PHYSICAL REVIEW E 76, 016313 (2007)

Epicyclic orbits in a viscous fluid about a precessing rod: Theory and experiments
at the micro- and macro-scales
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We present experimental observations and quantified theoretical predictions of the nanoscale hydrodynamics
induced by nanorod precession emulating primary cilia motion in developing embryos. We observe phenomena
including micron size particles which exhibit epicyclic orbits with coherent fluctuations distinguishable from
comparable amplitude thermal noise. Quantifying the mixing and transport physics of such motions on small
scales is critical to understanding fundamental biological processes such as extracellular redistribution of
nutrients. We present experiments designed to quantify the trajectories of these particles, which are seen to
consist of slow orbits about the rod, with secondary epicycles quasicommensurate with the precession rate. A
first-principles theory is developed to predict trajectories in such time-varying flows. The theory is further
tested using a dynamically similar macroscale experiment to remove thermal noise effects. The excellent
agreement between our theory and experiments confirms that the continuum hypothesis applies all the way to

the scales of such submicron biological motions.
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I. INTRODUCTION

Fueled by the recent advances of nanoscale technology in
biophysics, there is renewed interest in the fundamental
physics at the borderline between molecular and continuum
scales in microscopic processes. The motion and hydrody-
namic response of microscale bodies moving through fluids
is a challenging problem in dynamical microbiology.

Examples of such interactions include the role which pri-
mary cilia play in the establishment of right-left asymmetry
in developing embryos [1,2], mucociliary transport in the
lung [3,4], and the propulsion of flagellated organisms [5].
Controlled experimental observations on these small scales is
difficult because of the need to perform repeatable motions
of nanoscale structures. The engineering of devices that can
generate controlled motion of these structures is therefore of
crucial importance. For a predictive understanding of these
microscopic flows, it is equally crucial to develop a first-
principles theory that predicts the detailed features of the
resulting flows. Given microbiological scales, a starting point
for developing such theory is the Stokes equations. However,
in strongly fluctuating system on such scales, the precise
boundary conditions are currently under investigation and in
particular the validity of the no-slip condition for rigid bod-
ies on these scales [6,7]. In the present study, we observe
phenomena which we document experimentally and theoreti-
cally, and in the process we document that the no-slip con-
dition appears valid for the geometries and time scales in our
experiments.

The geometry in the present study is set by a precessing
rod sweeping an upright cone above a flat, no slip, plane.
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This prescribed rod precession induces motion in the sur-
rounding fluid. Nanoscale measurements are performed us-
ing soft magnetic nanorods 20 microns in length by 200
nanometers in cross-sectional diameter actuated at 300 rpm
(5 Hz) in water using a custom built magnetic force system
integrated with an optical microscope. The observations in-
volve the motion of small passive particles which exhibit
slow orbits around the precessing rod, and a fast, roughly
precession-rate commensurate epicycle motion. The ampli-
tude of this fast epicycle admits strong variation with dis-
tance from the precessing rod. We present an asymptotic so-
Iution to the Stokes equations in this geometry which is
developed using a family of fundamental singularities and
images introduced by Blake [8]. Using slender body theory
[9], we asymptotically solve the relevant integral equation to
determine the singularity strengths and obtain a mathemati-
cal solution which can be used to predict the amplitude of
this epicycle. To study the details of these solutions and the
issue of dynamical similarity across four orders of magnitude
in length scale we have performed tabletop (macroscale)
control measurements using a steel pin 1 cm long, by 1 mm
cross-sectional diameter precessing at approximately 9 rpm
in a high viscosity solution. The macroscale measurements
quantitatively validate the mathematical theory using no ad-
justable parameters in an environment free from thermal
fluctuations. The mathematical theory is predictive in the
near field on the microscale measurements, but deteriorates
at far field. Discussion is given regarding this lack of agree-
ment at far field in the microscale as regards uncertainty in
the measurements and random thermal fluctuations. In the
following, we first summarize our theory of precessing rod
fluid-structure interactions, followed by its detailed valida-
tion in the macroscale experiments and comparison with the
nanoscale fluid flows.
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FIG. 1. (Color) Theoretical trajectories compared to bubble trajectories from a macroscale experiment. The rod base is at the origin and
the black dots are the tracked bubbles. Trajectories shown are initially at 0.61 to 0.65 cm from the floor of the tank. The rod length is
0.76 cm, the cone half-angle is 30°, the cone radius R.=0.38 cm, the cone height H.=0.66 cm, the rod diameter is 0.9 mm, and the rod
rotates clockwise at 9 RPM. Theoretical trajectories are computed using a fourth-order Runge-Kutta solver with 10* time steps per revolution
for x=u(x,7). The theoretical trajectories use the stated cone geometry and rod radius, and initial position (xy,y,) in the plane provided by
the experiment. The initial vertical position is set at zy=0.625 cm for each simulated trajectory.

