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Optimal synchronization of complex networks
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We study optimal synchronization in networks of heterogeisephase oscillators. Our main result is the
derivation of asynchrony alignment functiathat encodes the interplay between network structure acitleas
tors’ frequencies and can be readily optimized. We highlighutility in two general problems: constrained
frequency allocation and network design. In general, wetfiad synchronization is promoted by strong align-
ments between frequencies and the dominant Laplacianvegems, as well as a matching between the hetero-
geneity of frequencies and network structure.

PACS numbers: 05.45.Xt, 89.75.Hc

A central goal of complexity theory is to understand theHerere™ denotes the phases’ centroid on the complex unit
emergence of collective behavior in large ensembles of ineircle, with the magnitude: ranging from0 (incoherence)
teracting dynamical systems. Synchronization of networkto 1 (perfect synchronizatioan]. In general, the question
coupled oscillators has served as a paradigm for understandf optimization (maximizing-) is challenging due to the fact
ing emergencd:tﬂ-4], where examples arise in nature (e.gthat the macroscopic dynamics depend on both the natural fre
flashing of firefliesmS] and cardiac pacemaker cells [6]),ieng quencies and the network structure. To quantify the insgrpl
neering (e.g., power gridﬂ[?] and bridge oscillations [8dd  between node dynamics and network structure, we derive di-
at their intersection (e.g., synthetic cell engineerm]g. [OVe  rectly from Egs.[(ll) and{2) aynchrony alignment function
consider the dynamics a¥ network-coupled phase oscilla- which is an objective measure of synchronization and can be
torsg, fori = 1,..., N, whose evolution is governed by used to systematically optimize a network’s synchronarati

We highlight this result by addressing two classes of ogami
. N tion problem, which can be easily adapted to a wide range
0i = wi + KZAZ'J'H (6 — i) - @) of applications. The first isonstrained frequency allocation
=1 where given a fixed network topology, optimal frequencies ar
Herew, is the natural frequency of oscillatey K > 0is  chosen. The secondigtwork designwhere given a fixed set
the coupling strengti A;;] is a symmetric network adjacency of frequencies, an optimal network structure is found. W ne

matrix, andH is a 2r-periodic coupling function|ﬂ0]. We Present the derivation of the synchrony alignment function
treat H(0) with full generality so long asi’(0) > 0. The No assumptions are made about the frequencies or network

choicesH (0) = sin(f) and H(f) = sin(f — «) with the aside from the network being connected and undirected.

phase-lag parameterc (—/2,7/2) yield the classical Ku- e begin by considering the dynamics of E. (1) in the
ramoto [10] and Sakaguchi-Kuramoto modeéls [11]. strong coupling regime where ~ 1, which may typically

Considerable research has shown that the underlying stru<lE:J-e obtained by either increasing the coupling strength er de

: . o Creasing the heterogeneity of the frequencies. In thiswegi
ture of a network plays a crucial role in determining synehro g 9 y d 9

nization mgh], yet the precise relationship betweerdijre ;gfslleIa};orzi?sre;?tgr&?r? 'Ea&%r;t ?Ielfj;er suchfhat 0
namical and structural properties of a network and its syn- ) pairs. £xp 9Eq y

chronization remains not fully understood. One unanswered
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N
question is, given an objective measure of synchronization 0; ~ &; — KH'(0) ZLUG‘]‘, ()
how can synchronization beptimize® One application lies j=1

in synchronizing the power griﬂbZ], where sources andgoad

can be modeled as oscillators with different frequencies. Twherew; = w; + KH(0)d;, d; = Z;VZI A;; is the degree
this end, we ask: what structural and/or dynamical progerti of node:, and[L;;] is the Laplacian matrix whose entries are
should be present to optimize synchronization? defined ad.;; = d;;d; — Ayj.

