applies instead
to {0} × Y ⊂ Cp+N for hypersurfacesY and the mapF = (ϕ, f0) yielding (3–5).
Substituting ˜χϕ,W(f0) = (−1)n−p−1µϕ,W (f0) for all of the hypersurfaces in (3–5)
yields after rearranging (3–6).

3.3 Intersections of Multiple Hypersurfaces

To compute ˜χV∩W we will use an inductive procedure which requires computing
χ̃∩iWi for a collection of hypersurfacesWi . We will use the following formula fork
hypersurfacesWi :

(3–8) χ̃∩iWi =
∑

j

(−1)|j |+1χ̃∪jWji

for nonemptyj = {j1, . . . , jr} ⊂ {1, . . . , k} with |j | = r (for a formula involvingχ
see [D2, Lemma 8.1], but an analogous addition-deletion argument works for χ̃ using
reduced homology).

Then, for mappingsf0 : Cn,0 → CN,0, substituting ˜χ∪jWji
= (−1)n−1µ∪jWji

we
obtain

Proposition 3.8 For mappingsf0 : Cn,0→ CN,0 and a collection of hypersurfaces
Wi,0⊂ CN,0, i = 1, . . . , k, with ∩iWi not necessarily a complete intersection,

(3–9) χ̃∩iWi = (−1)n−k


∑

j

(−1)|j |+kµ∪jWji


 .

Remark 3.9 In the case that∩iWi is a complete intersection, this formula reduces to
Theorem 2 of [D2, §8].
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4 Exceptional Orbit Varieties as Free Divisors

We recall the results from part I [DP1] which allow us to embed the varieties of singular
matrices in a geometric configuration of divisors which formfree divisors.

We use the notation from part I and letMm,p denote the space ofm×p complex matrices,
and Symm, respectively Skm, the subspaces ofMm,m of symmetric, respectively skew-
symmetric, complex matrices. Next, we letBm denote the Borel subgroup of GLm(C)
consisting of lower triangular matrices and the group

Cm =

(
1 0
0 BT

m−1

)

whereBT
m−1 denote the group of upper triangular matrices of GLm−1(C). Then, the

(modified) Cholesky-type representationsare given inTable 1, which is Table 1 of
[DP1]. These representations give rise toexceptional orbit varietieswhich are the
union of the positive codimension orbits of the representations. We denote these by:
Esy

m (for Symm); Em (for Mm,m); Em−1,m (for Mm−1,m); andEsk
m (for Skm). Then, by

[GMNS] for the symmetric case and for all cases by Theorems 6.2, 7.1, and 8.1 in
[DP1], the first three families are linear free divisors, and the lastEsk

m are free divisors.
These are families of representations which, via natural inclusions of groups and spaces,
together form towers of representations. Furthermore, theexceptional orbit varieties
contain as components the corresponding “generalized determinant varieties”, which
we denote by:Dsy

m , Dm, Dm−1,m, andDsk
m respectively. The defining equations for

the corresponding exceptional orbit varieties and generalized determinant varieties are
given in Table 2. Because of the tower structure for the representations we have the
inductive representation for them–th exceptional orbit varietyEm and generalized
determinant varietyDm

(4–1) Em = Dm∪ π∗Em−1 ,

where π denotes a projection from them–th representationVm, π : Vm → Vm−1.
Then, by (4–1), in each caseDm has a free completion toEm by π∗Em−1.

Remark 4.1 For Skm, in place of a solvable group, we have an infinite dimensional
solvable Lie algebrãDm which is an extension of the Lie algebra of the solvable Lie
group

Gm =

(
T2 02,m−2

0m−2,2 Bm−2

)

whereT2 is the group of 2×2 diagonal matrices. This extension is by a set of Pfaffian
vector fieldsηk for 2 ≤ k ≤ m− 2, see [DP1, §8] and [P, Chap. 5]. The resulting
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(Modified) Cholesky-Type Representations Yielding Free Divisors
(Modified) Cholesky- Matrix Solvable Representation

type factorization space group
Symmetric matrices Symm Bm B · A = B A BT

Generalm×m Mm,m Bm× Cm (B,C) · A = B A C−1

General (m− 1)×m Mm−1,m Bm−1× Cm (B,C) · A = B A C−1

Nonlinear representation Matrix Solvable Representation
space Lie algebra

Skew-symmetric matrices Skm D̃m Diff( Esk
m ,0)

Table 1: Solvable group and solvable Lie algebra block representations for (modified) Cholesky-
type factorizations, yielding the free divisors inTable 2.

infinite dimensional Lie group Diff(Esk
m ,0) is the group of germs of diffeomorphisms

preservingEsk
m .

Remark 4.2 We may interleave the towers of general matrices soMm−1,m−1 ⊂

Mm−1,m ⊂ Mm,m. Then, the successive generalized determinantal varieties are defined
by det

(
Â(m−1)

)
and then det(A).

4.1 Free Divisors arising from Restrictions of Block Representations

In addition to the free divisors arising from the representations inTable 1, we shall also
use certain auxiliary free divisors arising from the restriction of representations. These
are given in §9 of [DP1].

For Sym3 we use coordinates given by

A =




a b c
b d e
c e f


 .

We defineQf = det(Af ) andQa = det(Aa) whereAf andAa are obtained fromA by
setting f = 0, respectively,a = 0. Interchanging the first and third coordinates in
C3 will interchangeQf andQa so any result forQf will have an analogous result for
Qa. We let Va denote the subspace wherea = 0 andVf , wheref = 0. Then, we can
summarize the appropriate results from Propositions 9.1 and 9.5 of [DP1].

Proposition 4.3 The subvarieties ofVa defined byb · d · Qa = 0 and ofVf defined
by
(
ad− b2

)
· Qf = 0 are linear free divisors.
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E Defining Equation forE D Defining Equation forD

Esy
m

m∏

k=1

det
(
A(k)) Dsy

m det(A)

Em

m∏

k=1

det
(
A(k)) ·

m−1∏

k=1

det
(
Â(k)) Dm det

(
Â(m−1)

)
· det(A)

Em−1,m

m−1∏

k=1

det
(
A(k)) ·

m−1∏

k=1

det
(
Â(k)) Dm−1,m det

(
A(m−1)

)
· det

(
Â(m−1)

)

Esk
m

m−2∏

k=1

det

(
ˆ̂A

(k)
)
·

m∏

k=2

Pf{ǫ(k),...,k}(A) Dsk
m Pf{ǫ(m),...,m}(A) · det

(
ˆ̂A

(m−2)
)

Table 2: Defining equations for the exceptional orbit varietiesE and determinantal varietiesD
for the solvable group and solvable Lie algebra block representations inTable 1. If A = (aij )
denotes a general matrix, thenÂ denotes the matrix obtained by deleting the first column of

A and ˆ̂A, that obtained by deleting the first two columns ofA. Then,A(k) denotes thek× k
upper left-hand submatrix of a matrixA. Also, Pf{ǫ(k),...,k}(A) denotes the Pfaffian of the
skew-symmetric submatrix ofA consisting of the consecutive rows and columnsǫ(k), . . . , k,
whereǫ(k) = 1, 2 with ǫ(k) ≡ k+ 1 mod 2.

Hence, byProposition 4.3, V(Qa) has a free completion using the free divisorV(bd),
and we may completeV(Qf ) to a free divisor usingDsy

2 = V(ad− b2). AlthoughDsy
2

is not a free divisor, it has a free completionEsy
2 .

4.2 A Quiver Linear Free Divisor

A third special case of linear free divisors needed for our calculations occurs for the
special case of 2× 3 matrices. In [BM], Buchweitz and Mond proved that quivers of
finite type give rise to free divisors. The quiver consistingof 3 arrows from vertices
(representingC) to a central vertex (representingC2) corresponds to the representation

of
(
GL2(C)× (C∗)3

)
/C∗ onM2,3. If we use coordinates onM2,3 given by

(
a b c
d e f

)
,

then the corresponding free divisor is defined by (ae− bd)(af − cd)(bf − ce) = 0.

4.3 Linear Free Divisors which areH–holonomic

Theorem 3.1allows us to computeµV (f0) providedV is anH–holonomic free divisor.
In this section we give two results establishing that free divisors areH–holonomic;
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one applies to towers of linear free divisors, and the other,to arbitrary low-dimensional
linear free divisors.

H–holonomic free divisors which appear in towers

Let E be a free divisor arising as the exceptional orbit variety ofa representation
G→ GL(W), which itself is one step of a tower of representations as defined in part I
([DP1]). For example,E could be any of the hypersurfaces in the following Theorem,
which is proven in detail in §6.3 of [P] using the technique we will describe.

Theorem 4.4 (Theorem 6.2.2 in [P]) The linear free divisorsEsy
m , Em, andEm−1,m

listed inTable 2areH–holonomic.

Outline of Proof We outline what is a fairly lengthy argument which is proven in
detail in §6.3 of [P]. Readers are encouraged to refer there for the full details.

First, it is proven that there are only a finite number of orbits of G in W by classifying
them, giving normal forms for representatives of each orbit. The tower structure makes
this step significantly easier, because the classification at a lower level of the tower
can be combined with the inclusion of the group action and vector spaces to put an
arbitraryw ∈W into a “partial normal form”g1 · w (for example, a certain submatrix
of g1 · w contains only zeros and ones in a certain pattern). Then, another element of
G is applied to putg1 · w into a normal form. As the resulting list of normal forms
is finite, there are a finite number ofG–orbits inW (and thus in the exceptional orbit
variety E ), and soE is holonomic.

Second, we letGH ⊂ G be the connected codimension 1 Lie subgroup whose Lie
algebra of vector fields generates Derlog(H). To show E is H–holonomic, it is
sufficient to prove thatGH acts transitively on all non-openG–orbits (or, theG–orbits
in E are theGH –orbits inE ). Thus we consider each normal formn (representing a
non-open orbit) with an arbitraryg ∈ G, and show that there exists anh ∈ G in the
isotropy subgroup ofn with hg∈ GH . Thus, ifn = g·v thenn = hg·v with hg∈ GH .
It follows that G · n = GH · n.

