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We analyze the phase structure of mass- and spin-imbalanced unitary Fermi gases in harmonic
traps. To this end, we employ Density Functional Theory in the local density approximation.
Depending on the values of the control parameters measuring mass and spin imbalance, we observe
that three regions exist in the trap, namely: a superfluid region at the center, surrounded by a
mixed region of resonantly interacting spin-up and spin-down fermions, and finally a fully polarized
phase surrounding the previous two regions. We also find regimes in the phase diagram where the
existence of a superfluid region at the center of the trap is not energetically favored. We point out
the limitations of our approach at the present stage, and call for more detailed (ab initio) studies
of the equation of state of uniform, mass-imbalanced unitary Fermi gases.

I. INTRODUCTION

Ultracold Fermi gases have attracted a great deal of
attention from a variety of research fields in the past
15 years. This interest can be traced back to the fact
that quantum many-body phenomena, such as Bardeen-
Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein
condensation (BEC) can be studied experimentally with
very high precision in some cases [1–3] (see Ref. [4] for a
review) which opens up the possibility to test our theo-
retical understanding of such phenomena in a very clean
way [5, 6].

From an experimental point of view, the control pa-
rameters are the density n and the s-wave scattering
length as, provided that the (effective) range of the in-
teraction can be neglected. The latter is true for a suf-
ficiently dilute Fermi gas to a very good approximation.
The dynamics of the system is then entirely controlled
by the dimensionless parameter n

1

3 as. A particularly in-
teresting limit is the so-called unitary regime, which is
characterized by as → ∞. In the presence of a Feshbach
resonance, the latter can be tuned with the aid of an ex-
ternal magnetic field which, however, is currently only
possible for a limited number of (meta)stable atoms in
the nuclear chart, such as 6Li and 40Ka.

In the present work, we shall restrict ourselves to the
unitary regime defined above. In this limit, the only scale
left in the problem is the density n, at least for a uniform
system. For trapped gases, as realized in experiments, an
additional length scale enters the problem, namely the
one associated with the (harmonic) trap potential. This
scale affects the dynamics of the system and may there-
fore alter the phase structure compared to the uniform
system. Studies of such finite-size effects are of utmost
importance to better connect our theoretical understand-
ing of quantum many-body phenomena with experiment.

Studies of unitary Fermi gases, even in the absence of
an external potential, are already hampered by the fact
that a small expansion parameter remains to be identi-
fied, which makes the use of non-perturbative tools un-
avoidable [7]. For the case of spin- and mass-imbalanced

Fermi gases, which are the focus of this work, even less is
known beyond the mean-field approximation, although
great efforts have been made in recent years to study
mass-imbalanced (see, e.g., Refs. [8–12]) as well as spin-
imbalanced (see, e.g. Refs. [13–18]) unitary Fermi gases.
We refer the reader to Refs. [19, 20] for more general re-
views. We note, however, that ab initio studies of mass-
and spin-imbalanced Fermi gases are generally out of
reach for (lattice) Monte Carlo (MC) calculations due to
the appearance of a sign problem [21], which calls for the
development and use of novel techniques [22, 23]. Finally,
the consideration of trap effects represents an additional
(technical) complication for ab initio studies in general,
especially at finite temperature.
In order to study trapped, three-dimensional unitary

Fermi gases, Density Functional Theory (DFT) provides
a viable framework (see, e.g., Refs. [24, 25] for an intro-
duction). In principle, DFT allows for an exact solution
of a given many-body problem. In practice, however,
DFT studies rely on an approximation of the full energy
density functional. The simplest form is the so-called lo-
cal density approximation (LDA), which represents the
zeroth order of an expansion of the energy density func-
tional in terms of gradients of the density. The den-
sity functional is then given by the volume integral over
the uniform equation of state with the uniform densi-
ties replaced by their space-dependent counterparts. For
trapped unitary Fermi gases, LDA studies turn out to be
quite successful, at least for systems with many atoms. In
fact, they show even quantitative agreement with experi-
ments in some cases (see, e.g., Refs. [26–29]). Ultimately,
the predictive power of LDA studies depends strongly on
the quality of the employed equation of state of the uni-
form system.
In the present work, we aim to understand the dynam-

ics and phase structure of trapped unitary, mass- and
spin-imbalanced Fermi gases, including the computation
of density profiles. To this end, we construct an energy
density functional in LDA following Ref. [28]. Studies
of the phase structure of mass-imbalanced unitary Fermi
gases represent a comparatively new field from the ex-
perimental perspective [30–34]. Therefore, even though
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the accuracy of our predictions is limited, our present
study may still provide useful insights into the dynamics
of trapped spin- and mass-imbalanced Fermi gases. For
instance, it may help improve future DFT studies of such
systems (going beyond the LDA), and it may provide
guidance for experiments aiming at a study of the phase
structure for non-vanishing spin- and mass-imbalance.
The present work is organized as follows: In Sect. II,

we give a detailed discussion of the formalism underlying
our studies, including a brief discussion of the uniform
system. Our results for the phase structure of a trapped
spin- and mass-imbalanced unitary Fermi gas are then
presented in Sect. III. Our summary is found in Sect. IV.

