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Abstract: Mangroves provide valuable ecosystem goods and services such as carbon 

sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The 

use of satellite remote sensing to map mangroves has become widespread as it can provide 

accurate, efficient, and repeatable assessments. Traditional remote sensing approaches 

have failed to accurately map fringe mangroves and true mangrove species due to 

relatively coarse spatial resolution and/or spectral confusion with landward vegetation. 

This study demonstrates the use of the new Worldview-2 sensor, Object-based image 

analysis (OBIA), and support vector machine (SVM) classification to overcome both of 

these limitations. An exploratory spectral separability showed that individual mangrove 

species could not be spectrally separated, but a distinction between true and associate 

mangrove species could be made. An OBIA classification was used that combined a 

decision-tree classification with the machine-learning SVM classification. Results showed 

an overall accuracy greater than 94% (kappa = 0.863) for classifying true mangroves 

species and other dense coastal vegetation at the object level. There remain serious 

challenges to accurately mapping fringe mangroves using remote sensing data due to 

spectral similarity of mangrove and associate species, lack of clear zonation between 

species, and mixed pixel effects, especially when vegetation is sparse or degraded. 

Keywords: mangroves; OBIA; support vector machine; Galapagos Islands; decision-tree; 

classification 
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1. Introduction 

1.1. Context 

Mangroves are an assemblage of tropical and sub-tropical halophytes (i.e., salt tolerant) woody 

plants. Mangrove forests are among the most productive forest ecosystems in the world and unique in 

linking terrestrial and marine systems through the inter-tidal zone [1]. Despite the low tree species 

diversity and simple canopy structure, mangroves provide many valuable ecosystems goods and 

services such as carbon sequestration, habitat for terrestrial fauna as well as economically important 

fisheries, and coastal hazard mitigation [2]. Mangrove forests can range from vast swamps across large 

estuarine systems such as the Ganges River Delta to strips of vegetation along the fringe of arid 

coastlines.  

Globally, satellite remote sensing has played an important role in mapping and monitoring 

mangroves [3,4]. Mapping and monitoring mangrove forests is critically important for 

numerous scientific areas such as carbon stock estimates of tropical coastal nations, effectively 

managing commercial fisheries and their mangrove nurseries, and understanding the dynamics of  

vegetation-coastal geomorphology and coastal hazard mitigation. Furthermore, mangroves can provide 

unique habitat for rare species such as the mangrove finch in the Galapagos Islands of Ecuador. 

Previous studies have reported remote sensing classification accuracies between mangroves and 

other landcover ranging from 75% to 90%, though many studies have omitted accuracy assessments 

(see [4] for an in-depth review of satellite remote sensing or [5] for a more general review). There 

remain a number of challenges to accurately detect mangroves including spectral similarity between 

mangroves and nearby landward tropical vegetation including in arid or marginal environments [6-9] 

and the effect of mixed pixels for fringe mangroves [10]. Detection of individual mangrove species 

presents an even greater challenge. Traditional remote sensing approaches generally have failed to 

detect individual species [11]. While Vaiphasa et al. [12] and Wang and Sousa [13] were able to 

discriminate between mangrove species in hyperspectral laboratory studies, real-world results have 

been mixed. Almost all recent studies utilize very high resolution imagery, though a wide variety of 

different techniques have been tested including fuzzy classifications [14], neural networks [15,16], 

support machine vectors [17], post-classification data fusion [18] and OBIA [15,19-21]. Studies 

using only multispectral data have generally reported moderate to poor results. For example,  

Neukermans et al. [14] report an overall accuracy of 72 percent based on the mapping of four 

mangrove species and the surrounding land cover using Quickbird multispectral imagery and a fuzzy 

classification scheme. Similarly, Wang et al. [19] report an overall classification accuracy of nearly 75 

percent or less for each of three mangrove species using Quickbird or IKONOS imagery with a 

maximum likelihood classification (MLC) technique. 

The incorporation of spatial information either in the form of OBIA or pixel-based image texture 

(e.g., grey-level co-occurrence matrix or lacunarity) improves the classification accuracy [15-17,19,20]. 