H–holonomic free divisors in small dimensions

Since we use other linear free divisors described above, we also provide the following
sufficient condition for a hypersurface to beH–holonomic. In low dimensions, the
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criterion can be checked by a computer using a computer algebra system such as
Macaulay2 or Singular.

Let V,0⊂ Cn,0 be a reduced hypersurface with good defining equationH . Let M be
anOCn,0–module of vector fields onCn,0. We let forz∈ Cn,

〈M〉(z) = {η(z) | η ∈ M}

be the linear subspace ofTzC
n. The logarithmic andH–logarithmic tangent spaces

are defined to be

TlogVz = 〈Derlog(V)〉(z) and TlogHz = 〈Derlog(H)〉(z) .

For 0≤ k ≤ n, define the varietiesDk = {z ∈ V | dim(TlogVz) ≤ k} andHk = {z ∈
V | dim(TlogHz) ≤ k}.

Proposition 4.5 With the preceding notation, if, for all0≤ k < n,

(1) all irreducible components of(Dk,0) have dimension≤ k at 0, and

(2) (Dk,0) = (Hk,0) as germs,

then (V,0) is H–holonomic.

Proof For z∈ V , let Sz denote the stratum of the canonical Whitney stratification of
V containingz. Then,V is holonomic if and only ifTlogVz = TzSz for all z∈ V , and
it is H–holonomic if and only ifTlogHz = TzSz for all z∈ V .

First, we observe that the conditions implyV is holonomic for if not, then there is a
stratumS of highest dimension, sayk, on which it fails. Then, there is a Zariski open
set U of S consisting of thosez ∈ S with TlogVz ( TzSz. Then, U ⊂ Dk−1, and
dimDk−1 ≥ k, contradicting (1). A similar argument usingTlogHz shows ifV is not
H–holonomic, then dimDk−1 ≥ k, contradicting (2) given that (1) holds.

Computer algebra systems such as Macaulay2 and Singular have built-in functions to
perform each of the steps necessary to useProposition 4.5to show that a hypersurface is
H–holonomic, including: finding generators of Derlog(V) and Derlog(H) (as certain
syzygies), determining the ideals defining eachDk andHk , computing the radicals and
primary decompositions of these ideals, computing the dimensions of the irreducible
components ofDk , and testing pairs of ideals for equality.

Remark 4.6 In particular, the linear free divisors inProposition 4.3and the quiver
linear free divisor inM2,3 areH–holonomic.

When we assert that a hypersurface is anH–holonomic free divisor and give no refer-
ence, it will be understood that we have used an implementation ([P2]) of this approach
in Macaulay2 ([M2]) to check Saito’s Criterion and the conditions ofProposition 4.5.
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5 A Metatheorem and Generic Reduction

In this section we introduce two ideas which both extend and simplify the formulas for
singular Milnor numbers which we will obtain.

5.1 Metatheorem

The results on matrix singularities forf0 : Cn,0→ M,0 can be extended to the case of
matrix singularities on an ICIS X. In fact given a formula (0–2) for µV , the following
metatheorem asserts that there is a corresponding formula for the singular Milnor
number off0|X,0→ M,0.

Metatheorem 5.1 If X is an ICIS defined byϕ : Cn,0 → Cp,0, and the formula
(0–2) for µV is obtained by the inductive procedure, then the same procedure also
yields the formula (with the same coefficientsai )

(5–1) µϕ,V =
∑

i

aiµϕ,Wi

whereµϕ,V(f0), respectivelyµϕ,Wi (f0), are the singular Milnor numbers forf0|X as
nonlinear sections ofV , resp.Wi , and can be computed as lengths of determinantal
modules.

Likewise, if instead we have a formula for the vanishing Euler characteristicχ̃V having
the same form as in(0–2)

(5–2) χ̃V =
∑

i

biµWi

and obtained by the inductive process, then there is an analogous formula

(5–3) χ̃ϕ,V = (−1)p
(
∑

i

biµϕ,Wi

)
.

Proof This result follows because at each inductive step, the decomposition into the
associated varieties will be the same. Then, in place of using the formulas inLemma 3.7
andTheorem 3.1for germsf0 onCn, we use the versions ofLemma 3.7for f0|X on an
ICIS X andTheorem 3.3. Also, for a variety inM defined by (g1, . . . ,gr ), in place of
µg1,...,gr (f0) we useµ(g1,...,gr )◦π((ϕ, f0)), with π : Cr+p → Cr denoting the projection.
This we denote byµϕ,g1,...,gr (f0). This can be seen by observing that in terms of
singular vanishing Euler characteristics, we repeatedly use (3–3) from Lemma 3.7.
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However, for f0|X we repeatedly use instead (3–5). Thus, the formulas in terms of
singular vanishing Euler characteristics will have the same form. However, in writing
the formulas in terms of singular Milnor numbers, ˜χWi = (−1)n−kµWi wherek is the
codimension ofWi ; while χ̃ϕ,Wi = (−1)n−p−kµϕ,Wi . Since the extra factor of (−1)p

will occur for every term on each side, it will cancel yielding (5–1). However, for ˜χϕ,V

versus ˜χV , there is an extra factor of (−1)p for each term on the RHS, resulting in the
desired formula (5–3).

5.2 Generic Reduction

Given a matrix singularity defined byf0, we may apply an elementg of the groupG
which acts on the space of matricesM to obtain f1 = g · f0 which isKM –equivalent
to f0 and has the same singular Milnor number. ByRemark 1.4we can applyg so
that f1 is transverse to the associated varieties, allowing us to computeµD(f0) using
formulas of the form (0–2). However, we can do more and this leads to the idea of
generic reduction.

We can simplify the form which the formulas take if we can choose f1 so as many of
the terms in (0–2) vanish. We can achieve this by consideringdf0(0) and the effect of
applyingg to it to obtaindf1(0).

GivenWi ,0, we chooseMi ⊂ M as the linear subspace of minimal dimension con-
tainingWi . We also representWi,0 as the pullback of a divisor by the projection
πi : Mi → Cmi , for minimal mi . Then, thedefining dimensionofWi is codimMi +mi ,
and thedefining codimensionof Wi is dimMi −mi . We then letλℓ denote the sum of
the terms in (0–2) for theWi of defining codimensionℓ. Then, by generic reduction
we mean that an elementg of G is applied so thatdf1(0) projects submersively onto
eachM/ ker(πi) for thoseWi of defining codimension≥ codim(Im(df1(0))). Then,
all of the termsλℓ(f1) will be 0 for ℓ ≥ codim(Im(df1(0))).

In certain cases, the classification of linear matrix singularities may prevent us from
obtaining anf1 with the full generic reduction; however, we will still apply g to obtain
as many terms vanishing as possible. The results obtained inthe later sections will
indicate how generic reduction simplifies the formulas. In §11 we deduce specific
consequences of generic reduction for all of the matrix types for generic corank 1
matrix mappings and for the computations for Cohen–Macaulay singularities.
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6 Symmetric Matrix Singularities

By the results of [DP1] summarized in §4, the exceptional orbit varietyEsy
m of the

representation ofBm on Symm is a linear free divisor and the determinantal variety
Dsy

m has a free completion given by

(6–1) Esy
m = π∗Esy

m−1 ∪ D
sy
m

for the projectionπ : Symm→ Symm−1.

Furthermore, byTheorem 4.4, Esy
m is H–holonomic; hence byTheorem 3.1, for a

nonlinear sectionf0 : Cn,0 → Symm, transverse toEsy
m off 0, the singular Milnor

numberµEsy
m

is the length of the determinantal module

NKH,e (f0) ≃ NKB̃m,e (f0)

whereB̃m is the subgroup ofBm which preserves the defining equationH of Esy
m . The

corresponding Lie algebra of representation vector fields is Derlog(H).

Hence, byLemma 3.7and (6–1), we have quite generally

(6–2) µDsy
m

= µEsy
m
− µEsy

m−1
+ (−1)n−1 χ̃π∗Esy

m−1∩D
sy
m
.

Thus, we are reduced to inductively computing ˜χπ∗Esy
m−1∩D

sy
m

. We note that the simplest

case ofDsy
1 = {0} ⊂ Sym1 ≃ C just yields isolated hypersurface singularities and

µDsy
1
= µ when applied tof0 : Cn,0 → Sym1,0 ≃ C,0. We have already carried

out the calculation for 2× 2 symmetric matrices in §1 which leads to the following
theorem.

Theorem 6.1 For the space of germs transverse to the associated varieties for Esy
2 off

0,

(6–3) µD
sy
2

= µE
sy
2
− (µa + µa,b)

whereµE
sy
2
= KB̃2,e–codim andµa + µa,b is the length of a determinantal module by

the Lê–Greuel formula (Theorem 1.2).

By Metatheorem 5.1there is an analog of(6–3) for the Milnor numberµϕ,Dsy
2

on the

ICIS X = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.

Proof We have already obtained (6–3), and the metaversion follows from the Metathe-
orem.
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We observe that for germsf0 : C2,0 → Sym2,0 transverse toDsy
2 off 0, det◦f0

defines an isolated hypersurface singularity and the Milnornumber µ(det◦f0) =

dimOC2,0/Jac(det◦f0). The Milnor fiber of det◦f0 equals the singular Milnor fiber
of f0, and hence the Milnor number and singular Milnor number agree. For n > 3
and f0 : Cn,0→ Sym2,0 (transverse toDsy

2 off 0), det◦f0 no longer has an isolated
singularity; however, the singular Milnor number is still defined.

We consider the case wheref0 has rank≥ 1. We may apply a matrix transformation
on Sym2 so thatdf0(0) has nonzero upper-left entry. Furthermore, we may assume
that under the transformation,f0 is transverse off zero to the linea = b = 0, so the
composition off0 with projection onto the (a,b)–subspace has an isolated singularity
at 0. Thus, after applying the transformation, we may apply achange of coordinates
in Cn,0 so that fory = (y1, . . . , yn−1), f0 has the form

(6–4) f0(x, y) =

(
x g(x, y)

g(x, y) h(x, y)

)
.