II. FORMALISM

A. Uniform System

For a uniform system, the partition function of a uni-
tary Fermi gas reads

Z(T,m↑,m↓, µ, h)

= Tr
[

e−β(Ĥ−µ(N̂↑+N̂↓)−h(N̂↑−N̂↓))
]

, (1)

where β = 1/T is the inverse temperature. The Hamilto-

nian Ĥ describes the dynamics of a theory with only two
fermion species, denoted by ↑ and ↓, interacting only via
a zero-range two-body interaction:

Ĥ=

∫

d3x

[

∑

σ=↑,↓

ψ̂†
σ(x)

(

−~∇2

2mσ

)

ψ̂σ(x) + ḡρ̂↑(x)ρ̂↓(x)

]

.

The operators ρ̂↑,↓ are the particle density operators asso-

ciated with the two fermion species, and N̂↑,↓ are the cor-
responding particle-number operators. In order to study
the unitary regime (as → ∞), the coupling ḡ must be
chosen accordingly.
The masses of the two species are given by m↑ and m↓,

respectively. Moreover, we have introduced the average
chemical potential µ = (µ↑ + µ↓)/2 and the asymmetry

parameter h = (µ↑ − µ↓)/2. The corresponding dimen-
sionless measure for the spin imbalance of the system is
given by

h̄ =
h

µ
=
µ↑ − µ↓

µ↑ + µ↓

. (2)

Along these lines it is also convenient to introduce a mea-
sure for the mass imbalance of the system:

m+ =
4m↑m↓

m↑ +m↓

, m− =
4m↑m↓

m↓ −m↑

, m̄ =
m+

m−

. (3)

The parameter m̄ measures the relative strength of the
mass imbalance where −1 < m̄ < 1. At this point, we
would like to emphasize that the theory is invariant under
the following simultaneous transformation of h̄ and m̄:

h̄ → −h̄ and m̄ → −m̄. To fix the scales, we henceforth
set m+ = 1 corresponding to 2m = 1 for m↑ = m↓ = m.
In the mean-field approximation, the zero-temperature

phase diagram of the uniform system can now be com-
puted straightforwardly, provided that we do not take
into account the possibility of the existence of inhomoge-
neous phases [12, 35] (see Appendix A for details). The
result of such a mean-field study is shown in Fig. 1. We
find that, for any value of the spin-imbalance parame-
ter h̄, the system assumes a ground state associated with
a BCS-type superfluid, provided the mass-imbalance pa-
rameter m̄ is chosen accordingly. The shape of the BCS-
type phase can be understood in simple terms: Increas-
ing h̄ for a fixed value of m̄ induces a difference in the
Fermi momenta kF,↑ and kF,↓ associated with the two
fermion species:

1√
µ
(kF,↑ − kF,↓) =

√

1 + h̄

1 + m̄
−

√

1− h̄

1− m̄
. (4)

Assuming that the emergence of a BCS-type ground-state
requires the Fermi momenta of the two species to be ap-
proximately equal, we conclude that the difference of the
Fermi momenta induced by an increase of h̄ can be com-
pensated by a corresponding increase of m̄.1 On the
other hand, we find that values for m̄ exist for which
the system does not assume a superfluid ground state,
independent of our choice for the spin-imbalance param-
eter h̄. This observation is also in accordance with our
simple considerations based on Eq. (4). Moreover, our
mean-field analysis suggests that, for m̄ → 1, the phase
characterized by a superfluid BCS-type ground state is
only energetically favored in the limit h̄ → 1. We shall
come back to this observation below.
Finally, we comment on the value of the so-called

Bertsch parameter ξS in the superfluid phase which is
a measure for the ground-state energy of the system. In
the case of a mass- and spin-imbalanced Fermi gas, this
parameter can be defined as follows:

εS ≡ ES

NS
:=

1

2

(

εS↑ + εS↓
)

, (5)

where

εS↑,↓ ≡
ES

↑,↓

NS
↑,↓

:=
3

5
ξS

1

2m↑,↓

(

6π2nS

)
2

3

=
3

5
ξS (1± m̄)

(

6π2nS

)
2

3 . (6)