Spatial information seeks to extract repeated patterns in canopy structure that can be indirectly related 

to species. This approach has merit as mangrove genera often differ greatly in form and structure [22]. 

Spatial metrics are very sensitive to edge effects and work best over continuous canopies. In the case 

of fringe or basin mangroves, mangrove species zonation is often not as distinct as in other 
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environments, and high edge length to area ratio makes edge effects a serious challenge. Thus, to 

effectively map and monitor fringe mangrove forests, especially at local and regional scales, the 

challenges of spectral confusion and likely limited effectiveness of spatial metrics are constraining 

factors. Previous studies have reported a range of classification accuracies. Wang et al. [15] report that 

a hybrid OBIA-MLC classification outperforms either individual approach, but accuracy for individual 

species still ranged from 74% to 98%. Both Huang et al. [17] and Myint et al. [20] report accuracies 

greater than 90% using spatial data as part of the classification, or as an input into the image object 

segmentation process.  

1.2. Study Objective 

The objective of this study was to map fringe and basin mangrove forests at the species level. First, 

an analysis of spectral separability of vegetation using Jeffries-Matusita separability measure was 

conducted to distinguish between vegetation types or groups and to evaluate the differences between 

Quickbird and Woldview-2 for multispectral analysis. Based on these results, a hybrid OBIA-SVM 

approach was designed to enhance vegetation separability. An object-based decision tree classification 

was used to classify classes other than dense coastal vegetation that are not central to this study. A 

support vector machine classification was used to classify dense coastal vegetation between true 

mangroves and mangrove associates. The accuracy of the results was analyzed at the object level and 

field plot or point level for individual vegetation types. 

1.3. Background—Object Based Image Analysis 

Pixel-based analysis is generally conceptually simple and methods are generic across sensors. 

However, pixels are often not the unit of interests, but rather the default unit of measurement. For 

example, individual crowns and canopy gaps consist of multiple pixels and produce spatial-

autocorrelation within objects that can be detected using high resolution imagery [23]. OBIA seeks to 

create “meaningful” objects by segmenting an image into groups of pixels with similar characteristics 

based on spectral and spatial properties [24]. In OBIA, segmented objects become the unit of analysis, 

from which spectral statistics, such as spectral band means and standard deviation, or spatial 

information, such as image texture, can be used for further analysis including image classification. In 

the software eCognition, user-defined scale, shape, and compactness parameters make OBIA 

particularly useful for creating objects with heterogeneous pixels such as desert with sparse vegetation. 

OBIA has been widely applied for forest remote sensing studies [25-28] and has been successfully 

applied to mangrove studies [15,20,29]. However, OBIA has not been explicitly applied to fringe 

mangroves.  

1.4. Background—Support Vector Machine 

SVM is a machine-learning technique that is well adapted to solving non-linear, high dimensional 

space classifications [30]. For remote sensing, SVM is a useful tool for multispectral and hyperspectral 

classifications in which spectral separability is less than perfect. The mathematical formulation of 

SVM is described by Vapnik [31] and a detailed assessment of SVM for remote sensing is described 
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by Huang et al. [32]. Though still a novel method for remote sensing, SVM has been applied in many 

other fields such as biology, biochemistry, and economics. SVM differs from traditional classification 

approaches by identifying the boundary between classes in n-dimensional spectral-space rather that 

assigning points to a class based on mean values. SVM creates a hyperplane through n-dimensional 

spectral-space that separates classes based on a user defined kernel function and parameters that are 

optimized using machine-learning to maximize the margin from the closest point to the hyperplane. 

Figure 1 illustrates the difference between a maximum likelihood classification and a SMV. By 

identifying the hyperplane that separates two classes (represented by the red and blue dots) rather than 

using the distance between class spectral means (the black dots), SVM can produce a more accurate 

classification. A penalty parameter allows the SVM to vary the degree of training data misclassified 

due to possible data error when optimizing the hyperplane. While there are many possible kernels, four 

common kernels found in remote sensing packages are linear, polynomial, radial basis function, and 

sigmoid. Finding the best kernel and parameters can be difficult, though Hsu et al. [33] suggest 

starting with a radial basis function and testing a range of parameters to identify an effective model. In 

a recent study by Yang [34], it is shown that for most land cover classes, the radial basis function is the 

best kernel with a penalty parameter of 100. 