In the case thatg is weighted homogeneous we can collapse (6–3) to yield a Jacobian-
type formula for the singular Milnor number. We letg be weighted homogeneous of
weighted degreeℓ for the weights wt(x, y1, . . . , yn−1) = (a0,a1, . . . ,an−1) and Euler

vector fielde= a0x
∂

∂x
+
∑

aiyi
∂

∂yi
.

Corollary 6.2 (Jacobian Formula)If n ≥ 2 and f0 : Cn,0→ Sym2,0 has the form
(6–4) with g weighted homogeneous (and is transverse to the associated varieties off
0), then

(6–5) µDsy
2

(f0) = dimC

(
OCn,0/(J̃ac(det◦f0) + Jac(f0))

)

whereJac(f0) is the ideal generated by the3× 3 minors of df0 and J̃ac(det◦f0) is a

modified Jacobian ideal where
∂(det◦f0)

∂x
is replaced by(2ℓ+a0)

∂(det◦f0)
∂x

+ δ(h) for

δ(h) = (2ℓ − a0)h− e(h). If det◦f0 is weighted homogeneous (for the same weights
asg), then (δ(h) = 0 and) J̃ac(det◦f0) = Jac(det◦f0).

Remark 6.3 In the Corollary, if n = 2 then there are no 3× 3 minors, so the
formula reduces to dimC(OCn,0/(J̃ac(det◦f0)). If det◦f0 is weighted homogeneous
then this formula becomes Milnor’s formula. However, in general it differs from

Milnor’s formula by the addition of the termδ(h) to (2ℓ+ a0)
∂(det◦f0)

∂x
, although the

dimension does not change.

In fact, since we are only computing dimensions, we suspect that the formula should
be correct with Jac(det◦f0) in place ofJ̃ac(det◦f0), without requiring weighted homo-
geneity, but the proof we have so far found does not permit it.
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Proof of Corollary 6.2 By assumption (x, y) 7→ (x,g(x, y)) has an isolated singularity
at 0. Hence, ifg0(y) = g(0, y), theng0 has an isolated singularity at 0 andµa(f0) +

µa,b(f0) = µ(g0). By Theorem 3.1, µEsy
2

(f0) = dimC NKH,ef0. We will show that there
is a surjective projectionNKH,ef0 → OCn−1,0/Jac(g0) with kernel the vector space in
the RHS of (6–5). Then, byTheorem 6.1and the above remark, the result follows.

For H the defining equation forEsy
2 , Derlog(H) is generated byζ1 = a

∂

∂b
+2b

∂

∂c
and

ζ2 = 2a
∂

∂a
− b

∂

∂b
− 4c

∂

∂c
. Then, if instead we writef0(x, y) = (x,g(x, y),h(x, y)), we

obtain the generators forTKH,ef0 as anOCn,0–module

∂f0
∂x

= (1,gx,hx) and
∂f0
∂yi

= (0,gyi ,hyi )

and
ζ1 ◦ f0 = (0, x,2g) and ζ2 ◦ f0 = (2x,−g,−4h) .

We may choose for generators forθ(f0): ε′1 = (1,gx,hx), ε2 = (0,1,0), andε3 =

(0,0,1). By the above,ε′1 ∈ TKH,ef0; hence the projection ofθ(f0) to OCn,0{ε2, ε3}

mapsTKH,ef0 ontoL = OCn,0{η1, η2, ξi ,1≤ i ≤ n−1} with kernelOCn,0{ε
′
1}, where

η1 = (x,2g), η2 = (−g− 2xgx,−4h− 2xhx), and ξi = (gyi ,hyi ).

Thus,NKH,ef0 is mapped isomorphically toOCn,0{ε2, ε3}/L.

Next, we want to further projectOCn,0{ε2, ε3} ontoOCn,0{ε2}. First, by the weighted
homogeneity ofg, we replaceη2 by

η′2 = ℓη2 + 2ℓgxη1 + a0gxη1 +

N−1∑

i=1

aiyiξi

and upon expanding and rearranging terms using the Euler relation for g

=

(
0,−(2ℓ+ a0)

∂(xh− g2)
∂x

−

(
(2ℓ− a0)h− a0x

∂h
∂x
−

N−1∑

i=1

aiyi
∂h
∂yi

))

=

(
0,−(2ℓ+ a0)

∂(xh− g2)
∂x

− δ(h)

)
.

Under the projection ontoOCn,0{ε2}, η′2 7→ 0, so L maps toOCn,0{x,gyi , i =

1, . . . ,n− 1}. Thus,

OCn,0{ε2, ε3}/L → OCn,0/(x,gyi , i = 1, . . . ,n− 1) ≃ OCn−1,0/Jac(g0)

is a surjective homomorphism onto the Jacobian algebra ofg0, which has lengthµ(g0).
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Hence, it is enough to show that the kernel of this projectionhas the required form.
Since{x,gyi , i = 1, . . . ,n− 1} is a regular sequence, the only relations between these
elements are the trivial ones. Thus, the kernel of the projection is generated by

(
0, (2ℓ+ a0)

∂(xh− g2)
∂x

+ δ(h)

)
,
(
0, xhyi − 2ggyi

)
1≤ i ≤ n− 1,

and
(
0,gyi hyj − gyj hyi

)
, 1≤ i, j ≤ n− 1 .

(6–6)

Then, det◦f0 = xh− g2 and, providedn ≥ 3, the 3× 3 minors ofdf0 are the 2× 2
determinantsgyi hyj − gyj hyi . Thus, under the isomorphismOCn,0{ε3} ≃ OCn,0, the

generators in (6–6) are mapped to the the generators of̃Jac(det◦f0) + Jac(df0). Thus,
the kernel of the projection is isomorphic to the RHS of (6–5).

Lastly, we note that if det◦f0 is weighted homogeneous for the same weights asg,
then wt(h) = 2ℓ− a0 . Thus, by Euler’s formulaδ(h) = 0.

As a second application ofTheorem 6.1, in §11we will obtain a “µ = τ ”-type formula
for generic corank 1 maps defining 2× 2 symmetric matrix singularities.

6.1 3× 3 Symmetric Matrices

Next, we considerµD
sy
3

and use coordinates for Sym3 given byA =




a b c
b d e
c e f


. By

our earlier discussion,Dsy
3 ⊂ Sym3 has a free completionEsy

3 = π∗Esy
2 ∪ D

sy
3 , with

Esy
3 defined bya (ad− b2) · det(A) = 0. Then, by (6–2), it is sufficient to determine

χ̃π∗Esy
2 ∩Dsy

3
. To apply the inductive procedure, we will use the auxiliarylinear free

divisors given byProposition 4.3(which arise from subgroups ofB3). We obtain the
following formulas for singular Milnor numbers.

Proposition 6.4 On the space of germs transverse off0 to the associated varieties for
V(Qa),

(6–7) µQa = µbd·Qa − (µd,bc(bf−2ce) + µd) + (µd,c,bf + µd,c) − (µb,cd + µb).

There is an analogous formula forµQf obtained from(6–7) by composingf0 with the
permutation(a,b, c,d,e, f ) 7→ (f ,e, c,d,b,a).

By Metatheorem 5.1there is an analog of(6–7) for the Milnor numberµϕ,Qa on the
ICIS X = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.
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Remark 6.5 The RHS of (6–7) is computed as the alternating sum of lengths of
four determinantal modules using Theorems3.1 and 3.3. By Proposition 4.3and
Remark 4.6, V(b · d · Qa) is anH–holonomic linear free divisor andV(bc(bf − 2ce)),
after changing coordinatesE = 2e, is anH–holonomic linear free divisor for the 2×2
general matrix

(
b c
E f

)
.

Proof of Proposition 6.4 As V(b · d · Qa) is an H–holonomic linear free divisor,
V(Qa) has a free completion, so we may applyLemma 3.7to obtain

(6–8) µQa = µbd·Qa − µbd + (−1)n−1χ̃bd,Qa .

Then, it is sufficient to compute ˜χbd,Qa . Then,

V(bd,Qa) = V(b,Qa) ∪ V(d,Qa) = V(b, cd) ∪ V(d,b(bf − 2ce)) .

Also, V(b, cd) ∩ V(d,b(bf − 2ce)) = V(b,d). Hence, applyingLemma 3.7, we obtain

(6–9) χ̃bd,Qa = (−1)n−2(µb,cd + µd,b(bf−2ce) − µb,d
)
.

Now, V(bc(bf − 2ce)) is a linear free divisor for the 2× 2 general matrices. Thus, by
the metaversion ofLemma 3.7

(6–10) µd,b(bf−2ce) = µd,bc(bf−2ce) − µd,c − µd,c,bf .

Substituting (6–10) and (6–9) into (6–8) and replacing

µbd − µb,d = µb + µd

yields (6–7).

Then,Esy
3 andDsy

2 ∪V(Qf ) areH–holonomic free divisors byTheorem 4.4, respectively
Proposition 4.3andRemark 4.6. Thus, using the formula given inProposition 6.4, we
may compute the singular Milnor numberµDsy

3
using the following theorem.

Theorem 6.6 For the space of germs transverse to the associated varieties for Esy
3 off

0, the singular Milnor number can be computed by

(6–11) µDsy
3

= µEsy
3
− µDsy

2 ∪Qf
+ µQf −

(
(µa,Qa + µa) + (µa,b,c·d + µa,b)

)

whereµEsy
3
= KB̃3,e–codim, whereB̃3 is the subgroup ofB3 preserving the defining

equation forEsy
3 .

By Metatheorem 5.1there is an analog of(6–11) for the Milnor numberµϕ,Dsy
3

on the

ICIS X = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.
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Remark 6.7 In the RHS of (6–11), the first two terms are lengths of determinantal
modules,µQf is computed byProposition 6.4, and of the last two groups of pairs of
terms, the first pair is computed using the meta-version of (6–7) andTheorem 3.3, and
the second is the length of a determinantal module byTheorem 3.3.