II. HYDRODYNAMIC SOLUTION

The fundamental governing equations for an incompress-
ible fluid system are given by the unsteady, nonlinear Navier-
Stokes equations. The Reynolds number Re= ¢ U/ v is a non-
dimensional number measuring the ratio of inertial forces
relative to viscous forces where €, U, and v are characteris-
tic length, velocity, and viscosity scales in the fluid system
under consideration. When the Reynolds number is small,
the nonlinearity in the Navier-Stokes equations can be ne-
glected.

Consider a slender body of radius r, and length L attached
to a no-slip plane sweeping out a cone of angle « in a viscous
fluid at a rate of w such that the resulting Reynolds number is
small. For L and w finite and large fluid viscosities v, a
nondimensionalization of the Navier-Stokes equations pro-
vides that the governing equations for this motion are the
linear, steady Stokes equations Vzu(x)—Vp:O, V-u=0 with
boundary conditions depending upon the cone angle «.

In 1970, Batchelor [9] used slender body theory to con-
struct solutions to Stokes equations for bodies of arbitrary
cross section embedded in uniform and certain linear flows.
These solutions were constructed by placing Stokeslets along
the interior centerline of the body. A Stokeslet [10] is the
primary fundamental solution to Stokes equations and is due
to a point force of strength e applied to the flow field. In
1971, Blake [8] constructed a Green’s function for Stokes
equations in the presence of a no-slip plane, u(z=0)=0, us-
ing the method of images. The resulting image system con-
sists of a Stokeslet along with higher order derivatives of this
singularity.

By utilizing the fundamental solution of Blake and the
slender body theory of Batchelor, we have constructed an
asymptotic solution for a slender body attached to the no-slip
plane z=0 tilted by an angle « from the positive vertical axis

sweeping out a cone. Slenderness is defined through o6
=ry/L< 1. The velocity field u(x)=Rv(R"x) [11-13] that
generates the particle trajectories shown in Fig. 1 is given as
a time-dependent rotation, R, about the vertical axis, of the
velocity field
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where é;:(0,0, 1), s=(ssin«,0,scos k), s =(ssin «,0,
—scos k), a(s)=—w/2log 80,s sin x,0). The first two
terms in Eq. (1) can be recognized as line distributions of
Stokeslets placed at s and its image s* in the lower half
space. The remaining terms are built from higher order sin-
gularities, namely, the Stokes doublet and the point-source
quadripole [8,10]. Flagellated organisms have been modeled
using slender body theory [14,15], but unlike these studies
our model provides exact formulas which require no numeri-
cal integration to evaluate the flow.

III. MACROSCALE EXPERIMENT

We describe experiments conducted at both macro- and
microscopic scales. In both cases magnetically permeable
rods are driven by magnetic fields to pin one end of the rod

016313-2



EPICYCLIC ORBITS IN A VISCOUS FLUID ABOUT A...

to a horizontal planar surface and cause a conical motion of
the rod about an approximately vertical axis. We stress that
the motion of the rod is precession and not just rotation about
one of its axes. The rods are immersed in viscous fluids
containing visible marker particles to enable optical tracking
of the fluid motion. The fluid viscosities and precession fre-
quencies are such that a Reynolds number of 0.002 was
never exceeded. The macroscopic rotational mixing experi-
ment (RMX) rods are of the order of 1cm long and
0.2—1 mm in diameter, sharpened at one end to provide a
well defined pivot point about which to precess. A 30 cm
cubical, clear acrylic tank is filled to 11 cm with a sucrose
solution with a viscosity of 3000 cP and is capped with a
removable acrylic top. A strong permanent magnet beneath
the tank (3000 G at the cone height) is mounted on a motor-
ized turntable with an adjustable offset from the center of
rotation. The magnetic field gradient pins the point of the rod
to the bottom of the tank, while the magnetic torque of the
orbiting magnet causes the rod to precess conically. Marker
bubbles, produced in a separate beaker, are selected by sy-
ringe to have diameters typically 0.1-0.5 mm and injected
into the RMX tank in desired locations. A Nikon D1 camera
is placed in front of the tank to capture the YZ coordinates of
the markers (0.3 Hz frame rate), while a Nikon D2 camera is
placed above to capture the XY marker coordinates (1.0 Hz
frame rate). The magnet turntable is then engaged and ad-
justed so the rod precesses at a 0.15 Hz rate. A custom de-
signed video centroid tracking algorithm, developed within
the Data Tank programming environment, is used to extract
the trajectories of the markers.

