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Optimal synchronization of complex networks
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We study optimal synchronization in networks of heterogeneous phase oscillators. Our main result is the
derivation of asynchrony alignment functionthat encodes the interplay between network structure and oscilla-
tors’ frequencies and can be readily optimized. We highlight its utility in two general problems: constrained
frequency allocation and network design. In general, we findthat synchronization is promoted by strong align-
ments between frequencies and the dominant Laplacian eigenvectors, as well as a matching between the hetero-
geneity of frequencies and network structure.

PACS numbers: 05.45.Xt, 89.75.Hc

A central goal of complexity theory is to understand the
emergence of collective behavior in large ensembles of in-
teracting dynamical systems. Synchronization of network-
coupled oscillators has served as a paradigm for understand-
ing emergence [1–4], where examples arise in nature (e.g.,
flashing of fireflies [5] and cardiac pacemaker cells [6]), engi-
neering (e.g., power grid [7] and bridge oscillations [8]),and
at their intersection (e.g., synthetic cell engineering [9]). We
consider the dynamics ofN network-coupled phase oscilla-
torsθi for i = 1, . . . , N , whose evolution is governed by

θ̇i = ωi +K

N
∑

j=1

AijH (θj − θi) . (1)

Hereωi is the natural frequency of oscillatori, K > 0 is
the coupling strength,[Aij ] is a symmetric network adjacency
matrix, andH is a 2π-periodic coupling function [10]. We
treatH(θ) with full generality so long asH ′(0) > 0. The
choicesH(θ) = sin(θ) andH(θ) = sin(θ − α) with the
phase-lag parameterα ∈ (−π/2, π/2) yield the classical Ku-
ramoto [10] and Sakaguchi-Kuramoto models [11].

Considerable research has shown that the underlying struc-
ture of a network plays a crucial role in determining synchro-
nization [12–21], yet the precise relationship between thedy-
namical and structural properties of a network and its syn-
chronization remains not fully understood. One unanswered
question is, given an objective measure of synchronization,
how can synchronization beoptimized? One application lies
in synchronizing the power grid [22], where sources and loads
can be modeled as oscillators with different frequencies. To
this end, we ask: what structural and/or dynamical properties
should be present to optimize synchronization?

We measure the degree of synchronization of an ensemble
of oscillators using the Kuramoto order parameter

reiψ =
1

N

N
∑

j=1

eiθj . (2)

Herereiψ denotes the phases’ centroid on the complex unit
circle, with the magnituder ranging from0 (incoherence)
to 1 (perfect synchronization) [10]. In general, the question
of optimization (maximizingr) is challenging due to the fact
that the macroscopic dynamics depend on both the natural fre-
quencies and the network structure. To quantify the interplay
between node dynamics and network structure, we derive di-
rectly from Eqs. (1) and (2) asynchrony alignment function
which is an objective measure of synchronization and can be
used to systematically optimize a network’s synchronization.
We highlight this result by addressing two classes of optimiza-
tion problem, which can be easily adapted to a wide range
of applications. The first isconstrained frequency allocation,
where given a fixed network topology, optimal frequencies are
chosen. The second isnetwork design, where given a fixed set
of frequencies, an optimal network structure is found. We next
present the derivation of the synchrony alignment function.
No assumptions are made about the frequencies or network
aside from the network being connected and undirected.

We begin by considering the dynamics of Eq. (1) in the
strong coupling regime wherer ≈ 1, which may typically
be obtained by either increasing the coupling strength or de-
creasing the heterogeneity of the frequencies. In this regime
the oscillators are entrained in a tight cluster such thatθi ≈ θj
for all (i, j) pairs. Expanding Eq. (1) yields

θ̇i ≈ ω̃i −KH ′(0)

N
∑

j=1

Lijθj , (3)

whereω̃i = ωi + KH(0)di, di =
∑N

j=1
Aij is the degree

of nodei, and[Lij ] is the Laplacian matrix whose entries are
defined asLij = δijdi −Aij .