Proof of Theorem 6.6 We may applyLemma 3.7to (6–1) to obtain

(6–12) µDsy
3

= µEsy
3
− µEsy

2
+ (−1)n−1χ̃π∗Esy

2 ∩Dsy
3
,

provided we can compute ˜χπ∗Esy
2 ∩Dsy

3
. Then, asEsy

2 is defined bya (ad− b2) = 0,

π∗Esy
2 ∩ D

sy
3 = (V(a) ∩Dsy

3 ) ∪ (V(ad− b2) ∩ Dsy
3 )

= V(a,Qa) ∪ V(ad− b2,Qf ) .(6–13)

Also, V(a,Qa) ∩ V(ad− b2,Qf ) = V(a,b, c · d). Thus, applyingLemma 3.7, we
obtain

(6–14) χ̃π∗Esy
2 ∩Dsy

3
= χ̃a,Qa + χ̃ad−b2,Qf

− χ̃a,b,c·d .

Also, byLemma 3.7

(6–15) µQf = µ(ad−b2)·Qf
− µad−b2 + (−1)n−1χ̃ad−b2,Qf

.

Then, for (6–12), we can use (6–15) to substitute for ˜χad−b2,Qf
in (6–14). Next

we evaluate the vanishing singular Euler characteristics in terms of singular Milnor
numbers; for example, ˜χa,Qa = (−1)n−2µa,Qa , χ̃a,b,c·d = (−1)n−3µa,b,c·d , andV(ad−
b2) = Dsy

2 so V((ad− b2) · Qf ) = D
sy
2 ∪ V(Qf ). Lastly, byTheorem 6.1we replace

(6–16) µEsy
2
− µad−b2 = µa + µa,b .

This yields (6–11).

In §11we will also obtain a “µ = τ ”-type formula for generic corank 1 maps defining
3× 3 symmetric matrix singularities.

7 General Matrix Singularities

By the results [DP1, Theorem 7.1] for general matrices, summarized in §4, together
with Theorem 4.4, both Em in Mm,m, andEm−1,m in Mm−1,m areH–holonomic linear
free divisors. Moreover, the determinant varietyDm in Mm,m and the generalized
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determinant varietyDm−1,m in Mm−1,m, which has defining equation det
(
Â(m−1)

)
= 0,

have free completions given by

Em = π∗Em−1,m∪ Dm and

Em−1,m = π′ ∗Em−1 ∪ Dm−1,m ,(7–1)

for the projectionsπ : Mm,m→ Mm−1,m andπ′ : Mm−1,m→ Mm−1,m−1.

We first use these free completions to compute the singular Milnor numberµD2 for
D2 ⊂ M2,2.

7.1 2× 2 Matrices

We use coordinates

(
a b
c d

)
on M2,2 and consider the modified Cholesky-type repre-

sentation. Then, by [DP1, Theorem 7.1], the exceptional orbit varietyE2 is defined by
a b · (ad− bc) = 0. We then have the following:

Theorem 7.1 On the space of germs transverse off0 to the associated varieties for
E2,

(7–2) µD2 = µE2 − ((µa + µa,cb) + (µb + µb,ad)) .

HereµE2 = KG̃2,e–codimwhereG̃2 is the subgroup ofB2×C2 preserving the defining
equationa b · (ad− bc) = 0. By Metatheorem 5.1there is an analog of(7–2) for
singular Milnor numberµϕ,D2 on an ICISX = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.

Remark 7.2 Each pairµa + µa,cb and µb + µb,ad is computed as the length of a
determinantal module byTheorem 3.3.

As a corollary of the proof we obtain the following which willbe used in the calculations
for the skew-symmetric case.

Corollary 7.3 With the assumptions ofTheorem 7.1,

(7–3) µa(ad−bc) = µE2 − (µb + µb,ad)

and

(7–4) µad(ad−bc) = µE2 + ((µd + µd,abc) − (µb + µb,ad)) .

There are also corresponding meta-versions of these formulas.
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Proof of Theorem 7.1and Corollary 7.3 First,D2 has theH–holonomic free com-
pletion E2 defined byab · (ad− bc). Thus,

(7–5) µD2 = µE2 − µab + (−1)n−1χ̃ab,(ad−bc) .

SinceV(ab,ad− bc) = V(a,bc) ∪ V(b,ad) with V(a,bc) ∩ V(b,ad) = V(a,b), by
Lemma 3.7

(7–6) χ̃ab,(ad−bc) = (−1)n−2(µa,bc + µb,ad − µa,b
)
.

Then, substituting (7–6) into (7–5) and replacing

µab − µa,b = µa + µb

yields (7–2).

For Corollary 7.3, the argument for (7–3) is similar using instead thatE2 is a free
completion ofV(a(ad− bc)). While for (7–4) we use

V(ad(ad−bc)) = V(a(ad−bc))∪V(d) with V(a(ad−bc))∩V(d) = V(d,abc) .

By Lemma 3.7

(7–7) µad(ad−bc) = µa(ad−bc) + µd + µd,abc

and then we substitute (7–3) for µa(ad−bc) .

As for symmetric matrices, we deduce in §11 a “µ = τ ”-type formula for generic
corank 1 germs for 2× 2 general matrices.

7.2 2× 3 Matrices

We use coordinates

(
a b c
d e f

)
on M2,3 and consider the modified Cholesky-type

representation. Again by [DP1, Theorem 7.1], the exceptional orbit varietyE2,3 is a
free divisor and is defined bya b · (ae− bd) · (bf − ce) = 0.

We use this free divisor to computeµV whereV = V((ae−bd) · (bf−ce)). To simplify
notation, we letVj denote the subvariety ofM2,3 defined by the determinant of the
submatrix obtained by deleting thej–th column. Also, we denote the unionVi ∪Vj by
Vi j . Then,V((ae− bd) · (bf − ce)) = V1 3. Once we have computedµV for V = V1 3,
then we may computeµV for V = Vi j by permuting the coordinates corresponding to
the permutation of the columns sending (1,3) to (i, j).
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Theorem 7.4 For the space of germs transverse to the associated varieties for E2,3 off
0,

(7–8) µV1 3 = µE2,3 − (µa,bde(bf−ce) + µa) + (µa,e,bdf + µa,e) − (µb,ace+ µb) .

HereµE2,3 = KG̃3,e
–codim whereG̃3 is the subgroup ofB2×C3 which preserves the

defining equationab · (ae− bd) · (bf − ce) = 0.

By Metatheorem 5.1, there is an analog of(7–8) for singular Milnor numberµϕ,V1 3

on the ICISX = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.

Remark 7.5 Each grouped pair on the RHS of (7–8) can be computed usingTheorem 3.3
for AFD’s on an ICIS and the first term byTheorem 3.1. Thus, the RHS of (7–8) is
computed as the alternating sum of the lengths of four determinantal modules.

We can obtain the corresponding formulas forµV1 2 , resp.µV2 3 by applying (7–8) after
first composingf0 with the permutation (a,b, c,d,e, f ) 7→ (a, c,b,d, f ,e), respectively,
(a,b, c,d,e, f ) 7→ (b,a, c,e,d, f ).

Proof of Theorem 7.4 First, V((ae− bd)(bf − ce)) has as a free completionE2,3 =

V(ab(ae− bd)(bf − ce)). By Lemma 3.7,

(7–9) µV1 3 = µE2,3 − µab + (−1)n−1χ̃ab,(ae−bd)(bf−ce).

SinceV(ab, (ae− bd)(bf − ce)) = V(a,bd(bf − ce)) ∪ V(b,ace) and V(a,bd(bf −
ce)) ∩ V(b,ace) = V(a,b), we have byLemma 3.7(by evaluating the ˜χ as singular
Milnor numbers),

(7–10) χ̃ab,(ae−bd)(bf−ce) = (−1)n−2(µa,bd(bf−ce) + µb,ace − µa,b
)
.

Then,V(bd(bf−ce)) has a free completionV(ebd(bf−ce)). Thus by the meta-version
of Lemma 3.7,

(7–11) µa,bd(bf−ce) = µa,bde(bf−ce) − µa,e − µa,e,bdf .

Then, by substituting (7–11) for µa,bd(bf−ce) into (7–10), then substituting the resulting
expression into (7–9), and lastly replacing

µab − µa,b = µa + µb ,

we obtain the result.

Remark 7.6 We have also obtained a formula for 3× 3 general matrix singularities;
however, we are not including it in this paper.
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8 Vanishing Topology for 2× 3 Cohen–Macaulay Singulari-
ties in Cn

In this section we apply the preceding results in reverse to obtain a formula for the
singular vanishing Euler characteristic for Cohen–Macaulay singularities inCn defined
by 2× 3 matrices. These are given asV0 = f−1

0 (V), whereV is the variety of singular
matrices of rank≤ 1 in M2,3 and f0 : Cn,0→ M2,3,0 is transverse toV off 0. We
then apply this formula in several different ways. First, ifn = 4,5 or 6, thenV0 will
be an isolated surface, resp. 3–fold, resp. 4–fold, singularity. In the case ofn = 4, we
obtain a formula for the Milnor number for isolated 2× 3 Cohen–Macaulay surface
singularities as the sum of lengths of determinantal modules. Furthermore in the case of
the 2×3 Cohen–Macaulay 3–fold singularities, we obtain a formulafor the difference
of the second and third Betti numbersb3 − b2 of the Milnor fiber. We furthermore
deduce bounds on these Betti numbers. In §11, we shall implement these formulas
using the results of §7, with a software package developed for Macaulay2, to compute
the Milnor number for simple 2×3 Cohen–Macaulay surface singularities andb3−b2

for 3–fold singularities.

In addition, if we consider instead 2× 3 Cohen–Macaulay singularities on an ICISX
defined byϕ, then we obtain analogous results in each case using the corresponding
meta-versions of the results. Finally, we also use these results to obtain formulas for
the Milnor numbers of functions defining ICIS on isolated 2× 3 Cohen–Macaulay
singularities.