Figure 1. A stylized example of a cluster-type (left) and support vector machine likelihood 

classification (right) between two hypothetical classes shown in blue and red. 

 

Several studies have demonstrated the great potential for SVM. Pal and Mather [30] found that 

SVM outperforms maximum likelihood and artificial neural network classifiers using Landsat TM and 

is well suited for small training sets and high-dimensional data. Foody and Mathur [35] found SVM 

outperforms discriminate analysis and decision-tree algorithms for airborne sensor data. Li et al. [36] 

applied SVM to an OBIA with better results than standard fuzzy logic classification. Only a single 

study has applied SVM for analysis of mangroves. Huang et al. [17] applied SVM as part of a fusion 

methodology of spectral and image texture data to map mangroves although the effectiveness of SVM 

for multispectral classification of mangroves remains untested. 
  

 

 

 



Remote Sens. 2011, 3              

 

 

2444

2. Methodology 

2.1. Study Area 

The research was conducted on Isabela Island in the Galapagos Archipelago, Ecuador. The 

Galapagos Islands, located 1,000-km off the coast of Ecuador, are an archipelago consisting of 13 

large islands, 4 of which have human populations, and 188 small islands and rocks (Figure 2). The 

Galapagos Islands were declared a national park in 1959 (the park consists of 97% of land area), a 

UNESCO World Heritage Site in 1978, and a UNESCO Biosphere Reserve in 1987. The Galapagos 

Islands lie on the western edge of the Atlantic-East Pacific mangrove complex. Mangrove forests 

consist of three true species common in this region: Rhizophora mangle (red), Avicennia germinans 

(black), and Laguncularia racemosa (white), and as well as the associate species such as Conocarpus 

erectus (button or buttonwood mangrove) and Hippomane mancinella (manzanillo), or other 

halophytes growing on nearby sand flats or dunes [37]. 

Figure 2. Quickbird false color composites for the Puerto Villamil and Cartago study areas 

on Isabela Island in the Galapagos Islands. 

 

In the Galapagos Islands, mangrove forest form dense, but small patches in protected coves and 

lagoons along an otherwise barren or arid coast. Mangrove forests in the study site can be described 

primarily as fringe mangroves forming along the coastline or basin mangroves along hyper-saline 

lagoons. Mangroves grow on a range of substrates from aa lava to sand or silty-clay. For a more 

detailed description of the arid coastal environment in the Galapagos Islands, see Van der Werff and 

Andersen [37]. 
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Figure 3. Examples of vegetation near Puerto Villamil (from upper left, clockwise): (A) 

tall black mangroves near a fresh water spring, (B) red mangroves growing on lava 

shoreline, (C) mixed arid vegetation and mangroves along a hyper-saline pond, (D) tall red 

mangroves mixed with white and black mangroves on a saline pond. 

 

This study focuses on two study areas on Isabela Island: Puerto Villamil and Cartago (Figure 2). 

The Puerto Villamil study site is located on the southern end of Isabela Island extending west from the 

town of Puerto Villamil. The study area contains some features unique to the Galapagos Islands 

including the largest lagoon complex in the Galapagos Islands, the longest sand beach, and complex 

geologic topography along the coastline. Figure 3 shows several examples of the mangroves in 

different settings from the study area. Salinity varies greatly across the study site as both fresh water 

springs and hyper-saline ponds occur in relatively close proximity. Field observations show that while 

mangrove species form patterns of zonation based on salinity and/or wave action, the mangrove and 

associate species co-occur in close proximity due to micro-topographical geological features (i.e., lava 

coastline). To the west of Puerto Villamil, the elevation increases quickly away from the shoreline 

towards the Sierra Negra or Cerro Azul volcanoes and the vegetation changes from barren/arid to 

semi-arid/semi-humid along this elevation transition. It is important to note that unlike large riverine 

mangrove forests like those along the coast of mainland Ecuador, the pattern of zonation between 
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mangrove and mangrove associate species is truncated and highly variable due to the small inter-tidal 

zone and the geologic rather the fluvial coastal geomorphology. The Cartago study area is located on 

the eastern edge of Isabela Island. This area has the largest mangrove forest patches in the Galapagos. 