The following spectral properties of the Laplacian are es-
sential to our analysis. First, since the network is connected
and undirected, all eigenvalues are real and can be ordered
0 = λ1 < λ2 ≤ · · · ≤ λN−1 ≤ λN . Second, the normalized
eigenvectors{vi}Ni=1

form an orthonormal basis forRN . Fur-
thermore, the eigenvector associated withλ1 = 0 is v

1 = 1,
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which corresponds to the synchronization manifold.

Inspecting Eq. (3), we find that if a steady-state solutionθ
∗

exists after entering the rotating frameθi 7→ θi+Ωt, whereΩ
is the mean〈ω̃〉, it is given by

θ
∗ = L†

ω̃/KH ′(0), (4)

whereL† =
∑N

j=2
λ−1

j v
j
v
jT is the pseudo-inverse ofL [23].

Under the approximation in Eq. (3), the steady-state solu-
tion is expected to be linearly stable since the Jacobian ma-
trix is approximately given by−KH ′(0)L and has nonposi-
tive eigenvalues. We next consider the order parameter given
θ
∗. First, with a suitable shift in initial conditions the aver-

age phase can be set to zero, implying that the sum in Eq. (2)
is real. Furthermore, in the strongly synchronized regime all
phases are tightly packed aboutψ = 0, thus|θ∗j | ≪ 1 for all
j. Expanding Eq. (2) yields

r ≈ 1− ‖θ∗‖2/2N. (5)

Finally, by the spectral decomposition of the pseudo-inverse
L† and writing the norm in Eq. (5) by taking the inner product
of θ∗ in Eq. (4), we obtain

r = 1− J(ω̃, L)/2K2H ′2(0), (6)

for which we define the synchrony alignment function

J(ω̃, L) =
1

N

N
∑

j=2

λ−2

j 〈vj , ω̃〉2. (7)

The derivation ofJ(ω̃, L) is our main theoretical result as its
minimization corresponds to the maximization of the order
parameterr, which allows for the optimization of synchro-
nization using elementary properties of the network (Lapla-
cian eigenvalues and eigenvectors) and the frequencies. Be-
fore exploring the optimization ofJ(ω̃, L), we note the fol-
lowing interesting results. ForH(0) = 0, it follows that
ω̃ = ω, and thus optimization ofJ(ω, L) is independent of
K. However, forH(0) 6= 0 perfect synchrony,r = 1, is
generally not attainable unlessJ(d, L) = 0 (which can oc-
cur if d1 = d2 = · · · = dN ) since in the limitK → ∞
Eq. (6) yieldsr = 1 − J(d, L)H2(0)/2H ′2(0). It follows
that the existence of a strong coupling regimer . 1 and
consequently the approximations in our theory are valid only
whenJ(d, L)H2(0)/2H ′2(0) ≪ 1. Furthermore, sincẽω
depends on the coupling strengthK, so will the optimiza-
tion ofJ(ω̃, L) and therefore the optimal network. From now
on, we will specialize to the widely used Kuramoto model,
H(θ) = sin(θ), although we emphasize that similar results
are found for more general coupling functionsH(θ).

We first address constrained frequency allocation for a fixed
network. We note that by entering a rotating frame we can
without loss of generality set the mean frequency to zero. The
choiceω = [0, . . . , 0]T trivially minimizes Eq. (7), resulting
in r = 1, so we require as a first constraint thatω has a fixed
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FIG. 1. (Color online) Constrained frequency allocation: (a) r vs
K for optimal allocation (blue circles) compared with randomallo-
cations drawn from normal (red triangles), uniform (green pluses),
and Laplace (orange squares) distributions. (b)r vs K for a pre-
chosen set of normally distributed frequencies with random(red tri-
angles), first-order (black crosses), and near-optimal (blue circles)
allocations. The near-optimal allocation was obtained fromS = 10

6

proposed frequency exchanges. Networks are SF withN = 1000,
γ = 3, andd0 = 2.

standard deviation,σ =
√

N−1
∑

i ω
2

i . By rescaling time and
the coupling strength,σ can be tuned freely, so without loss
of generality we setσ = 1. To minimizeJ(ω, L), we first
expressω as a linear combination of the nontrivial eigenvec-
tors ofL,ω =

∑N

i=2
αiv

i, where the coefficients must satisfy
∑N
i=2

α2

i = N . After insertingω into Eq. (7) it follows that
J(ω, L) is minimized by the choiceα2, . . . , αN−1 = 0 and
αN =

√
N , i.e.,ω ∝ v

N , yieldingr = 1− 1/2λ2NK
2.