We measure the degree of synchronization of an ensemble The following spectral properties of the Laplacian are es-
of oscillators using the Kuramoto order parameter sential to our analySiS. FirSt, since the network is coratbct

and undirected, all eigenvalues are real and can be ordered
_ 1N 0=MX <Xz <--- < Any—1 < Ay. Second, the normalized
re'V = N > et (2)  eigenvectorgwvi}Y | form an orthonormal basis f@&" . Fur-
J=1 thermore, the eigenvector associated with= 0 is v! = 1,
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which corresponds to the synchronization manifold. @ 1 (b) 1ear=optim
Inspecting Eq{8), we find that if a steady-state soluéion 0.g soptimal ! 08 first-orde
exists after entering the rotating framie— 60, + Qt, whereQ ~ 06 0.6 »
is the mean@), itis given by i =
w04 w 0.4 random
0" = L'&/KH'(0), (4) 0.2 0.2
o ottt 0
whereL = Z;V_Q A;lvﬂvﬂT is the pseudo-inverse éf[23]. 0 02 0-41,0-g6 1?'8 1 0 02 0-41.0-5 I%B 1
coupling, coupling,

Under the app?oxi'mation in EqJ(3), the steady-state solu- _ _ _
tion is expected to be linearly stable since the Jacobian md:!G. 1. (Color online) Constrained frequency allocatios) « vs

T ; ; / . K for optimal allocation (blue circles) compared with randafo-
trix is approximately given by- K f'(0) L and has nonposi cations drawn from normal (red triangles), uniform (gre&mses),

tl\ie el_genva_lues. We next cc_)ns_ld(_ar_t_he orde_r _parametenglveand Laplace (orange squares) distributions. (¥ K for a pre-
6*. First, with a suitable shift in initial conditions the aver cpgsen set of normally distributed frequencies with randied tri-
age phase can be set to zero, implying that the sum inEq. (hgles), first-order (black crosses), and near-optimaie(iircles)
is real. Furthermore, in the strongly synchronized regithe a allocations. The near-optimal allocation was obtainedhffo= 10°
phases are tightly packed abaut= 0, thus|9;f| < 1 for all proposed frequency exchanges. Networks are SF Witk 1000,

j. Expanding Eq[{2) yields v =3, anddo = 2.

ra1—6%*/2N. (5)
standard deviatiom; = /N~1)". w?. By rescaling time and
Finally, by the spectral decomposition of the pseudo-iseer the coupling strengthy can be tuned freely, so without loss
LT and writing the norm in Eq[{5) by taking the inner product of generality we set- = 1. To minimize J(w, L), we first

of 8* in Eq. (4), we obtain expressv as a linear combination of the nontrivial eigenvec-
- tors of L, w = "I, a;v", where the coefficients must satisfy
~. /
r=1-J(@,L)/2K"H"(0), (6) ZZN:Q a? = N. After insertingw into Eq. [7) it follows that

J(w, L) is minimized by the choicew,...,ay_1 = 0 and
ay = VN, ie.,w x vV, yieldingr =1 — 1/20% K2.
| X In Fig.[d (a) we compare the results of optimal allocation,
J(@,L) = ¥ Z )\;2<1;j7£)>2, 7 w= Vv Nv!, with several random frequency allocations by
j=2 plotting the synchronization profiles/s K for the optimal al-
location, and those for frequencies randomly drawn from nor
The derivation of/(w, L) is our main theoretical result as its ma|, uniform, and Laplace distribution (each with unit stan
minimization corresponds to the maximization of the orderqarg deviation). The underlying network with = 1000
parameterr, which allows for the optimization of synchro- npodes was constructed using the configuration mddel [24]
nization using elementary properties of the network (Laplawith a scale-free (SF) degree distributiét{d) « d~" for
cian eigenvalues and eigenvectors) and the frequencies. Be — 3 and minimum degred, = 2. The optimal allocation
fore exploring the optimization of (@, L), we note the fol-  shows a large improvement over all random allocations and is
lowing interesting results. FofH (0) = 0, it follows that  marked by a sharp transition to a strongly synchronizee stat
@ = w, and thus optimization of (w, L) is independent of 4t 3 small coupling strength. In particular, the optimabedi-
K. However, forH(0) # 0 perfect synchrony; = 1,1is  tjon is surprisingly effective at very small coupling stgins
generally not attainable unles&d, L) = 0 (which can oc-  despite the strong coupling assumption in the theory. We not
curifd; = dy = --- = dy) since in the limitK' — oo that two mechanisms contribute to the excellent performanc