8.1 Singular Vanishing Euler Characteristic for Nonisolated2×3 Cohen–
Macaulay Singularities in Cn

Let M2,3 denote the space of 2× 3 matrices withV the variety of singular matrices of
rank≤ 1. Considerf0 : Cn,0→ M2,3,0. BecauseV is not a complete intersection,f0
does not have a singular Milnor numberµV (f0). However, we can useProposition 3.8
to compute ˜χV (f0).

Theorem 8.1 For a germf0 : Cn,0 → M2,3,0 which is transverse to the associated
varieties off0, let V0 = f−1

0 (V) be the nonisolated Cohen–Macaulay singularity. Then,
the singular vanishing Euler characteristic is computed by

(8–1) χ̃V (f0) = (−1)n−1

(
µV1 2 3(f0) −

∑
µVi j (f0) +

3∑

i=1

µVi (f0)

)
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where the first sum is over{i, j} = {1,2}, {1,3}, {2,3} andV1 2 3 = V1 ∪ V2 ∪ V3.

By Metatheorem 5.1there is an analog of(8–1) for vanishing Euler characteristic
χ̃ϕ,D2 on the ICISX = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.

Remark 8.2 Here we are using the notation of §7. The µVi j are computed by
Theorem 7.4, and theµVi are computed byTheorem 7.1. Also, as explained in §4,
the variety V1 2 3 is an H–holonomic linear free divisor corresponding to a quiver
representation by Buchweitz–Mond [BM]. Hence, µV1 2 3 can be computed as the
length of a determinantal module byTheorem 3.1.

As we will see in §11, we can frequently apply generic reduction by applying an
element of GL2(C)× GL3(C) to f0 so that, depending on rank ofdf0(0), the terms in
(8–1) either vanish or their computation considerably simplifies.

8.2 Milnor Numbers for Isolated 2× 3 Cohen–Macaulay Surface Singu-
larities in C4

We now consider the special case off0 : C4,0 → M2,3,0 which is transverse toV
off 0. By the Hilbert–Burch Theorem,V0 = f−1

0 (V) is an isolated Cohen–Macaulay
surface singularity. By results of Wahl [Wa] (in the weighted homogeneous case) and
Greuel–Steenbrink [GS], its Milnor fiber has first Betti numberb1 = 0. By convention,
the second Betti number is referred to as the Milnor numberµ(V0).

In this case, the versal unfolding ofV0 in the sense of algebraic geometry is obtained
by a deformation of the mappingf0, see [Sh]. Thus, what we call the singular Milnor
fiber is actually the Milnor fiber ofV0 since a stabilization off0 will only (transversely)
intersect the smooth part ofV . Hence, we may computeµ(V0) = χ̃V (f0). By applying
an element of GL2(C)×GL3(C) to f0 we may assume thatf0 is transverse to all of the
associated varieties for eachVi andVi j . Then, the preceding results yield the following
formula forµ(V0).

Theorem 8.3 For a germf0 : C4,0 → M2,3,0 which is transverse to the associated
varieties off0, let V0 = f−1

0 (V) be the isolated Cohen–Macaulay surface singularity.
Then, the Milnor number is computed by

(8–2) µ(V0) =
∑

µVi j (f0)−
3∑

i=1

µVi (f0) − µV1 2 3(f0)

where the first sum is over{i, j} = {1,2}, {1,3}, {2, 3}. By Metatheorem 5.1there is
an analog of(8–2) for the Milnor numberµ(V0) on the ICISX = ϕ−1(0) defined by
ϕ : Cn,0→ Cn−4,0.
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All of Remark 8.2applies equally well toTheorem 8.3.

8.3 Betti Numbers of Milnor Fibers for Isolated 2× 3 Cohen–Macaulay
3–fold Singularities in C5

We consider the casef0 : C5,0 → M2,3,0 which is transverse toV off 0. Now
V0 = f−1

0 (V) is an isolated Cohen–Macaulay 3–fold singularity. A stabilization of f0
will miss the isolated singular point 0∈ V ; hence the singular Milnor fiber forf0 is
the Milnor fiber ofV0. Thus, the singular vanishing Euler characteristic off0 is the
vanishing Euler characteristic ofV0. The results of Greuel–Steenbrink still apply; and
so the first Betti numberb1(V0) = 0 (in fact, they show that the Milnor fiber ofV0

is simply connected). Thus, ˜χV (f0) = b2(V0) − b3(V0). Then, we may compute this
difference:

Theorem 8.4 For a germf0 : C5,0 → M2,3,0 which is transverse to the associated
varieties off0, let V0 = f−1

0 (V) be the isolated Cohen–Macaulay 3–fold singularity.
Then,

(8–3) b3(V0)− b2(V0) =
∑

µVi j (f0)−
3∑

i=1

µVi (f0) − µV1 2 3(f0)

where the first sum is over{i, j} = {1,2}, {1,3}, {2,3}.

By Metatheorem 5.1there is an analog of(8–3) for the differenceb2(V0∩X)−b3(V0∩X)
on the ICISX = ϕ−1(0) defined byϕ : Cn,0→ Cn−5,0.

There are analogous remarks as earlier regarding the computation of the RHS of (8–3).
Depending on the sign of the RHS of (8–3), it gives either a crude lower bound on
b2(V0) if the RHS is positive, or onb3(V0) if the RHS is negative.

8.4 Milnor Numbers for Isolated ICIS singularities on Isolated 2 × 3
Cohen–Macaulay Singularities

As a final consequence of the meta-versions of the preceding results, we considerV0 an
isolated Cohen–Macaulay surface or 3–fold singularity defined byf0 : Cn,0→ M2,3,0
for n = 4,5. Also, letϕ : Cn,0→ Cp,0 be an ICIS germ definingX,0⊂ Cn,0, with
n−p≥ dimV0, and so thatϕ|V0 has an isolated singularity. We letX0 = ϕ−1(0)∩V0

and consider the Milnor fiberXt of ϕ|V0 . Then, X0 is again an isolated Cohen–
Macaulay (point, curve or surface) singularity. We can use the preceding results to
compute the Milnor number.
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Corollary 8.5 In the preceding situation, the Milnor number of the restriction µ(X0) =
χϕ,V (f0), which can be computed using the meta-version of(8–1) which becomes the
meta-versions of either(8–2) or (8–3).

Proof We may construct stabilizations off = (ϕ, f0) : Cn,0 → Cp × M2,3 in two
different ways: either by stabilizingϕ by ϕt so the Milnor fiberϕ−1

t (0) intersectsV0

transversely; or by stabilizingf0 (as a nonlinear section ofV ) by ft so Vt = f−1
t (V)

intersectsX transversely. As both of these are stabilizations of the same germf as a
nonlinear section of{0}×V ⊂ Cp×M2,3, the singular Milnor fibers are diffeomorphic,
and hence, they have the same Euler characteristic. Thus, for the first, we obtain the
Milnor numberµ(X0). For the second, we haveχϕ,V (f0), and the meta-version of (8–1)
allows us to compute it. This becomes the meta-version of either (8–2) or (8–3).

9 Skew-Symmetric Matrix Singularities

We use coordinates for Sk4 given by

A =




0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0


 .

The determinantal varietyDsk
4 has reduced defining equation the Pfaffian Pf(A), which

we shall denote simply as Pf . Then, by [DP1, Theorem 8.1] and also [P, Theorem
5.2.21], the nonlinear solvable Lie algebraL4 determines a free divisorEsk

4 , which is
defined bya b d(be−dc) ·Pf(A) = 0. Alsoa b d(be−dc) = 0 defines a free divisorE ′2
(the product union of{0} ⊂ C defined bya = 0 with E2 for the 2×2 upper right-hand
submatrix ofA). Hence, the Pfaffian hypersurfaceDsk

4 has a free completion by this
free divisor

Esk
4 = π∗E ′2 ∪D

sk
4 .

We denoteπ∗E ′2 simply by E ′2. We can also use this to give a free completion of
V((be− dc) · Pf(A)). We next use this free completion to compute the singular Milnor
numberµDsk

4
via the following theorem.

Theorem 9.1 For the space of germs transverse to the associated varieties for Esk
4 off

0, the singular Milnor number can be computed by

(9–1) µDsk
4

= µEsk
4
− µa,f ,(be−cd) + λ1 + λ2 + λ3 ,
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where eachλk is a sum of terms of defining codimensionk and are given by

λ1 = −
(
µb,cd(af+cd) + µd,be(af−be) + 2µa,(be−cd) + µf ,(be−cd)

)

λ2 = −
(
µbe−cd + µa,b,c·d + µa,d,b·e

)

λ3 = (µa,b,d + µb,d)− µabd .

(9–2)

Here µEsk
4

= KL̃4,e
–codim, where L̃4, is the Lie subalgebra ofL4, preserving the

defining equation forEsk
4 .

By Metatheorem 5.1there is an analog of(9–1) (and (9–2)) for the Milnor number
µϕ,Dsk

4
on the ICISX = ϕ−1(0) defined byϕ : Cn,0→ Cp,0.

Also, the terms in theλi can be computed using the meta-versions ofTheorem 7.1and
Corollary 7.3.

Proof We first considerV((be− cd) · Pf). By Lemma 3.7

(9–3) µPf = µ(be−cd)·Pf − µbe−cd + (−1)n−1χ̃be−cd,Pf .

As Esk
4 as a free completion ofV((be− cd) · Pf), byLemma 3.7

(9–4) µ(be−cd)·Pf = µEsk
4
− µabd + (−1)n−1χ̃abd,(be−cd)·Pf .