In Fig. 1 (a) we compare the results of optimal allocation,
ω =

√
Nv

N , with several random frequency allocations by
plotting the synchronization profilesr vsK for the optimal al-
location, and those for frequencies randomly drawn from nor-
mal, uniform, and Laplace distribution (each with unit stan-
dard deviation). The underlying network withN = 1000
nodes was constructed using the configuration model [24]
with a scale-free (SF) degree distributionP (d) ∝ d−γ for
γ = 3 and minimum degreed0 = 2. The optimal allocation
shows a large improvement over all random allocations and is
marked by a sharp transition to a strongly synchronized state
at a small coupling strength. In particular, the optimal alloca-
tion is surprisingly effective at very small coupling strengths
despite the strong coupling assumption in the theory. We note
that two mechanisms contribute to the excellent performance
of the optimal allocation: the choice of frequencies and the
nodes to which they are assigned.

To elucidate the importance of these two different mecha-
nisms, we consider an additional constraint where frequencies
{ωi}Ni=1

are pre-chosen and must be allocated optimally on
the network to minimizeJ(ω, L). Finding the global mini-
mum requires an exhaustive search over allN ! possible per-
mutations ofω – an unrealistic option even for moderately
sized networks. We therefore provide two alternatives: a
first-order approximation applicable for networks in which
the largest Laplacian eigenvalueλN is well separated from
the others (often the case for SF networks [25]) and anear-
optimalsolution based on an accept/reject algorithm. In par-
ticular, when the dominant eigenvalue is well separated,λi ≪
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λN for i 6= N , an inexpensive first-order minimization of the
objective function leads to maximizing|〈vN ,ω〉|. This can be
done simply by finding the index permutationsi1, . . . , iN and
j1, . . . , jN that place eigenvector entries in ascending order,
vNi1 ≤ · · · ≤ vNiN , and frequencies in ascending (or descend-
ing) order,ωj1 ≤ · · · ≤ ωjN (or ωj1 ≥ · · · ≥ ωjN ). In
principle both pairings must be checked to select the best re-
sult. To find a near-optimal allocation we begin with an initial
choiceω and construct a new vectorω′ by exchanging two
randomly chosen entries. IfJ(ω′, L) < J(ω, L) we accept
ω

′, otherwise we reject it. This procedure is then repeated for
S proposed exchanges.

In Fig. 1 (b) we compare synchronization profiles for near-
optimal, first-order, and random allocations where frequencies
are drawn from the unit normal distribution. As expected,
the near-optimal allocation yields the best results, however,
the first-order allocation also performs well, providing anin-
expensive way to improve upon purely random allocation.
These results also allow us to compare the allocation of pre-
chosen frequencies to freely chosen frequencies [Fig. 1 (a)].
In both cases, the transition from incoherence to strong syn-
chronization is sharp, however it occurs at a larger coupling
strength (K ≈ 0.4) when frequencies are pre-chosen, yield-
ing two distinct regimes: for smallK strong synchronization
is only attainable when frequencies are freely tunable, while
for largerK strong synchronization is attainable even when
the frequency set is fixed.