Eq. (8) yieldsr = 1 — J(d, L)H?(0)/2H"*(0). Itfollows  of the optimal allocation: the choice of frequencies and the
that the existence of a strong coupling regimes 1 and  podes to which they are assigned.

consequently the approximations in our theory are valig onl

when J(d, L)H?(0)/2H"(0) < 1. Furthermore, SinC&  nisms, we consider an additional constraint where frecjeenc
depends on the coupling strengf, so will the optimiza- N | are pre-chosen and must be allocated optimally on
tion of J(w, L) and therefore the optimal network. From now {ye network to minimizeJ (w, L). Finding the global mini-
on, we will specialize to the widely u_sed Kuramoto model, yum requires an exhaustive search overdlipossible per-
H(0) = sin(6), although we emphasize that similar results y ,tations ofw — an unrealistic option even for moderately

are found for more general coupling functiakigf). sized networks. We therefore provide two alternatives: a

We first address constrained frequency allocation for a fixedirst-order approximation applicable for networks in which
network. We note that by entering a rotating frame we carthe largest Laplacian eigenvalug; is well separated from
without loss of generality set the mean frequency to zere. Ththe others (often the case for SF networtks [25]) antkar-
choicew = [0,...,0]T trivially minimizes Eq. [T), resulting optimalsolution based on an accept/reject algorithm. In par-
inr = 1, so we require as a first constraint thahas a fixed ticular, when the dominant eigenvalue is well separatgek

for which we define the synchrony alignment function

To elucidate the importance of these two different mecha-



An fori # N, an inexpensive first-order minimization of the @

® 1~ power-Tavt—m

objective function leads to maximizing?™ , w)|. This can be 08 08
done simply by finding the index permutations. . ., i and o . o
. . R ' . . 06 rewired ~06
Jji,---,jn that place eigenvector entries in ascending order, ¢ <
vl < ... <)Y, and frequencies in ascending (or descend- 704 204
ing) order,w;, < - < wjy (Orw;, > -+ > wjy). In 02 02
principle both pairings must be checked to select the best re _ ,
sult. To find a near-optimal allocation we begin with an aditi % 02 04 06 08 1 0 02 04 06 08 1
choicew and construct a new vectar’ by exchanging two coupling, K coupling, K
randomly chosen entries. f(w’, L) < J(w, L) we accept © 10 .

p ) L \ X 10 @ 10
w’, otherwise we reject it. This procedure is then repeated for . < initial « initial
S proposed exchanges. 10”! ° 200 o rewired 107! Se'gx o rewired

In Fig.[ (b) we compare synchronization profiles for near- < ”xgxd:x:w <  d=10
optimal, first-order, and random allocations where freqigsh & 1072 . & 63°‘L -
are drawn from the unit normal distribution. As expected, I oo o726
the near-optimal allocation yields the best results, hamev 107 T l 0 lo S e l
the first-order allocation also performs well, providingian 1 0 Io? o o % 0
expensive way to improve upon purely random allocation. degree, d degree, d
These results also allow us to compare the allocation of pre-

; ; ; (© ®

chosen frequencies to freely chosen frequencies [Fig.]1 (a) ° o > 0o
In both cases, the transition from incoherence to strong syn PP o
chronization is sharp, however it occurs at a larger cogplin °OO & 2/ 5
strength = 0.4) when frequencies are pre-chosen, yield- ° °;>./O/Z°
ing two distinct regimes: for smalk” strong synchronization o g o
is only attainable when frequencies are freely tunablelewvhi oO o o *
for larger K strong synchronization is attainable even when s o ©
the frequency set is fixed. FIG. 2. (Color online) Optimal network design: (a)-(bys K for