Next, to compute ˜χbe−cd,Pf we observe

V(be− cd,Pf) = V(be− cd,af) = V(a,be− cd) ∪ V(f ,be− cd)

andV(a,be− cd) ∩ V(f ,be− cd) = V(a, f ,be− cd). Hence, byLemma 3.7

χ̃be−cd,Pf = χ̃a,be−cd + χ̃f ,be−cd − χ̃a,f ,be−cd

= (−1)n−2(µa,be−cd + µf ,be−cd + µa,f ,be−cd
)
.(9–5)

Lastly, we consider ˜χabd,(be−cd)·Pf . Observe that

V(abd, (be− cd) · Pf) = V(a, (be− cd)) ∪ V(b, cd(af + cd)) ∪ V(d,be(af − be)) .

In addition,

V(a, (be− cd)) ∩ V(b, cd(af + cd)) = V(a,b, cd)

V(a, (be− cd)) ∩ V(d,be(af − be)) = V(a,d,be)

V(b, cd(af + cd)) ∩ V(d,be(af − be)) = V(b,d) ;

(9–6)

and

(9–7) V(a, (be− cd)) ∩ V(b, cd(af + cd)) ∩ V(d,be(af − be)) = V(a,b,d) .
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Thus, since all of the terms on the RHS of (9–6) and (9–7) will define AFD’s on ICIS,
we may apply (3–8) and evaluate each ˜χ as a singular Milnor number to obtain

(9–8) χ̃abd,(be−cd)·Pf = (−1)n−2(µa,be−cd + µb,cd(af+cd) + µd,be(af−be)
)

− (−1)n−3(µa,b,cd + µa,d,be− µb,d
)
+ (−1)n−3µa,b,d .

Finally, we substitute (9–8) into (9–4), and substitute the resulting (9–4) and (9–5) into
(9–3). After rearranging terms and simplifying coefficients we obtain (9–1).

Remark 9.2 Because there are several ways to give a free completion forDsk
4 , there

are several variations on the formulas given inTheorem 9.1(see e.g. Theorem 6.2.11
of [P]). We have given a version which is conceptually shortest interms of having to
compute the fewest number of singular Milnor numbers in (9–1).

For generic corank 1 skew-symmetric matrix singularities,it will follow by generic
reduction that all of theλi for i > 0 in (9–1) vanish. In §11 we further compute the
two remaining terms and will obtain a “µ = τ ”-type result.

10 Higher Multiplicities of Linear Free Divisors

We will begin computing the general formulas in the special cases of mappingsf0
within restricted classes with a goal of relatingµD(f0) for D a determinantal variety
and τ = KM,e–codim(f0). For this we must first computeµE (f0) for various H–
holonomic free divisorsE and then apply the results of the previous sections.

We begin with the simplest case wheref0 is a generic linear section. Then, we are really
computing the higher multiplicities for (H–holonomic) linear free divisors. We recall
that for a hypersurface (or more generally a complete intersection) V,0 ⊂ CN,0 we
may define for 0< k < N the k–th higher multiplicity, denotedµk(V), as the singular
Milnor numberµV (i) for a generic linear sectioni : Ck,0→ CN,0. This is analogous
to the definition of Teissier’sµ∗ sequence for isolated hypersurface singularities [Te]
and [LeT]. To be consistent with our earlier notation, ifk < ℓ = codimV , then we let

µk(V)
def
= (−1)k−ℓ+1 . If V is a hypersurface thenµ0(V) = 1.

Very surprisingly, in the case ofH–holonomic linear free divisors, these higher multi-
plicities can be computed independent of the specific linearfree divisorV .
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Free Esy
m Em Em−1,m Esk

m

Divisor

µk
((m+1

2 )−1
k

) (m2−1
k

) (m(m−1)−1
k

)
σk

(
1(m

2)−(m−2),2,2, . . . , [(m+ 1)/2]
)

Table 3: Higher multiplicities for the exceptional orbit varietiesE for the solvable group and
solvable Lie algebra block representations inTable 1. SeeTable 2.

Proposition 10.1 If V,0⊂ CN,0 is anH–holonomic linear free divisor, then

(10–1) µk(V) =

(
N− 1

k

)
0 < k < N .

Hence, for anyH–holonomic linear free divisor inCN , there is the duality relation

µk(V) = µN−1−k(V) 0≤ k ≤ N − 1.

Before proving the proposition, we point out as a consequence that any twoH–
holonomic linear free divisors inCN will always have the same higher multiplicities.
Hence, it follows they all have a complex link which is a real homotopy (N−1)–sphere.

Example 10.2 There are three exceptional orbit varieties inM2,3: that for the action
of the solvable groupB2 × C3 given by modified Cholesky factorization; the “quiver
discriminant” arising from the reductive group (GL3 × (C∗)3)/C∗ for the quiver rep-
resentation just mentioned; and that for (C∗)6 given by the coordinate hyperplane
arrangement. These are quite distinctH–holonomic linear free divisors inM2,3. How-
ever, byProposition 10.1, thek–th higher multiplicities for them all equal

(5
k

)
.

We thus obtain the higher multiplicities for the linear freedivisors listed inTable 2.

Proposition 10.3 For the free divisors inTable 2, the corresponding higher multiplic-
ities µk are given byTable 3.

In the table,σk denotes thek–th elementary symmetric function, and 1ℓ denotes 1
being repeatedℓ times and 2,2, . . . , [(m+1)/2] denotes the sequence ofm−3 integers
2,2,3,3, . . . , truncated at [(m+ 1)/2].

Remark 10.4 We note that in the tableEsy
3 , E2,3 and Esk

4 are linear free divisors
in C6; but Esk

4 will have different higher multiplicities because it is nota linear free
divisor. In fact the valuesσk(14,2) = 6,14,16,9,2 for k = 1, . . . ,5 also do not
satisfy the duality property inProposition 10.1. Surprisingly, the higher multiplicities
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µk(D
sy
2 ), µk(D

sy
3 ), µk(D2), andµk(Dsk

4 ) do satisfy the duality property. This follows
by the calculations in §§6, 7 and9. For Dsy

2 , D2 andDsk
4 it also follows because

their defining equations have Morse singularities at 0, and the restrictions to a generic
section are again Morse singularities and their Milnor fiberis the singular Milnor fiber
of the generic section. Thus, all of the nonzero higher multiplicities equal 1. By
contrast the higher multiplicitiesµk(D

sy
3 ) = 1, 2, 4, 4, 2, 1 fork = 0,1, . . . ,5 still

satisfy the duality property. This leads to:

Question/Conjecture The higher multiplicities for the determinantal varietiesDsy
n

andDn satisfy the duality property.

Because duality does not hold forEsk
4 , it suggests that the result forDsk

4 may only be
a low dimension phenomenon.

Proof of Propositions10.1and 10.3 Both propositions are a consequence of the fact
that for all such free divisorsV , the moduleNKV ,e · i is (weighted) homogeneous in
the sense of [D5]; hence by Theorem 1 of [D5] its length is given by a formula in terms
of its weights. This will yield the result.

The weighted homogeneous case forNKV ,e · f0, concernsf0 : Cn,0 → CN,0 with
V a free divisor such that we can choose weights forCn and CN so that: i) both
f0 andV are weighted homogeneous for the same weights; and ii) the generators of
Derlog(H) may also be chosen to be weighted homogeneous for these weights. In
our cases, we use weights 0 for the coordinates ofCN and 1 for the weights of the

coordinatesxj for Cn. Then, as the sectioni is linear,
∂i
∂xj

has weight 0 and for linear

free divisors,ζj ◦ i has weight 1, while forEsk
m the lastm− 3 generators will have

weights 2,2,3,3, . . . as in the statement. Then, by Theorem 1 of [D5], µk(E) = µE (i)
will equal σk(1, . . . ,1) with (N − 1) 1’s (=

(N−1
k

)
) for a linear free divisorE , or

σk(1, . . . ,1,2,2, . . . , [(m+ 1)/2]) with (
(m

2

)
− (m− 2)) 1’s in the case ofE = Esk

m

(andN =
(m

2

)
).

We use the preceding propositions in conjunction with two other properties of higher
multiplicities which follow fromProposition 3.4.

Proposition 10.5 Let V,0 ⊂ CN,0 be anH–holonomic free divisor.

(1) If V ′ = V × Cp,0⊂ CN+p,0, then

µk(V
′) = µk(V) for 0≤ k < N .
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(2) If V ′′,0 = V × {0} ⊂ CN+p,0 is the image ofV,0 via the inclusionCN,0 ⊂
CN+p,0 (so thatV ′′ is a free divisor in a linear subspace ofCN+p), then

µk(V
′′) = µk−p(V) if k ≥ p, and = (−1)p−k if k < p .

Proof For (1), we can choose a generic linear sectioni : Ck,0 → CN+p of V ′ so
that π ◦ i is also a generic linear section ofV and the result follows from (1) of
Proposition 3.4.

For (2), providedk ≥ p, we may choose a generic linear sectioni : Ck,0→ CN+p so
that i is transverse toCp and if W = i−1(0)× CN then π ◦ i |W is a generic linear
section ofV . Then, (2) follows by applying (2) of Proposition 3.4.

11 µ = τ − γ -type Results for Matrix Singularities

In this section we consider the relation betweenµ andτ for singularities defined byf0.
Hereµ will denote a singular Milnor numberµV (f0) or possibly the Milnor number
of a Cohen–Macaulay isolated surface singularity, andτ will denote an appropriate
KH,e–codimension off0. We will be concerned with how muchµ differs from τ or
equivalently consider the differenceγ = τ − µ. We recall the results for an ICIS
X,0 with µ the usual Milnor number andτ the Tjurina number (which is also the
Ke–codimension). Greuel showed thatµ = τ whenX is weighted homogeneous (see
[Gr] or [L, Chap. 9]); and Looijenga–Steenbrink showed thatµ ≥ τ in general [LSt].
Thus, for ICIS,γ ≤ 0. An analogous result was shown to hold for the “discriminant
Milnor number” in [DM]. For matrix singularities, we consider what form such a result
takes. We will show for matrix singularities which are hypersurfaces defined by corank
1 mappings thatγ = 0. However, when we consider Cohen–Macaulay singularities
defined from 2× 3 matrices there are some fundamental changes which occur and γ

becomes positive.