Note that our conventions are such that nS = n↑ = n↓

in the superfluid phase.2 The quantities N↑,↓ denote the

1 Note that we have kF,↑ = kF,↓ for h̄ = m̄.
2 Thus, ns should here not be confused with the so-called pair
density in the superfluid phase, see also Ref. [28] where similar
conventions have been used. Moreover, we would like to add that,
in our mean-field approximation, we indeed find that n↑ = n↓ in
the BCS phase.
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Figure 1. Phase diagram of a mass- and spin-imbalance uni-
tary Fermi gas as obtained from a mean-field approximation.
The black solid lines mark the first-order phase transitions
between the BCS-type superfluid phase (gray-shaded area)
associated with a spontaneous breakdown of the U(1) sym-
metry of the theory and the non-superfluid phase associated
with ungapped fermions and restored U(1) symmetry.

number of spin-up and spin-down fermions, respectively.
For m̄ = 0, this definition reduces to the standard def-
inition of the Bertsch parameter. With our mean-field
approach, we find that ξS is independent of m̄ and h̄.
In our DFT study presented below, we shall employ this
observation to model the equation of state which governs
the dynamics of the superfluid region in the trap.

B. Trapped System

In order to account for trap effects, we could in prin-
ciple include terms in the underlying Hamilton operator
which couple (harmonic) external potentials V↑,↓ to the
density operators ρ̂↑,↓ and compute the partition func-
tion Z. Although such an approach represents a rigorous
way for a study of the phase diagram, the computation
of this partition function Z with ab initio approaches,
such as lattice Monte-Carlo simulations, appears to be
currently out of reach. Here, we therefore use DFT in
LDA following Refs. [28]. This allows us to include and
study trap effects in a very efficient way. However, it
requires the knowledge of the equation of state of the
uniform system.

As the precise determination of the equation of state
of a uniform spin- and mass-imbalanced unitary Fermi
gas is itself a highly challenging and unsolved problem,
we shall utilize results from various methods to model it
in the following.

For the energy density functional E underlying our

study, we shall use the following ansatz:

E[nS, n↑, n↓] = 2

∫

r≤RS

d3r nS

[

εS − µ0
S +

1

2
(V↑ + V↓)

]

+

∫

RS≤r≤Rmax.

d3r [εN(x)n↑ + V↑n↑ + V↓n↓

−µ0
↑n↑ − µ0

↓n↓

]

, (7)

where εS ≡ εS(nS(~r )) and εN(x) with x ≡ x(~r) =
n↓(~r )/n↑(~r ) are the equations of state of the superfluid
and the normal phase, respectively. The (isotropic) trap
potentials are given by

V↑,↓ ≡ V↑,↓(~r ) =
1

2
m↑,↓ω

2
↑,↓~r

2 ≡ 1

4

1

1± m̄
ω2
↑,↓~r

2 . (8)

For convenience, we set ω↓ = αω↑ with α being a measure
for the difference in the trap potentials for the spin-up
and spin-down fermions, respectively. The quantity RS

in Eq. (7) determines the radial extent of the super-
fluid core in the center of the trap, whereas the quan-
tity Rmax. determines the radius of the total system.3 In
our ansatz for the functional E, we have also included
chemical potentials µ0

↑ and µ0
↓ for the spin-up and spin-

down species, respectively. They fix the chemical po-
tential µ0

S = (µ0
↑ + µ0

↓)/2 associated with the superfluid
region as we assume chemical equilibrium between the
superfluid core (0 ≤ R ≤ RS) and the surrounding nor-
mal region (RS < r ≤ Rmax.).
In order to use the energy density functional (7) to

compute the phase structure of trapped spin- and mass-
imbalanced Fermi gases, we finally need to specify the
equation of state of the superfluid phase and the nor-
mal phase. In LDA, the latter are given by the corre-
sponding equations of state of the uniform system by re-
placing the uniform densities with space-dependent den-
sities, i.e. nS → nS(~r) and n↑,↓ → n↑,↓(~r) (see, e.g.,
Refs. [24, 25]). For the superfluid region, the equation
of state can then be conveniently parameterized by the
Bertsch parameter ξS (see Eq. (5)). For a mass- and
spin-balanced unitary Fermi gas, the Bertsch parameter
has been computed many times with the aid of MC tech-
niques and found to be ξS ≈ 0.42 [36, 37]. More recent
estimates place ξS at about 0.375 (see e.g. [38] and refer-
ences therein) but for reasons that are clarified below we
use the previous value,4 even in the case of finite spin-
and mass-imbalance. Recall that our mean-field study in
Sect. II A indeed suggests that this parameter does not
depend on h̄ and m̄ in the superfluid phase.

3 Without loss of generality, we tacitly assume that N↑ ≥ N↓ in
the following.

4 Recall that our conventions are such that nS = n↑ = n↓ which
result in a factor of two in front of the integral associated with
the superfluid equation of state in Eq. (7).
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Figure 2. Dependence of the energy gain η and the effective mass m∗ on the relative mass difference m̄. For m̄ = 0, we
find η ≈ −0.60 and m∗/m ≈ 1.17. In order to compute η and m∗, we have used a variational ansatz as described in
Refs. [8, 13, 16]. Upon numerical errors, our results agree with those reported in Ref. [8].