Next we address the complimentary problem of optimaﬂnitial (red crosse_s) gnd rewired (blu_e circles) networlkl:h_w_or_mal
network design for a fixed set of frequencies. Giverand ~ 2nd power-law distributed frequencies. (c)-(d) Degreéritiistions
a fixed number of links. we look for a network that mini- of thelqltlal (red crosses) and rewired (blue cwcles)lnlmw. (e)-(H)

. T . . lllustrations forN = 40 and36 of networks after rewiring.
mizes.J(w, L). As an algorithmic method for obtaining an
approximate solution, we initialize an accept/reject athm
with a network satisfying these constraints, and allow it to ) ) )
evolve as follows. A new network with Laplacian matrix to.better match that Qf the frequencies, either bgcc_;mlncg les
L' is constructed by randomly deleting a link and introduc-LFig: [2(c)] or more [Fig[P(d)] heterogeneous. This is fieth
ing another between two previously disconnected nodes. FMPhasized by the shifts in the maximal degrégs which
J(w,L') < J(w, L) we accept the new network, otherwise o_Iecrease_s from 75 to 15 and increases from 10 to 26, respec-
we reject it. This procedure is then repeated$aproposed tively. This s_uggests that a more heterogeneous networ_k bet
rewirings. In Fig[® we present the results of this rewirihg a (€7 Synchronizes a more heterogeneous set of frequendes. T
gorithm for two experiments. We consider two networks: ongllustrate this phenomenon, we show in Figs. 2 (e) and () net
with relatively homogeneous frequencies drawn from a unitVorks resulting from the same experiment with fewer nodes
normal distribution (left column) and a second with heterog (¥ = 40 and36, respectively). The radius of each node is
neous frequencies drawn from a symmetric power-law distriProportional to its degree and the coloring of the node indi-
bution, g(|w|) ~ |w|~? (right column). Both networks con- cates its frequency from most p(.)smve.(red) to most negativ
tain N = 1000 oscillators. In FigsI2 (a) and (b) we plot the (blue). Here the phenomen.on is easily observable with the
synchronization profiles for the initial networks and thé-ne €mergence of network hubs in (f) but not (e).
works obtained afte? - 10* rewirings. In both experiments,  We now study in more detail the synchrony alignment func-
the rewired networks display better synchronization prope tion given in Eq. [¥). Just as aligning with " maxi-
ties with sharp transitions from incoherence to strongbymc  mizesr, it follows that in the strong coupling regime, align-
nization. Each experiment is initialized with a differemtn  ing w with other eigenvectors’ of decreasing index yields
work topology: a SF network constructed by the configurationweaker synchronization. We consider the alignments v’
model withy = 3 anddy = 2 and an Erdds-Rényi (EI#)T[IZG] and plot the synchronization profiles in FId. 3 (a) for=
network with average degréd) = 4 are paired with the nor- 100, 200, . .., 1000 (red to blue) averaged ovB0 realizations
mal and power-law distributed frequencies, respectivéty. of SF networks with parameterS = 1000, v = 3, and
Figs.2 (c) and (d) we plot the initial and rewired degree dis-dy = 2. As expected, we observe weaker synchronization
tributions. In both experiments the degree distributiosless  with decreasing index. We also plot in panel {tys i for a
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1 for w o v* with fixed K = 0.08 (blue circles).25 (red crosses), 6 L 1 e J s
and1 (green triangles). Each point is averaged aM@SF network ’§ 3 § | /§ o- o ok -
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averaged over 50 realizations. For all three castsnds to w; frequency, w;

