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Abstract: Many methods exist for one dimensional curve registration,
and how methods compare has not been made clear in the literature. This
special section is a summary of a detailed comparison of a number of major
methods, done during a recent workshop. The basis of the comparison was
simultaneous analysis of a set of four real data sets, which engendered a
high level of informative discussion. Most research groups in this area were
represented, and many insights were gained, which are discussed here. The
format of this special section is four papers introducing the data, each
accompanied by a number of analyses by different groups, plus a discussion
summary of the lessons learned.
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1. Introduction

Functional Data Analysis (FDA) is a popular statistical area, which is maturing
both in practice and in theory. An important challenge in this area, is to sep-
arate amplitude variation from phase variation. These concepts are illustrated
using a simulated example in Figure 1. The left panel shows a sample of curves,
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Fig 1. Simulated example, based on sample of curves (left panel), decomposed into amplitude
varation (center panel) and phase variation (right panel).

with both types of variation, as seen from the locations and heights of each pair
of peaks. The amplitude variation is shown in the center panel, which shows
the same peaks after an alignment process. The right panel displays the phase
variation in this example, in terms of warps of a notion of the mean of these
curves. While most approaches to FDA ignore this type of decomposition, it
has become clear from a range of important real data analysis contexts, in-
cluding growth curves, motion tracking data, chemical spectra, anatomical data
and neuroscience data, that such ignorance can entail very substantial loss in
statistical efficiency and interpretation.

This realization has motivated a number of efforts to extract separate phase
and amplitude modes of variation. Note that there are often quite different sta-
tistical contexts where such registration of curves is useful. In some situations
phase variation is a nuisance, and the focus of the analysis is on amplitude
variation (this is sometimes also called “vertical variation”, leaning perhaps too
heavily on the classical Cartesian representation of functions). This happens
for a number of spectral examples, where peaks (representing given substances)
need to be aligned (so the peaks correctly correspond), but it is the amounts
of substances, reflected by the heights of the peaks, that is the main goal of
the analysis. In other situations, phase variation (sometimes called “horizontal
variation”, but when the independent variable is time, this is usefully thought
of as “tempo”) can be the main focus, and amplitude should be considered as a
nuisance. In still other situations both amplitude and phase modes of variation
are important, and should be studied jointly. Human movement data are gen-
erally of this type. But even when both modes are important, decomposition is
still very useful, because their concatenation makes the information much more
accessible to statistical analysis.

Each of the previous efforts at decomposing amplitude and phase variation
typically involves the analysis of a challenging real data set where curve regis-
tration is important, and good results from use of the proposed method on that
data set are shown. While that format is typical for publication in the statisti-
cal literature, it fails to provide useful comparison of methods, in particular not
elucidating their relative strengths and weaknesses. This need for comparison
could be met by requiring authors to do comparisons themselves, but this is
generally an unreasonable request, due to lack of availability of general purpose
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software implementations of existing methods, and perhaps more importantly
due to the need for large amounts of expert-level tuning that is usually needed
to get a good result.

In response to the need for a more global and useful comparison of these
methods, the Mathematical Biosciences Institute hosted a workshop, with rep-
resentation from most of the principal research groups in this area. The initial
basis of the workshop was for each group to do some analysis on a common set
of four data sets. The results from the various groups then formed the basis of a
large amount of overall discussion, which led to many new insights. This special
section is aimed at conveying the interesting lessons learned at this workshop
on curve registration to the larger statistical community.

Following the data centric orientation of the workshop, this special section is
oriented around these four data sets:

• Proteomic data, spectral data collected for the study of Acute Myeloid
Leukemia by the Adelaide Proteomics Center.

• Juggling Data, digitized traces of human movement during a juggling ex-
ercise, recorded from infra-red emitting diodes at McGill University.

• Spike Train Data, recording the electrical activity of a movement-encoded
neuron in the primary motor cortex, collected in the Hatsopoulos Lab at
the University of Chicago.

• AneuRisk65, datasets of three-dimensional vascular geometries, obtained
from 3D angiographies collected within the AneuRisk project for the study
of cerebral aneurysms pathogenesis.

All data sets are available at the MBI website: http://mbi.osu.edu/2012/
stwdescription.html.

The main ideas behind each of these data sets, as well as data analytic goals
of interest, together with discussion of all preprocessing that was done in each
case, is presented in the four main papers in this special section. The analyses
presented by the various research groups are included in a format similar to
discussions in other contexts. Next, additional relevant comments together with
a summary of insights gained, are given by the original providers of the data.

2. Review

This section contains a brief discussion of a few highlights of the curve reg-
istration literature. This is not intended to be comprehensive, but instead to
eliminate the need for (perhaps too repetitive) re-discussion of these papers in
several of the contributions to this special section.

Important early work in this area was from the viewpoint of landmark reg-
istration, where a few anchor points, which correspond across the family of
curves, form the basis of the registration. See Gasser and Kneip (1995) and
Ramsay and Silverman (2005) for recent results of this type, and for access to
the earlier literature.

While landmarks are useful when they exist in a natural way, in many situ-
ations these cannot be found. Hence, various landmark free approaches, which
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treat curves as continuous data objects, have been subject of more recent studies.
Important recent results (containing many earlier references) include: Ramsay
and Li (1998); Wang and Gasser (1999); Gervini and Gasser (2004); Ramsay and
Silverman (2005); Kaziska and Srivastava (2007); Sangalli et al. (2009), Kneip
et al. (2000); Liu and Müller (2004); James (2007).

Registration can be performed jointly with modelling and analysis of data,
as in the registration to principal components method described in Kneip and
Ramsay (2008).

The issue of registration can also be combined with the one of clustering
functional data. Some works considering this aspect are Sangalli et al. (2010);
Tang and Müller (2009); Liu and Yang (2009); Boudaoud, Rix and Meste (2010).

Research providing insightful theoretical frameworks can be found in Srivas-
tava et al. (2011a); Vantini (2012).

Important related work can also be found in the context of longitudinal data,
where semiparametric non-linear mixed-effects models are proven to be useful
Lawton, Sylvestre and Maggio (1972); Lindstrom and Bates (1990); Ke and
Wang (2001); Altman and Villarreal (2004); Brumback and Lindstrom (2004).

The issue of registration has been considered also in the shape analysis field.
In particular, the earliest work on elastic shape analysis of planar curves is by
Younes Younes (1999) who introduced an elastic metric and a complex square-
root representation for enabling Euclidean analysis. This was followed by more
elaborate studies of such representations, including Younes et al. (2008); Michor
and Mumford (2006); Mio, Srivastava and Joshi (2007) and Srivastava et al.
(2011b). The last paper extended this elastic shape analysis from planar curves
to curves in arbitrary Euclidean spaces.

Finally, although the workshop focus has been on the registration of curves,
possibly multidimensional, it is important to cite the work on registration of
surfaces, in imaging. For refer the interested reader to the book of Modersitzki
(2003), and references therein.
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