Unlike the Puerto Villamil study area, Cartago lacks lagoons or vegetation away from the coast as the 

study area lies on a relatively flat lava field to the east of Sierra Negra. 

2.2. Field Data 

Field data were collected during the summer of 2009 near the town of Puerto Villamil. Due to 

conservation policies within the Galapagos National Park, non-destructive sampling was required. 

Mangroves form stands with dense aerial roots and branches, making many areas inaccessible. An 

opportunistic sampling scheme was conducted due to logistical constraints and efforts were made to 

sample a wide range of conditions for each species (Table 1). A wide range of conditions were 

sampled from lava to sand substrates, fresh water springs to hypersaline ponds, and short shrubs to 

trees over 20 m tall. Canopy height, substrate conditions, and mangrove species were recorded at nine 

points for 48, 10-m diameter plot. Plot location was recorded using a Trimble GeoXT GPS unit and 

differentially corrected to a 95% horizontal positional accuracy of less than 1.5 m. To extend the extent 

of the sampled area, an additional 481 species and height point measurements were collected Point 

locations were measured using a compass and laser range finder from a known GPS position. Due to 

the limited accuracy of the analog compass (±1°), a maximum of 100 m from the observer was set for 

all points collected. All field data points are considered representative for a 3-m diameter circle. 

Table 1. Vegetation field data by species at plots and individual points. 

 Species Plots* Points Total Percent 

MA (Mangrove  
Associates) 

AC (Acacia) 8 27 35 3.472 
MZ (Manzanillo) 43 7 50 4.960 

OV (Other Vegetation) 16 17 33 3.274 
BW (Buttonwood) 56 55 111 11.012 

TM (True  
Mangroves) 

RM (Red Mangrove) 120 174 294 29.167 
WM (White Mangrove) 146 243 389 38.591 
BM (Black Mangrove) 66 30 96 9.524 

 Total 455 553 1,008 

2.3. Remote Sensing Data 

Details of the Quickbird and Worldview-2 imagery are shown in Table 2. The Quickbird imagery 

was cloud-free over coastal areas, while the Worldview-2 imagery had a few clouds over the study 

area. Thus, the Quickbird imagery was used for the first level of analysis. All imagery was 

geometrically corrected using the ENVI Rational polynomial coefficients (RPC) with ground control 

points (GCP) orthorectification correction algorithm. Since all mangroves grow within the inter-tidal 

zone, the elevation was assumed to be at mean sea-level across the image. The root mean square error 

(RMSE) was found to be less than 1.5 m using 16 independent GCPs. All imagery was radiometrically 

corrected using a Dark Object Subtraction. Since consistent dark objects could not be identified 

between images, a 1% threshold value for each band was used. Solar angle was not found to be 
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substantially different between images. All imagery was resampled to a resolution of 2 m using a cubic 

convolution interpolation. Several band ratios were computed to assist with classification. Band ratios 

were selected based on exploratory analysis using visual interpretation and the feature optimization 

tool in eCognition. The selected band ratios were NIR/Red (i.e., Simple Ratio) and NIR/Blue for the 

Quickbird imagery, and NIR2/Red, Red Edge/Green, and Yellow/Coastal Blue for the Worldview-2 

imagery. 

Table 2. Imagery details for the Quickbird and Worldview-2 sensors. 

Sensor Quickbird Worldview-2 

Acquisition Date 27 August 2008 01 October 2010 

Spatial Resolution (m) 

Pan 0.6 0.5 
MSS 2.4 2.0 

Spectral Channels (nm) 

Coastal Blue N/A 400–450 
Blue 450–520 450–510 

Green 520–600 510–580 
Yellow N/A 585–625 

Red 630–690 630–690 
Red Edge N/A 705–745 

NIR-1 760–900 770–895 
NIR-2 N/A 860–1,040 

2.4. Spectral Separability 

Spectral separability analysis compares the spectral signature of classes and determines the degree 

to which those classes can be distinguished. Spectral separability analysis is a commonly used 

exploratory analysis approach for selecting classes and training data for classification. Spectral 

separability was calculated using Jeffries-Matusita (J-M) Distance that measures the divergence 

between spectral means [38,39]. The J-M distances in ENVI is squared so that the distance values 

range from 0 to 2, where values greater than 1.9 are highly separable, and value less than 1.0 require 

class clumping or new training data for traditional mean-based classification methods. 