11.1 Corank 1 mappings andµ = τ -type Results

We begin by considering matrix singularities defined by corank 1 mappingsf0 : Cn,0→
M,0 of finite KM –codimension for various spaces of matricesM (with dimM = N).
Here corank refers to the corank ofdf0(0) and not that of the specific matricesf0(x).

As a prelude, we first consider germsf0 : Cn,0 → CN,0 with n ≥ N andV ⊂ CN

an H–holonomic linear free divisor. We consider such corank 1 mappings which are
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generic, in the sense thatW = df0(0)(Cn) is a generic linear section ofV . We choose
w0 /∈ W. Then, by the inverse function theorem, we may change coordinates inCn,0
so thatf0 has the form

f0(x, y) =

N−1∑

i=1

xiwi + g(x, y) w0

where (x, y) = (x1, . . . , xN−1, y1, . . . , yn−N+1), {w1, . . .wN−1} is a basis forW, and
dg(0) = 0.

Then, W being generic means thatf1(x) =
∑N−1

i=1 xiwi is a generic linear section.
Hence, byProposition 10.1µV (f1) = µN−1(V) = 1. Then, letζ1, . . . , ζN−1 be the
generators for Derlog(H) for H a good defining equation forV . In terms of the basis
{wi}, we write ζj = a(j)

0 w0 + ζ ′j . Then, the projection ofOCN−1,0{w0,w1, . . . ,wN−1}

ontoOCN−1,0{w0} ≃ OCN−1,0 alongOCN−1,0{w1, . . . ,wN−1} induces an isomorphism

(11–1) NKH,e · f1 ≃ OCN−1,0/(a(1)
0 ◦ f1, . . . ,a

(N−1)
0 ◦ f1) .

However, byTheorem 3.1and the above, this has dimension 1. Hence, (a(1)
0 ◦

f1, . . . ,a
(N−1)
0 ◦ f1) provides a system of local coordinates forCN−1,0.

For aH–holonomic linear free divisorV , germs which are transverse toV off 0 have
finite KH –codimension byRemark 3.2. Then, we may further apply a coordinate
change and using Mather’s Lemma to a homotopy fromf0 to conclude that the generic
corank 1 germs of finiteKH –codimension areKH –equivalent to a germ of the form

(11–2) f0(x, y) =

N−1∑

i=1

xiwi + g(y) w0

with g(y) defining an isolated singularity onCn−N+1,0. We can then compute the
singular Milnor number for generic corank 1 germs as follows.

Proposition 11.1 Let V ⊂ CN,0 be anH–holonomic linear free divisor, andf0(x, y)
be a generic corank1 mapping of finiteKH –codimension forV , given by (11–2).
Then,

µV (f0) = µ(g) .

Proof We note that
∂f0
∂xj

= wj , and
∂f0
∂yi

=
∂g
∂yi

. In addition, by the above discussion,

(a(1)
0 ◦ f0, . . . ,a

(N−1)
0 ◦ f0) ≡ (a(1)

0 ◦ f1, . . . ,a
(N−1)
0 ◦ f1) mod (y1, . . . yn−N+1),
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so (a(1)
0 ◦ f1, . . . ,a

(N−1)
0 ◦ f1, y1, . . . yn−N+1) form a system of local coordinates forCN .

Hence, as earlier, projectingOCn,0{w0,w1, . . . ,wN−1} ontoOCn,0{w0} ≃ OCn,0 along
OCn,0{w1, . . . ,wN−1} induces an isomorphism

NKH,e · f0 ≃ OCn,0

/(
a(1)

0 ◦ f0, . . . ,a
(N−1)
0 ◦ f0,

∂g
∂y1

, . . . ,
∂g

∂yn−N+1

)

≃ OCn−N+1,0

/(
∂g
∂y1

, . . . ,
∂g

∂yn−N+1

)
.(11–3)

Then, byTheorem 3.1and (11–3),

µV (f0) = dimC NKH,e · f0 = µ(g).

Remark 11.2 The above proof can be modified to apply to anyH–holonomic free
divisor V ⊂ CN,0, and thenµ(g) will be multiplied byµN−1(V).

11.2 Aµ = τ -type Formula for Matrix singularities

We now consider a generic corank 1 germf0 : Cn+N−1,0→ M,0 whereM is any of
the spaces ofm×m matrices with (dimM = N). In the caseM = Symm, Bruce [Br]
shows thatf0 is KM –equivalent to germs of one of two types. The first of which is
generic in our sense

f0(x1, . . . , xN−1, y1, . . . , yn) =




g0(x, y) x1 x2 · · · xm−1

x1 xm xm+1 · · · x2m−3

· · · · · · · · · · · · · · ·

xm−1 x2m−3 · · · · · · xN−1


 ,

whereg0(x, y) =
∑

εi xi+g(y1, . . . , yn) for generic tuples (ε1, . . . , εN−1), andg defines
an isolated hypersurface singularity onCn. In fact, further normalization allows many
εi = 0 (see [Br]). We will change coordinates so that the termg0(x, y) is in the lower
right-hand corner to make use of the specific form of (6–11) in Theorem 6.6and the
vector fields used to obtain the defining equation forEsy

3 .

For general and skew-symmetric cases there are analogous normal forms. For example,
for 2× 2 general and 4× 4 skew-symmetric cases they take the form

(
x1 x2

x3 g0(x, y)

)
and




0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 g0(x, y)
−x3 −x5 −g0(x, y) 0


 ,

with g0(x, y) of the same form as above.

Then, for this class of germs for any of the matrix types we obtain aµ = τ -type result.
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Theorem 11.3 (µ = τ for generic corank 1 germs)We let (D, E) denote any of the
pairs (Dsy

2 , Esy
2 ), (Dsy

3 , Esy
3 ), (D2, E2), or (Dsk

4 , Esk
4 ) and f0 any of the corresponding

generic corank1 germs as above. Then,

µD(f0) = µ(g) = KH,e–codim(f0)

whereH is the defining equation for the free divisorE .

If moreover g is weighted homogeneous, then

µD(f0) = KH′,e–codim(f0) = KM,e–codim(f0)

whereH′ is the defining equation forD .

Proof We first consider 2× 2 symmetric matrices. ByTheorem 6.1, Theorem 3.1
and generic reduction,

µDsy
2

(f0) = µEsy
2

(f0) = KH,e–codim(f0)

whereH is the defining equation forEsy
2 . Then a direct calculation analogous to that in

the proof ofCorollary 6.2showsNKH,e(f0) ≃ OCn,0/Jac(g), yielding the first equality.
Lastly, if g is weighted homogeneous, withH′ the defining equation forDsy

2 , then
Derlog(H′) has linear generators. Hence, forξ ∈ Derlog(H′),

ξ ◦ f0 ∈ (x1, x2,g) · θ(f0) ⊂ TKH,e(f0) .

Hence,KH′,e–codim(f0) = KH,e–codim(f0), and by (2–3) these equalKM,e–codim(f0),
completing the proof.

The proof for 2× 2 general matrices is virtually identical to that for 2× 2 symmetric
matrices using insteadTheorem 7.1.

Next, for 3× 3 symmetric matrices the argument is similar to that for the 2× 2 case
except for the first step. Instead, we first, applyTheorem 6.6and generic reduction.
Since df0(0)(Cn+5) projects submersively onto all subspaces of dimension≤ 5, all
terms of defining codimension≥ 1 are zero so we obtain

µDsy
3

(f0) = µEsy
3

(f0)− µa,Qa(f0) .

Then, by the meta-version ofProposition 6.4and generic reduction,

µa,Qa(f0) = µa,bd·Qa(f0)− µa,d,bc(bf−2ce)(f0) .

However, bothV(bd · Qa) andV(bc(bf − 2ce)) areH–holonomic linear free divisors
(by Theorem 4.4andProposition 4.3). By a change of coordinates in the source, we
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may assume that botha and d are coordinates forCn. Thus, byProposition 11.1
applied to the restrictions off0 to the linear subspacesV(a) andV(a,d),

µa,bdQa(f0) = µa,d,bc(bf−2ce)(f0) = µ(g) .

Thus,µa,Qa(f0) = 0 andµDsy
3

(f0) = µEsy
3

(f0). The remainder of the proof follows as
for the 2× 2 symmetric case.

Lastly, the proof for the 4× 4 skew-symmetric case follows the proof for the 3×
3 symmetric matrices, but with just one difference. ByTheorem 9.1and generic
reduction, (9–1) simplifies to

(11–4) µDsk
4

(f0) = µEsk
4

(f0) − µa,f ,(be−cd)(f0) .

The homogeneous generatorsζi for Derlog(H), with H the defining equation forEsk
4 ,

consist of four linear vector fields and a quadratic vector field obtained from the Pfaffian

vector field. Thus, the
∂

∂x1,2
–componentsa(j)

0 of the ζj ◦ f0 have degrees 1,1,1,1,2

in the xi . The first four give independent local coordinates, which weassume arexi

for i = 1, . . . ,4. The fifth term is obtained from the Pfaffian vector field; andmodulo
the ideal (x1, . . . , x4), it is quadratic inx5 , q(x5, y), with coefficients iny. Also,

the
∂f0
∂yi

=
∂g
∂yi

w0 give the generators of Jac(g){w0}. Thus, by a calculation similar

to the above one for 3× 3 symmetric matrices together withTheorem 3.1(also see
Remark 11.2)

µEsk
4

(f0) = KH,e–codim(f0) = 2µ(g) .

However, byTheorem 7.1, generic reduction andProposition 11.1applied to the re-
striction of f0 to V(a, f ),

µa,f ,(be−cd)(f0) = µa,f ,bc(be−cd)(f0) = µ(g) .

Hence, we obtain from (9–7) and (11–4)

µDsk
4

(f0) = µ(g) .

The remainder of the proof is analogous to that for 3× 3 symmetric matrices.