For the equation of state of the normal phase, we shall
employ an ansatz which essentially mimics an expansion
of the system about x = n↓/n↑ = 0:

εN(x) ≡
E(x)

N↑

≡ 3

5
εF↑ε(x) . (9)

Here,

εF↑ := (1 + m̄)
(

6π2n↑

)
2

3 (10)

is the equation of state of a non-interacting system of
spin-up fermions and

ε(x) := 1 +
5

3
ηx+

m

m∗
x

5

3 +Bx2 (11)

determines the deviation from the equation of state of
non-interacting spin-up fermions in the presence of spin-
down fermions [14]. Clearly, our model ansatz for ε(x)
should be considered as an approximation of the full
equation of state. The parameters η, m∗, and B can
be computed for the uniform system. The parame-
ter η describes the gain of energy when a spin-down
fermion is added to a sea of spin-up fermions. The
third term (∼ x5/3) describes the quantum pressure of a
Fermi gas of quasi-particles with an effective mass m∗.
The parameter B is a measure of the interaction be-
tween the quasi particles. For m̄ = 0, these param-
eters have been computed with various different ap-
proaches [8, 13, 14, 16, 18, 39–41] and it has been found
that the parameterization (11) models very well results
from MC simulations, even for large values of x (see
Ref. [14]). In our analysis we shall use the parameter
values determined in those references, which rely on a
value of the Bertsch parameter that differs from the lat-
est estimate ≃ 0.375 by about 10-20%; however, we do
not expect our results to be accurate at that level of pre-
cision. Clearly an updated analysis of the equation of
state is called for, but is beyond the scope of this work.

For m̄ 6= 0, the parameters depend on m̄ and terms of
higher order in x may now become relevant, at least for
large values of x. We shall come back to this point below.
In any case, compared to the mass-balanced case, little
is known about the precise dependence of the presently
included parameters on m̄. Indeed, lattice MC simula-
tions suffer from the so-called sign-problem in this regime
and therefore cannot be applied straightforwardly, which
makes the use of new techniques indispensable in future
studies [23]. In the present work, we shall employ the
results for the m̄-dependence of η and m∗ as obtained
from a variational approach [8], which have been found
to be in good agreement with the commonly accepted
values for m̄ = 0 (see Fig. 2). For the parameter B, we
choose B = 0.14 in our present study, independent of m̄.
For m̄ = 0, this corresponds to the value used in Ref. [28].
However, we have checked the robustness of our results
for the phase structure by varying this parameter (see
also our discussion in the next section).

Having specified the equations of state of the super-
fluid and normal phases, the ground state of the trapped
system is then obtained by minimizing the energy den-
sity functional (7) with respect to the densities nS, n↑,
and n↓, as well as with respect to the radius RS of the
superfluid phase:

δE

δnS
=
δE

δn↑

=
δE

δn↓

=
∂E

∂RS

!
= 0 . (12)

Note that the variation with respect to RS ensures me-
chanical equilibrium between the superfluid and the sur-
rounding normal phase.

From the variation of E with respect to the densities,
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we obtain the following set of equations:

µ0
S = ξS

(

6π2nS

)
2

3 +
1

2
(V↑ + V↓) , (13)

µ0
↑ = (1 + m̄)

(

6π2n↑

)
2

3 δ(x) + V↑ , (14)

µ0
↓ =

3

5
ε′(x) (1 + m̄)

(

6π2n↑

)
2

3 + V↓ , (15)

where ε′(x) ≡ ∂ε(x)/∂x and

δ(x) = ε(x)− 3

5
xε′(x) . (16)

From Eqs. (13)-(15) together with the constraint
∂E/∂RS = 0, we find

ε(x(RS)) +
3

5
ε′(x(RS)) (1− x(RS))

−
(

2ξS
1 + m̄

)
3

5

ε(x(RS))
2

5 = 0 , (17)

which determines the ratio x of the spin-down and spin-
up density at the boundary between the superfluid and
the partially polarized normal region. Note that this
equation does not depend on the trap parameter α =
ω↓/ω↑.
The radial extent of the cloud of the majority and

minority fermions is implicitly defined by n↑(R↑) = 0
and n↓(R↓) = 0, respectively. From Eq. (14) and
Eq. (15), we obtain:

R↑ =
2

ω↑

√

µ0
↑ (1 + m̄) (18)

and

R↓ =
2

ω↑

√

√

√

√

µ0
↓ − 3

5
ε′(0)
δ(0) µ

0
↑

1
1−m̄α

2 − 3
5
ε′(0)
δ(0)

1
1+m̄

. (19)

Keeping ω↑ fixed, we find that R↓ decreases for increas-
ing α as expected. The radius Rmax. of the total system
is then given by Rmax. = max{R↑, R↓}.
In the present work, we aim at understanding the dy-

namics of the trapped system under a variation of the
mass-imbalance parameter m̄ and the polarization P ,