Increase W'm_' provided; Is nottoo small. FO!K =0.08 the FIG. 4. (Color online) Correlations in optimized networkg), (b)
majority of alignments yield incoherence withundergoing  Frequency magnitude; | vs degreel; and (c), (d) average neighbor
a sharp increase only near the most dominant eigenvectorgequency(w;) vs frequencyw; for networks with optimally chosen
while the increase im is more gradual folX = 0.25 and1.  frequencies (green triangles), pre-chosen frequenclas (lircles),
We also point out that for very smallwe observe a short in- and a rewired network (red crosses). Networks are SF With-
crease in, which we attribute to local synchronization that 1000: 7 = 3, anddo = 3. Frequencies for the arranged and rewired

. . . cases are normally distributed.
yield large fluctuations im.

Before concluding, we investigate the dynamical and struc-

tural properties present in optimized networks. In partic-

ular, we consider local degree-frequency and neighborin@{OrkS better synchronize more (Ies_s) _heterogenous frequen
frequency-frequency correlations. In Figs. 4 (a) and (b) we ies. In all cases we found that in optimized networks thgdar

plot the frequency magnitude:| vs degreel; for (a) a net- frequencies are localized to hubs and frequencies of nerghb

work with optimally allocated frequencies and (b) a network'"9 oscillators are negatively correlated.
with pre-chosen frequencies (blue circles) and a rewirgd ne  Although the theoretic approach developed herein is valid
work (red crosses). Networks are SF with= 1000,y = 3,  for systems given by Eql K1), extension to more general os-
andd, — 3 and frequencies in (b) are normally-distributed. In Cillator models, e.g., Landau-Stuart oscillatars [34] n¥kée
each case we observe a strong positive degree-frequency c@scillators|[35] and chaotic oscillators remains an outditag
relation, indicating that the largest frequencies comespto ~ Problem. One promise stems from Kuramoto's phase reduc-
the network hubs. Moreover, in Fidgs. 4 (c) and (d) we plot fortion methods which give EqlK1) as an approximatif the
each node the average frequency of its neighboring oscilla-dynamics of weakly-interacting limit-cycle oscillato m _
tors (w); = Z;_V:l Aqjw;/d; vs w;. The results are qualita- Another exciting venue of research would be on the optimiza-
tively similar for each case, showing a strong negativeesorr tion of other dynamical patterns such as multistabilitys-hy
lation between neighboring frequencies. These obsenatio teresis, and/or explosive synchronization, none of whiels w
agree with those of Refd. [27.128], where similar positive an observed in our numerical examples (despite the sharp tran-
negative correlations were found to promote global synchrositions seen in Figél 1 ad 2) but can potentially arise under
nization. We finally note that such degree-frequency casrel more general coupling and dynamics.
tions may help explain the increased sharpness of transitio  Finally, we compare our results on heterogeneous oscilla-
shown in Figs[1L and2 (a) and (b), since similar correlationsors to the well-developed theory regarding identical ltesci
can lead to discontinuous transitio[18]. tors @], for which the synchronizability of a network is’gn

In this Letter we presentedsynchrony alignment function by the ratio\ /)2 of Laplacian eigenvalueE[BO] —aresultal-
that measures the interplay between network structure snd olowing for optimization to be independent of the node dynam-
cillator heterogeneity and allows for a systematic optamiz ics [31]. In contrast, we find here that the synchronizatibn o
tion of synchronization. Focusing on Kuramoto coupling, wea network of heterogeneous oscillators generally depends o
highlighted its utility through numerical experiments fan-  not only the full set of eigenvalues and eigenvectors of tite n
dom networks with two general classes of optimization probwork Laplacian, much like the case of nearly-identical bsci
lems: frequency allocation and network design. We fountl thalators ] and real-world experimen33], and how the net
synchronization is promoted by a strong alignment of the frework structure pairs with the heterogeneity of node dynamic
guency vector with the most dominant Laplacian eigenvsctor(here oscillator frequencies). A network that is easilycymo-
and that, relatively speaking, more (less) heterogeneetis n nizable with identical oscillators may have poor synchzani
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