Next we address the complimentary problem of optimal
network design for a fixed set of frequencies. Givenω and
a fixed number of links, we look for a network that mini-
mizesJ(ω, L). As an algorithmic method for obtaining an
approximate solution, we initialize an accept/reject algorithm
with a network satisfying these constraints, and allow it to
evolve as follows. A new network with Laplacian matrix
L′ is constructed by randomly deleting a link and introduc-
ing another between two previously disconnected nodes. If
J(ω, L′) < J(ω, L) we accept the new network, otherwise
we reject it. This procedure is then repeated forS proposed
rewirings. In Fig. 2 we present the results of this rewiring al-
gorithm for two experiments. We consider two networks: one
with relatively homogeneous frequencies drawn from a unit
normal distribution (left column) and a second with heteroge-
neous frequencies drawn from a symmetric power-law distri-
bution,g(|ω|) ∼ |ω|−3 (right column). Both networks con-
tainN = 1000 oscillators. In Figs. 2 (a) and (b) we plot the
synchronization profiles for the initial networks and the net-
works obtained after2 · 104 rewirings. In both experiments,
the rewired networks display better synchronization proper-
ties with sharp transitions from incoherence to strong synchro-
nization. Each experiment is initialized with a different net-
work topology: a SF network constructed by the configuration
model withγ = 3 andd0 = 2 and an Erdős-Rényi (ER) [26]
network with average degree〈d〉 = 4 are paired with the nor-
mal and power-law distributed frequencies, respectively.In
Figs. 2 (c) and (d) we plot the initial and rewired degree dis-
tributions. In both experiments the degree distribution evolves
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FIG. 2. (Color online) Optimal network design: (a)-(b)r vs K for
initial (red crosses) and rewired (blue circles) networks with normal
and power-law distributed frequencies. (c)-(d) Degree distributions
of the initial (red crosses) and rewired (blue circles) networks. (e)-(f)
Illustrations forN = 40 and36 of networks after rewiring.

to better match that of the frequencies, either becoming less
[Fig. 2(c)] or more [Fig. 2(d)] heterogeneous. This is further
emphasized by the shifts in the maximal degreesd∞, which
decreases from 75 to 15 and increases from 10 to 26, respec-
tively. This suggests that a more heterogeneous network bet-
ter synchronizes a more heterogeneous set of frequencies. To
illustrate this phenomenon, we show in Figs. 2 (e) and (f) net-
works resulting from the same experiment with fewer nodes
(N = 40 and36, respectively). The radius of each node is
proportional to its degree and the coloring of the node indi-
cates its frequency from most positive (red) to most negative
(blue). Here the phenomenon is easily observable with the
emergence of network hubs in (f) but not (e).

We now study in more detail the synchrony alignment func-
tion given in Eq. (7). Just as aligningω with v

N maxi-
mizesr, it follows that in the strong coupling regime, align-
ing ω with other eigenvectorsvi of decreasing index yields
weaker synchronization. We consider the alignmentsω ∝ v

i

and plot the synchronization profiles in Fig. 3 (a) fori =
100, 200, . . . , 1000 (red to blue) averaged over50 realizations
of SF networks with parametersN = 1000, γ = 3, and
d0 = 2. As expected, we observe weaker synchronization
with decreasing index. We also plot in panel (b)r vs i for a



4

2 200 400 600 8001000
0

0.2

0.4

0.6

0.8

1

index, i

sy
n
c
,
r

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

coupling, K

sy
n
c
,
r

(a) (b)

K = 0.25

K = 1

K = 0.08

v1000

v100

FIG. 3. (Color online) Eigenvector alignments: (a)r vs K for fre-
quency alignmentsω ∝ v

100,v200, . . . ,v1000 (red to blue). (b)r vs
i for ω ∝ v

i with fixedK = 0.08 (blue circles),0.25 (red crosses),
and1 (green triangles). Each point is averaged over50 SF network
realization of sizeN = 1000 with γ = 3 andd0 = 2.

few isolated coupling strengths:K = 0.08, 0.25, and1, again
averaged over 50 realizations. For all three casesr tends to
increase withi, providedi is not too small. ForK = 0.08 the
majority of alignments yield incoherence withr undergoing
a sharp increase only near the most dominant eigenvectors,
while the increase inr is more gradual forK = 0.25 and1.
We also point out that for very smalli we observe a short in-
crease inr, which we attribute to local synchronization that
yield large fluctuations inr.