P =
N↑ −N↓

N↑ +N↓

, (20)

which corresponds to the parameter h̄ in the uniform
case. In particular, we are interested in the computation
of the so-called critical polarization Pc(m̄), above which
the superfluid core ceases to exist. To this end, we first
solve Eq. (17) for x(RS) for a given value of m̄. For a
given value of RS and n↑(RS), we can then compute the
chemical potentials µ0

↑ and µ0
↓. The knowledge of the lat-

ter enables us to determine the density profiles n↑(r) und
n↓(r) in the normal phase, i.e. for r = |~r | ≥ RS. Finally,
the density profile nS(r) associated with the superfluid
region can be computed with the aid of Eq. (13). Note
that, in our present LDA study, the particle numbers N↑

and N↓ depend on our choice for n↑(RS) but the critical
polarization Pc does not.

III. RESULTS

A. Mass-balanced, spin-imbalanced case

In this section we briefly review the phase structure of
the trapped spin-imbalanced unitary Fermi gas with m̄ =
0. Solving Eq. (17) in this case, we find

x(RS) ≈ 0.54 . (21)

With x(RS) at hand, we can now compute the density
profiles and eventually the critical polarization Pc:

5

Pc(m̄ = 0) ≈ 0.68 . (22)

For P > Pc, we find that there is no superfluid phase
anymore in the center of the trap and we are left with two
distinct regions, namely a non-superfluid mixed region
with n↑(r) 6= 0 and n↓(r) 6= 0 (RS < r < R↓) and a fully
polarized normal region with n↑(r) 6= 0 and n↓(r) ≡
0 (R↓ < r < R↑). For P < Pc, on the other hand, we
have in addition a superfluid region in the center of the
trap with nS 6= 0 (r < RS) (see also our discussion of
density profiles below).
Our results for m̄ = 0 should be compared with the

results of Ref. [28]. In the latter work, the authors have
found that x(RS) ≈ 0.44 and Pc ≈ 0.77. These results
as well as those for the density profiles have been found
to be in very good agreement with data from MIT ex-
periments [42, 43]. For example, Pc ≈ 0.75 has been
extracted from the experimental data. The discrepancy
with our results can be traced back to the fact that we
use m∗/m = 1.17 for m̄ = 0 in the ansatz (11) instead
of m∗/m = 1.09 as obtained from a MC study of the
mass-balanced case [41]. In any case, we have checked
that our results agree with those from Ref. [28] in the
limit m̄ = 0, provided we also use m∗/m = 1.09. For
our studies of the full phase diagram in the (P, m̄) plane,
this implies that we underestimate the critical polariza-
tion Pc(m̄) by about 10%, at least in the limit of small
mass imbalance, |m̄| ≪ 1.

B. Mass- and spin-balanced case

1. Critical polarization as a function of mass imbalance
and trap asymmetry

Let us now turn to the discussion of the phase di-
agram of trapped mass- and spin-imbalanced unitary
Fermi gases (see Fig. 3). Lowering the polarization P for
a given m̄ starting from a fully polarized system (P = 1),
we find that the superfluid core disappears at a critical

5 Setting B = 0, we find x(RS) ≈ 0.93 and Pc ≈ 0.30. The strong
dependence of x(RS) and Pc on the value of B for m̄ = 0 indi-
cates the relevance of the parameter B measuring the interaction
between the quasi particles.
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Figure 3. (color online) Phase diagram of a spin- and mass-
imbalanced unitary Fermi gas in the plane spanned by the po-
larization P and the mass imbalance m̄ for α = 1. The black
solid line depicts the critical polarization Pc,<(m̄) below which
a superfluid region in the center of the trap is energetically
favored. We find that a finite domain in this phase diagram
exists (gray-shaded area) in which the center of the trap is
governed by a superfluid region. Whereas the black solid line
is a result of our DFT study, the existence of the (blue) dashed
line follows from general considerations (see main text for a
detailed discussion).

polarization Pc,<. Moreover, we find that Pc,< increases
with increasing m̄,

dPc,<(m̄)

dm̄
> 0 , (23)

and that Pc,< tends to zero for (m̄ − m̄c,<) → 0+

where m̄c,< ≈ −0.08.6 For m̄ < m̄c,<, there is no su-
perfluid region in the center of the trap, independent
of our choice for the polarization P . For m̄ > m̄c,<

and P < Pc,<(m̄), we find that the existence of three dis-
tinct regions is energetically favored, namely a superfluid
region in the center of the trap surrounded by a mixed
region which is surrounded by a fully polarized normal
region (see also our discussion above for the case m̄ = 0).
At this point, it is also interesting to discuss the ef-

fect of the trap-asymmetry parameter α. Increasing α
starting from α = 1, we find that Pc,< increases as well
(see Fig. 4). However, we obtain that m̄c,< ≈ −0.08
does not depend on α. Whereas the latter observation
is an artifact of our ansatz for the energy density func-
tional, the general observation that Pc,< increases with α
for m̄ > 0 appears to be reliable. Indeed, from a physical
point of view, this dependence of Pc,< on α can be traced
back to the fact that the trap potential of the spin-down
fermions becomes steeper when we increase α. Therefore