IV. NANOSCALE EXPERIMENT

The nanoscale experiments are conducted using magnetic
rods and optical markers in a transparent flow cell mounted
on a three dimensional force microscope (3DFM) [16]. The
3DFM applies a dynamic magnetic field to a specimen
through a set of pole tips arranged as a hexapole with three
poles above and three poles below the plane of the precess-
ing rod. A flow cell (2 cm by 1 cm by 150 um) comprises a
flow channel bounded by lines of vacuum grease inside
double-backed tape spacers, all sandwiched between two mi-
croscope cover slips. To provide the friction necessary to
keep the magnetic rods from slipping, the bottom cover slip
of the flow cell is spin coated with a 1-2 wm layer of
PDMS. The magnetic system including the flow cell is
placed on an inverted optical microscope where polystyrene
microbeads (Polysciences, Inc. =1.05 g/cc; Diameter
=0.932 um) entrained in the flow are imaged in brightfield
mode at 120 Hz frame rate using a progressive scan Pulnix
CCD camera. The NA of the water immersion microscope
objective is 1.2 giving a depth of focus of 1-2 wm. Quasi-
static Z measurements are taken by manually refocusing,
with resolution limited by the depth of focus, and data read
from the control panel of the Nikon Eclipse TE2000-E. The
magnetic nanorods (approximately 200 nm diameter, 20 um
long) consist of Ni90Fe10 alloy electrochemically grown in
porous anodized aluminum oxide membrane templates. The
rods and markers are dispersed in deionized water (1.0 cP) at
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FIG. 2. Theoretical and macroscale experimental radial ampli-
tude. Radial amplitude is the difference between the maximum and
minimum of the trajectory cylindrical radius projected on the z=0
plane which is taken as the floor of the experimental tank. The
amplitude is plotted as a function of the initial cylindrical radius
ro= \e“'x(2)+ y% (measured in units of cone radius, R,) of trajectories for
two initial vertical positions z,=0.61 cm and z,=0.65 cm after one
rod revolution.

suitable densities, then introduced into the flow cell [17]. The
3DFM magnetic field is energized so as to attract the rods to
pin their lower ends to the lower cover slip and align them to
the desired cone angle. We note that achieving the desired
precession and cone geometry is in itself a challenging in-
verse problem. This setup is dynamically similar to the RMX
geometry in that the Reynolds numbers of both are negligi-
bly small [18]. The rod density is sufficiently low that well
isolated rods can be chosen, with suitably distributed beads
to measure fluid velocities. A custom designed video centroid
tracking program, Spot Tracker [19] with approximately
15 nm resolution in X and Y, is used to extract the orbits of
the markers.

V. THEORETICAL COMPARISON
A. On the macroscale

Trajectories in this fluid flow are determined by cone ge-
ometry, rod radius, and initial position (x,,y,,z,) Where cone
geometry is provided by a cone radius R. and a cone height
H.. These set a cone angle « and rod length L. Several
bubble trajectories from the macroscale RMX experiment are
compared to the theory presented in Sec. II. The top view of
such a comparison is shown in Fig. 1. The trajectories exhibit
two superposed motions. The slower one makes a complete
orbit about the body at a distance dependent rate. The faster
one is epicyclic, related to the precession rate of the rod, with
an observable radial amplitude, arclength, vertical fluctua-
tion, and period. The period of an epicycle is a function of
cone geometry, rod radius, and initial position. See Fig. 2
caption for radial amplitude definition. Figure 1 shows quali-
tative agreement between the radial amplitude, arclength,
and angle traveled by the epicycles. Figure 2 provides a
quantitative comparison of the radial amplitude.

B. On the microscale

A microbead trajectory from the microscale experiment is
shown in Fig. 3 and a comparison to a theoretical trajectory
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FIG. 3. (Color) Theoretical trajectory compared to a microbead trajectory. The rod base is at the origin and the bead is enclosed by a
circular contour. The other darks spots in the figure are debris or beads at different focal heights. The bead trajectory shown is initially at
13.9+1 um from the floor of the flow cell, the cone radius is R.=9 um, the cone height H.=9.75+1 um, and the rod rotates counterclock-
wise at 5 Hz. A comparison to a theoretical trajectory for a portion of the experiment is given in the inset. The theoretical trajectory is
computed as in Fig. 1 with R.=9 um and H.=9.75 um. The initial vertical position is set at zp=12.9 um and the rod diameter is set to

400 nm.

is given in the inset for a portion of the experiment. Brown-
ian effects are clearly visible in the beads when the rod is
held motionless. To obtain averaged statistics, we study
power spectra of the cylindrical radius, \x*(f)+y*(¢), aver-
aged over a small frequency band about the frequency of the
rod w=5 Hz. The comparison of this statistic is shown in
Fig. 4 where the bandwidth is 5+0.5 Hz. The agreement is
strong in the near field, but deteriorates at far field. Although
care is taken to find clean isolated rods there may exist rod
shape anomalies or precessing rods well outside the field of
view contributing to the flow.

Finally, the distinction between macroscale and micro-
scale is clearly the emergence of a strong thermal component
of the motion at the microscale. Preliminary analysis indi-
cates that the proper incorporation of these Brownian effects
via Langevin dynamics does not produce a satisfactory com-
parison with the data. Further study is clearly merited upon
this point.

VI. CONCLUSIONS

We performed a quantified comparison of a complete hy-
drodynamic theory with experiments at both micro- and
macroscales, for the fluid motion induced by a precessing
rod of interest in biophysics. Future directions will account
for flexibility, complex rheology and different geometric
boundary forcing.
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FIG. 4. A measure of theoretical and experimental radial ampli-
tude on the microscale as provided by the power spectrum statistic
(see text) as a function of radius. The theoretical predictions of this
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