Remark 11.4 What is surprising in all of these cases is that the number of singular
vanishing cycles for the matrix singularities equals the number of vanishing cycles for
the isolated singularityg, although there is at this point no known geometric reason
for this agreement. This leads to:

Conjecture For all generic corank1 matrix singularities for m× m symmetric,
general, or skew-symmetric (for m even) matrices, there is aµ = τ result, where
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µ = µD and τ = KH,e–codim, for H the defining equation for the appropriateE .
If moreover g is weighted homogeneous, both of these equalKM,e–codim = KH′,e–
codim= µ(g), where H′ is the defining equation forD .

This result contrasts with the situation for generic corank1 germsf0 : Cn,0→ M2,3,0
for the varietiesVi,j in the space of 2× 3 general matrices. Now byTheorem 7.4and
generic reduction the singular Milnor number is zero. Then,using generic reduction
andTheorem 8.1together withProposition 11.1, we obtain the following for the variety
of singular matricesV in M2,3.

Corollary 11.5 If f0 : Cn,0→ M2,3 is a generic corank1 germ as above withn≥ 6,
then

χ̃V (f0) = (−1)n−1µV123(f0) = (−1)n−1µ(g) .

If g is weighted homogeneous, these equal theKM,e–codimension off0.

Corollary 11.5substitutes for theµ = τ formula in this case. A simple example of
this can be seen in the list in [FN, Theorem 3.6] for codimension 2 Cohen–Macaulay
singularities inC6. ExampleΩk in the list, hasg(u) = uk , an Ak−1 singularity and
the τ , which is theKM,e–codimension, equalsk − 1. Calculations of the singular
vanishing Euler characteristic using the Macaulay2 package [P2] for computing the
formula inTheorem 8.1yields−(k− 1) as claimed above.

11.3 µ = τ − 1-type Results for 2× 3 Cohen–Macaulay Surface Singu-
larities

Having obtained above a number ofµ = τ results for hypersurfaces, we ask what form
results take for Cohen–Macaulay singularities defined as 2× 3 matrix singularities. If
f0 : C4,0 → M2,3,0 is a germ transverse off 0 to the varietyV of singular matrices,
then V0 = f−1

0 (V) is an isolated Cohen–Macaulay surface singularity. We usethe
KM,e–codimension off0 for τ , and the Milnor numberµ(V0) for µ.

Specifically the simple isolated Cohen–Macaulay surface singularities arise in this way
and were classified by Frühbis-Kr̈uger and Neumer ([FN, Theorem 3.3]). These turn
out to be precisely the rational triple points (c.f. [Tj]). They include both a number of
infinite families and discrete cases. As well in [FN] are identified the singularities just
outside the simple range.

Until recently the only method to compute the Milnor number involved using a partial
resolution ofV0. There are now two new ways to compute the Milnor number. In the
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recent thesis of Pereira ([Pe]), she applies a L̂e–Greuel type method to a generic linear
function on the surface. This method requires that the number of critical points of the
linear function on the Milnor fiber be computed directly by hand. Also,Theorem 8.3
provides an effective formula for computingµ(V0), and this has been implemented by
the second author as a package [P2] in Macaulay2. Taken together, these computations
include all of the simple isolated Cohen–Macaulay surface singularities, as well as
certain non-simple cases.

Summary of the Results for Isolated2× 3 Cohen–Macaulay Surface Singularities:

1) Pereira computes the Milnor number for many discrete cases and the entirety of
many of the infinite families of simple singularities. Basedon her results she
has conjectured (6.3.1 of [Pe]) and verified for her cases that forV0 quasihomo-
geneous,

(11–5) µ(V0) = τ (V0)− 1.

2) Using the Macaulay2 package [P2], we have verified (11–5) for all of the discrete
examples, for the first few examples of each infinite family, and for a number of
cases just outside the simple region (e.g.,Table 4in the Appendix §12).

With further work,Theorem 8.3should provide a method to prove (11–5) for large
classes of singularities. One immediate consequence is that while for ICIS γ =

τ −µ ≤ 0, now for non-ICISγ = τ −µ becomes positive. The relation (11–5) would
be a striking complement to a similar pattern found in listings of certain space curve
singularities (see Tables 1, 2a, 2b of [Fr]).

11.4 µ = τ − γ for 2× 3 Cohen–Macaulay 3–fold Singularities inC5

We next consider isolated Cohen–Macaulay 3–fold singularitiesV0,0⊂ C5,0 defined
by f0 : C5,0→ M2,3,0, with V0 = f−1

0 (V). Again by the results of Greuel–Steenbrink
[GS], the first (vanishing) Betti number of the Milnor fiber ofV0, b1(V0) = 0. As
there are two possibly non-vanishing Betti numbers for the Milnor fiber, we replace the
Milnor number byb3(V0)−b2(V0). We can useTheorem 8.4to computeb3(V0)−b2(V0)
and investigate whether an analog of (11–5) holds.

We applyTheorem 8.4to the classification of simple isolated Cohen–Macaulay 3–fold
singularities inC5 ([FN, Theorem 3.5]). We compute (8–3) using the Macaulay2
package [P2], and summarize the results inTable 5in the Appendix §12.

We summarize the main observed conclusions from the calculations. These conclusions
concern the values and behavior ofγ = τ − (b3− b2) (whereτ = KM,e–codim), and
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the behavior ofγ andb3− b2 in simple infinite families. We emphasize that although
we state the expected form of these for infinite families, we have so far only verified
them for a small range of values in each infinite family.

Summary of the Results for Isolated2× 3 Cohen–Macaulay 3–fold Singularities :

a) γ ≥ 2 and increases in value as we move higher in the classification.

b) b3−b2 ≥ −1, with equality for the generic linear section and one infinite family.

c) b3 − b2 is constant for certain infinite families with values−1 (one family), 0
(two families), and 1 (two families).

d) γ is constant in all other considered infinite families inTable 5with only one
exception where bothb3− b2 andγ increase withτ .

e) For singularities of the form

(
x y z
w v g(x, y)

)
with g a simple hypersurface

singularity (cases 2–6 inTable 5), γ = 3 andb3− b2 = µ(g)− 1.

As eachbi ≥ 0, knowingb3−b2 gives lower bounds onb3 whenb3−b2 > 0, and on
b2 whenb3 − b2 < 0. In particular, the generic Cohen–Macaulay 3–fold singularity
as well as one infinite family must haveb2 > 0. In fact, we expect that bothb2 andb3

will increase withτ in families with b3− b2 constant.

Remark 11.6 These results reveal that there are (at least) two quite different (and
mutually exclusive) types of behavior occurring for infinite families of isolated Cohen–
Macaulay 3 fold singularities: one whereb3 − b2 is constant in the family and one
where γ is constant. A basic question is what different geometric properties are
responsible for the two different types of behavior? Second, asγ increases within the
classification, how can it be computed independently via other geometric properties of
the singularities?
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12 Appendix: Computations for 2×3 Cohen–Macaulay Sin-
gularities

Table 4: Some non-simple isolated 2×3 Cohen–Macaulay surface
singularities inC4, from the proof of [FN, Theorem 3.3].

Presentation matrix τ µ(
z y x
x w z2 + y4

)
11 10

(
z y x
x w y3 + z3

)
10 9

(
z y x2 + y2

x w w2 + xw+ z2

)
13 12

(
x y z
w zx+ x2 w+ yz

)
9 8

(
z y x2

w2 x y+ w2

)
8 7

(
z y x2 + z2

w2 x y+ w2

)
8 7
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Table 5: The simple isolated 2× 3 Cohen–Macaulay 3–fold singu-
larities inC5, from [FN, Theorem 3.5].

Presentation matrix Parameters computedτ b3− b2(
x y z
w v x

)
1 −1

(
x y z
w v xk+1 + y2

)
1≤ k ≤ 4 k+ 2 k− 1

(
x y z
w v xy2 + xk−1

)
4≤ k ≤ 6 k+ 2 k− 1

(
x y z
w v x3 + y4

)
8 5

(
x y z
w v x3 + xy3

)
9 6

(
x y z
w v x3 + y5

)
10 7

(
w y x
z w y+ vk

)
2≤ k ≤ 5 2k− 1 −1

(
w y x
z w yk + v2

)
2≤ k ≤ 5 k+ 2 k− 2

(
w y x
z w yv+ vk

)
2≤ k ≤ 5 2k 0

(
w+ vk y x

z w yv

)
2≤ k ≤ 5 2k+ 1 0

(
w+ v2 y x

z w y2 + vk

)
2≤ k ≤ 5 2k k− 2

(
w y x
z w y2 + v3

)
7 1

(
v2 + wk y x

z w v2 + yl

)
2≤ k ≤ l ≤ 6 k+ l + 1 k+ l − 3

(
v2 + wk y x

z w yv

)
2≤ k ≤ 5 k+ 4 k− 1

(
v2 + wk y x

z w y2 + vl

)
2≤ k ≤ 3; 3≤ l ≤ 7 k+ l + 2 k+ l − 3

(
wv+ vk y x

z w yv+ vk

)
3≤ k ≤ 6 2k+ 1 1

(Table continues)
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(Table 5, continued)
Presentation matrix Parameters computedτ b3− b2(

wv+ vk y x
z w yv

)
3≤ k ≤ 6 2k+ 2 1

(
wv+ v3 y x

z w y2 + v3

)
8 2

(
wv y x
z w y2 + v3

)
9 2

(
w2 + v3 y x

z w y2 + v3

)
9 3

(
z y x
x w v2 + y2 + zk

)
2≤ k ≤ 5 k+ 4 k

(
z y x
x w v2 + yz+ ykw

)
1≤ k ≤ 4 2k+ 5 2k+ 1

(
z y x
x w v2 + yz+ yk+1

)
2≤ k ≤ 5 2k+ 4 2k

(
z y x
x w v2 + yw+ z2

)
8 4

(
z y x
x w v2 + y3 + z2

)
9 5

(
z y x+ v2

x w vy+ z2

)
7 2

(
z y x+ v2

x w vz+ y2

)
8 3

(
z y x+ v2

x w y2 + z2

)
9 4
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