6 Setting B = 0, we find m̄c,< ≈ −0.001. This indicates again
the relevance of higher-order terms in x in our ansatz for the
equation of state of the normal phase (11).
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Figure 4. (color online) Dependence of the critical polariza-
tion Pc,<(m̄) on the trap-asymmetry parameter α for m̄ =
0, 0.1, 0.2.

the spin-down fermions are highly localized around the
center of the trap and their potential energy increases.
For the spin-down fermions it is then energetically more
favorable to form Cooper pairs with spin-up fermions and
condense. This explains the increase of the critical po-
larization with α.

2. Superfluid region in the phase diagram

Next, we discuss the size of the region in the phase di-
agram in which a superfluid region at the core of the trap
is energetically favored. Applying our DFT approach
to the regime with m̄ > m̄c,< and P ≪ Pc,<(m̄), we
find that a superfluid core is predicted to exist in the
center of the trap for all values of 0 ≤ P < Pc,<(m̄)
and m̄c,< < m̄ < 1. We now analyze this prediction
with the aid of more general arguments. To this end, we
first recall that the uniform system is invariant under the
simultaneous transformations h̄ → −h̄ and m̄ → −m̄.
For the trapped system, this translates into an invari-
ance under the simultaneous transformations P → −P
and m̄ → −m̄, provided we consider the case α = 1
for the trap-asymmetry parameter.7 For α 6= 1, the
system is invariant under the simultaneous transforma-
tions P → −P , m̄ → −m̄, and ω↑,↓ → ω↓,↑. In the fol-
lowing we restrict ourselves to the case α = 1. With our
symmetry consideration at hand, we then expect that,
in addition to the “critical point” m̄c,< at P = 0, a sec-
ond “critical point” m̄c,> at P = 0 exists in the phase
diagram with

m̄c,> = −m̄c,< . (24)

7 Note that, strictly speaking, there is no simple one-to-one rela-
tion between the parameter h and the polarization P . However,
both parameters are in principle related via a Legendre transfor-
mation.
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Figure 5. (color online) Ratio of the spin-down and spin-up
densities for r = RS = 0 (i.e. for P = Pc,<) as a function of m̄.
Recall that RS denotes the radius of the superfluid region
which is zero for P = Pc,<(m̄). Moreover, in our DFT study,
Pc,<(m̄) is defined to be the smallest value of the polarization
for which RS becomes zero.

This implies that the regime in the phase diagram char-
acterized by the existence of a superfluid core in the
trap does not extend to m̄ → 1 for P = 0, provided
that our presently employed energy density functional
has still predictive power in regions of the phase diagram
where x(r) = n↓(r)/n↑(r) ≈ 1. The latter is the case
for m̄ < 0 and P & Pc,<(m̄) (see also Fig. 5). However,
only if our functional still provides an accurate descrip-
tion of the system for x(r) . 1, it can be used to predict
the existence of the point m̄c,<. We shall discuss the va-
lidity of our approach for m̄ < 0 in detail below. For the
moment, we assume the existence of the second “criti-
cal point” m̄c,> which is given by the intersection of the
(blue) dashed line with the P = 0 axis in Fig. 3. In the
following we shall refer to the associated line of critical
polarizations as Pc,>(m̄).

3. Phase structure at large polarization and mass
asymmetry

To discuss the phase structure for large values of m̄
and P , it is useful to consider again the phase diagram
of the uniform system. In that case, we found that the
size of the BCS-type phase shrinks to a single point for
m̄ → 1 (see Fig. 1). One may therefore be tempted to
conclude that m̄ → 1 necessarily implies Pc,>(m̄) → 1.
For P < Pc,>(m̄), we would then expect that only two
distinct regions exist in the trap: a mixed phase sur-
rounded by a fully polarized normal phase. In Fig. 3, the
(blue) dashed line depicts one possible functional form
for Pc,>(m̄) compatible with our general considerations.
A word of caution should be added at this point:

The parameters h̄ and P are related via a Legendre
transformation which implies that there is indeed no

-3

-2

-1
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 1
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Figure 6. (color online) Normalized equation of state ε(x) =
(5/3)(εN(x)/εF↑) of the normal phase for various values of the
mass-imbalance parameter m̄ as a function of n↓/n↑, see also
Eq. (11). For m̄ . −0.5, we observe that ε(x) becomes nega-
tive for a finite range of values of x indicating the breakdown
of our ansatz for ε(x) for these values of m̄.