Before concluding, we investigate the dynamical and struc-
tural properties present in optimized networks. In partic-
ular, we consider local degree-frequency and neighboring
frequency-frequency correlations. In Figs. 4 (a) and (b) we
plot the frequency magnitude|ωi| vs degreedi for (a) a net-
work with optimally allocated frequencies and (b) a network
with pre-chosen frequencies (blue circles) and a rewired net-
work (red crosses). Networks are SF withN = 1000, γ = 3,
andd0 = 3 and frequencies in (b) are normally-distributed. In
each case we observe a strong positive degree-frequency cor-
relation, indicating that the largest frequencies correspond to
the network hubs. Moreover, in Figs. 4 (c) and (d) we plot for
each nodei the average frequency of its neighboring oscilla-
tors 〈ω〉i =

∑N

j=1
Aijωj/di vs ωi. The results are qualita-

tively similar for each case, showing a strong negative corre-
lation between neighboring frequencies. These observations
agree with those of Refs. [27, 28], where similar positive and
negative correlations were found to promote global synchro-
nization. We finally note that such degree-frequency correla-
tions may help explain the increased sharpness of transitions
shown in Figs. 1 and 2 (a) and (b), since similar correlations
can lead to discontinuous transitions [18].

In this Letter we presented asynchrony alignment function
that measures the interplay between network structure and os-
cillator heterogeneity and allows for a systematic optimiza-
tion of synchronization. Focusing on Kuramoto coupling, we
highlighted its utility through numerical experiments forran-
dom networks with two general classes of optimization prob-
lems: frequency allocation and network design. We found that
synchronization is promoted by a strong alignment of the fre-
quency vector with the most dominant Laplacian eigenvectors
and that, relatively speaking, more (less) heterogeneous net-

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

10
2

degree , d i

fr
e
q
u
e
n
c
y
,
|ω

i
|

 

 

optimal

10
0

10
1

10
2

0

1

2

3

4

degree , d i

fr
e
q
u
e
n
c
y
,
|ω

i
|

 

 pre−chosen

rewired

(b)(a)

−3 −2 −1 0 1 2

−3

0

3

6

9

ωi

〈ω
〉 i

 

 

optimal

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

frequency, ωi

〈ω
〉 i

 

 pre−chosen

rewired

(d)(c)

FIG. 4. (Color online) Correlations in optimized networks:(a), (b)
Frequency magnitude|ωi| vs degreedi and (c), (d) average neighbor
frequency〈ωi〉 vs frequencyωi for networks with optimally chosen
frequencies (green triangles), pre-chosen frequencies (blue circles),
and a rewired network (red crosses). Networks are SF withN =

1000, γ = 3, andd0 = 3. Frequencies for the arranged and rewired
cases are normally distributed.

works better synchronize more (less) heterogenous frequen-
cies. In all cases we found that in optimized networks the large
frequencies are localized to hubs and frequencies of neighbor-
ing oscillators are negatively correlated.

Although the theoretic approach developed herein is valid
for systems given by Eq. (1), extension to more general os-
cillator models, e.g., Landau-Stuart oscillators [34], Winfree
oscillators [35] and chaotic oscillators remains an outstanding
problem. One promise stems from Kuramoto’s phase reduc-
tion methods which give Eq. (1) as an approximating of the
dynamics of weakly-interacting limit-cycle oscillators [10].
Another exciting venue of research would be on the optimiza-
tion of other dynamical patterns such as multistability, hys-
teresis, and/or explosive synchronization, none of which was
observed in our numerical examples (despite the sharp tran-
sitions seen in Figs. 1 and 2) but can potentially arise under
more general coupling and dynamics.

Finally, we compare our results on heterogeneous oscilla-
tors to the well-developed theory regarding identical oscilla-
tors [29], for which the synchronizability of a network is given
by the ratioλN/λ2 of Laplacian eigenvalues [30] – a result al-
lowing for optimization to be independent of the node dynam-
ics [31]. In contrast, we find here that the synchronization of
a network of heterogeneous oscillators generally depends on
not only the full set of eigenvalues and eigenvectors of the net-
work Laplacian, much like the case of nearly-identical oscil-
lators [32] and real-world experiments [33], and how the net-
work structure pairs with the heterogeneity of node dynamics
(here oscillator frequencies). A network that is easily synchro-
nizable with identical oscillators may have poor synchroniza-
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tion properties with heterogeneous oscillators, and vice-versa.
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