straightforward mapping between the phase boundaries
of the BCS-type phase of the uniform system onto the
lines of critical polarizations Pc,>(m̄) and Pc,<(m̄) of the
trapped system. Note that the constraint Pc,>(m̄c,>) = 0
is not affected by this. However, it may be the case
that Pc,>(m̄) < 1 for m̄ → 1. Therefore the functional
form of Pc,>(m̄) could very well be different from the one
depicted in Fig. 3. In any case, it follows that our more
general discussion of the phase structure is in contradic-
tion with the results from our DFT study for m̄ > m̄c,<

and P ≪ Pc,<(m̄). Basically, this observation allows for
three different conclusions:

(a) The functional (7) can be used to study the sys-
tem for P & Pc,<(m̄) independent of our choice for m̄
but it does not allow us to describe reliably the system
for m̄ > m̄c,< and P < Pc,<(m̄), not even on a qualita-
tive level. Therefore it should not be used in this regime,
at least it should not be considered for P ≪ Pc,<(m̄).

(b) The functional (7) can be used to study reliably
the system for m̄ > 0 but it is insufficient to describe
the system for m̄ < 0. From our symmetry considera-
tions, it would then follow that m̄c,< → −1 as we would
expect to have m̄c,> → 1 in this case, see our discus-
sion above. This implies that the underlying functional
fails to predict the line of critical polarizations Pc,<(m̄)
for m̄ < 0. Note that the predictions from the func-
tional (7) for the critical polarization and the density
profiles for m̄ = 0 are in good agreement with MIT ex-
periments, see also Ref. [28].

(c) The good agreement with MIT experiments
for m̄ = 0 suggests that the functional (7) should only be
used for studies with polarization P > P(m̄). Here, P
defines a lower bound for the applicability of the func-
tional (7) which we expect to depend on m̄. From the
comparison of the density profiles with those measured
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Figure 7. (color online) Density profiles normalized by the
density nS at the center of the trap as a function of r̄ = r/R↑

for fixed P = Pc,<(m̄ = 0.1) ≈ 0.89 and three different val-
ues of the mass-imbalance parameter m̄ = 0.1, 0.2, 0.3 (from
top to bottom). The trap-asymmetry parameter has been set
to α = 1. The (black) solid line depicts the density nS in the
superfluid regime, whereas the (blue) dashed and the (red)
dashed-dotted lines depict n↑ and n↓, respectively.

in experiments, it moreover follows that, at least, P(0) &
0.4, see Ref. [28].
Our analysis appears to favor conclusion (c). In fact,

we find that the normalized equation of state ε(x) =
(5/3)(εN(x)/εF↑) of the normal phase becomes negative
for a finite range of values of x for m̄ . −0.5 (see Fig. 6).
As ε(x) enters our construction of the energy density
functional (7), it follows that the latter can no longer
be used to study trapped systems with m̄ . −0.5. Note
that it may very well be that the functional (7) becomes
already unreliable for larger values of m̄ at P & 0. There-
fore it is reasonable to expect that our DFT does not
allow for a quantitative prediction of the location of the
“critical point” m̄c,<. The reason for the breakdown of
our DFT approach for m̄ . −0.5 can be manifold. As al-
ready discussed in Sect. II B, strictly speaking, our ansatz
for ε(x) is only valid for x ≪ 1. For m̄ = 0, however, it
has been found that our ansatz for ε(x) describes results
from MC simulations very well, even for large values of
x (see Ref. [14]). For m̄ 6= 0, this may no longer be
the case as, for example, higher-order terms may become
relevant. Moreover, three-body effects may become im-
portant in this regime. The relevance of the latter effects
has also been pointed out by analytic studies of few-body
systems (see, e.g., Refs. [44–46]), as well as by Quantum
Monte-Carlo studies [10]. In any case, an improvement
of the equation of state of the normal phase in this direc-
tion is beyond the scope of the present work. Still, our
analysis of the phase diagram of the uniform system as
well as of the symmetries of the theory suggests the ex-
istence of two “critical points” m̄c,< and m̄c,> at P = 0
with m̄c,> = −m̄c,< and m̄c,> < 1. However, a compu-
tation of the precise values of these points is not possible
with the energy density functional underlying our present
work.

4. Density profiles

Finally, we would like to briefly discuss the density pro-
files as obtained from our DFT study. To this end, we
restrict ourselves to the case of large values of the polar-
ization P where, following our discussion above, we still
expect our present ansatz for the energy density func-
tional to yield reliable results. In Fig. 7, we show the
density profiles for fixed P = Pc,<(m̄ = 0.1) ≈ 0.89
and three different values of the mass-imbalance param-
eter m̄ = 0.1, 0.2, 0.3. We find that the ratio n↑/nS eval-
uated at r = RS decreases with increasing m̄.8 The de-
crease of n↑/nS at r = RS with m̄, together with our pre-
dictions for the density profiles themselves, can be viewed
as a testable prediction for future experimental studies of
mass- and spin-imbalanced unitary Fermi gases. In the
same way, we expect that our result for the line of crit-
ical polarizations Pc,<(m̄) can provide reliable guidance
for experiments with m̄ & 0.

8 Note that n↑/nS ≈ 1 for m̄ = 0 and P . Pc,<(0) ≈ 0.68 (see
also Ref. [28]).
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IV. SUMMARY

In this work we have studied the phase diagram of
trapped mass- and spin-imbalanced unitary Fermi gases.
To this end, we constructed an energy density func-
tional along the lines of Ref. [28]. This allowed us to
compute the critical polarization as a function of the
mass-imbalance parameter m̄, at least for strongly spin-
imbalanced systems. On the other hand, our symmetry
considerations together with our results for the phase di-
agram of the uniform system strongly suggest that the
energy density functional underlying our studies is insuf-
ficient to reliably study trapped mass-imbalanced Fermi
gases for small spin-polarizations P . Nevertheless, our
study allowed us to understand the structure of the phase
diagram on a qualitative level.

Our analysis suggests that, in addition to the line of
critical polarizations predicted by our DFT approach, a
second line of critical polarizations exists. Moreover, our
analysis suggests that the emergence of a superfluid re-
gion at the center of the trap is reasonably well described
by our energy density functional, provided that we study
the case of (highly) spin-polarized systems for m̄ & 0. In
this regime, we also expect that our predictions for the
density profiles are meaningful. For m̄ . 0, we find that
the critical polarization associated with the emergence of
a superfluid region in the center of the trap tends to zero.
Whereas this behavior of the critical polarization is rea-
sonable and can be understood on more general grounds,
we believe that our present ansatz for the energy den-
sity functional is not capable of predicting accurately the
value of m̄ < 0 at which the critical polarization vanishes.

An improvement of our present DFT study requires
a detailed analysis of the equation of state of the nor-
mal phase, see Eq. (9) and possibly also of the su-
perfluid phase. To this end, it may very well be re-
quired to study the equation of state of a homogeneous,
mass- and spin-imbalanced gas with various different
non-perturbative approaches, such as lattice MC calcu-
lations (see, e.g., Ref. [21] for a review), Renormalization
Group approaches (see, e.g., Refs. [47–51]), and two-
particle irreducible approaches (see, e.g., Ref. [52]). In
this respect, the role of three-body effects should possi-
bly also be taken into account. Such advanced studies of
the equation of state may also help to analyze in which
region of the phase diagram, and to what extent, we may
see “signals” of inhomogeneous phases in experimental
data.
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Appendix A: Mean-field study of a uniform spin-

and mass-imbalanced Fermi gas

In this appendix we briefly discuss the mean-field study
underlying our discussion of the phase diagram of the uni-
form system in Sect. II A. In order to compute the lat-
ter phase diagram, we have derived the order-parameter
potential U for U(1) symmetry breaking in the mean-
field approximation from the path intergral representa-
tion of the partition function Z (see Refs. [22, 23] and
Refs. [19, 20] for more general reviews). In the unitary
limit, we obtain

βU(ϕ̄) = −2βµ|ϕ̄|2 −
∫

d3q

(2π)3
ln
[

cosh
(

βm̄q2 + βh
)

+cosh

(

β
√

(q2 − µ)
2
+ g2ϕ|ϕ̄|2

)]

, (A1)

where the background field (mean field) ϕ̄ = ϕ − δϕ is
defined to be the difference of the auxiliary field ϕ ∼
gϕψ↑ψ↓ and the fluctuation field ϕ. In this work, we do
not take into account that the ground-state configuration
may break translation invariance, even in the uniform
system (see, e.g., Ref. [35]). Note that we have dropped
standard ϕ-independent terms in Eq. (A1) which are re-
quired to regularize the potential.
The order-parameter potential U and the grand canon-

ical potential Ω are related, Ω = V U(ϕ0), where V is the
volume of the system and ϕ0 denotes the value of ϕ mini-
mizing the potential. Moreover, g2ϕ|ϕ0|2 can be identified
with the fermion gap ∆ which serves as an order param-
eter for spontaneous U(1) symmetry breaking associated
with a superfluid ground state.
Our results for dimensionless (universal) quantities ex-

tracted from the potential U , such as the Bertsch param-
eter, are independent of our choice for µ and the cou-
pling gϕ of the fermions to the (auxiliary) field ϕ. Note
that the four-fermion coupling is directly related to the
coupling gϕ. In fact, the latter is chosen to reproduce
the four-fermion term in the action associated with the
Hamilton operator defined in Sect. II A.
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