2.5. Object-Based Image Analysis 

Image segmentation and decision-tree classification were conducted using eCognition Developer 8. 

eCognition groups pixels based on spectral and spatial properties [24]. A two-level segmentation was 

used to first classify general land cover classes, and then refine the coastal vegetation classes. The 

first-level segmentation used shape = 0.5, compactness = 0.5, and scale = 25. The object size varied 

based on the heterogeneity of the area and the land cover class. For example, lava objects had a mean 

area of 656 m2, with a standard deviation of 625 m2 compared ocean objects had a mean area of 1,385 m2 

with a standard deviation of 1,926 m2. A second image level was segmented based on the Worldview-2 

imagery using shape = 0.5, compactness = 0.9, and scale = 10 for only the dense coastal vegetation 

classification from level 1. The mean level 1 object size was 144 m2 with a standard deviation of 102 m2. 
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2.5.1. Decision-Tree Classification 

The decision tree classification is shown in Figure 4. Class rules were identified using interactive 

visual interpretation of threshold values based on training data, existing map, and expert knowledge of 

the study area. Upland and coastal vegetation were separated using a distance rule of 250 m from open 

water based on field observations. While there was little confusion between these general land cover 

classes, there was considerable confusion between lava and shallow water over lava (e.g., ponds, 

coastline). In these cases, objects were manually edited using expert image interpretation. 

Figure 4. Object-based image analysis (OBIA) Decision Tree (rectangle = image;  

diamond = rule; oval = class). 
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Although overall cloud cover was less than 15% in the Worldview-2 image, clouds and cloud-shadow 

were classified and removed from the vegetation analysis. The remaining dense coastal vegetation 

objects were exported to ArcGIS 9.3.1 with the mean values of each band and band ratio for each 

object. In ArcGIS, the shapefiles were converted to raster stacks for analysis in ENVI 4.8. It should be 

noted that during exploratory analysis, object-level standard deviation and texture (i.e., grey-level  

co-occurrence matrix) were also calculated, but they were not found to substantially improve 

classification results, while raising concerns of model over-fitting with higher data dimensionality. 

Additionally, the eCognition fuzzy nearest neighbor classification, using the feature optimization tool 

to select input data for the classification, did not produce acceptable results for the true mangrove 

classification. When using only mean spectral information, there was insufficient separability between 

classes. The addition of standard deviation or skewness of spectral data or image texture, separability 

increased, but classification results showed strong overfitting of the classification to training data. 

2.5.2. Support Vector Machine Classification 

The SVM classification was conducted using ENVI. Calibration and validation objects were 

selected based on field data; homogenous objects were verified through visual assessment. The 

distribution of the objects is shown in Table 3. The objects were systematically divided between 

calibration and validation datasets based on the object ID created systematically across the image 

during segmentation. This ensured an equivalent geographic distribution of calibration and validation 

data. An SVM radial basis function (RBF) kernel was applied using the default parameters (gamma = 

0.091 and a penalty parameter of 100). The penalty parameter is particularly important for non-

separable classes. Equation (1) shows the RBF kernel: 

K(xi,xj) = exp(−g||xi − xj||2), g > 0      (1) 

where g is the user-defined gamma. 

ENVI conducts pair-wise iterations of SVM and assigns fuzzy class membership. Classes are 

assigned using the highest membership. Exploratory analysis did not show improved results with other 

gamma or penalty values.  

Table 3. Distribution of objects used to calibrate and validate the support vector machine 

(SVM) classification. 

True Mangroves Mangrove Associates Total 

Calibration 143 54 197 
Validation 73 24 101 

Total 216 78 298 

2.6. Accuracy Assessment 

The accuracy of the SVM classification was assessed in several ways. First, accuracy is assessed at 

the object-level using an error confusion matrix. The overall, producer’s, and user’s accuracy was 

calculated, in addition to the kappa statistic. The area under the curve (AUC) of the receiver operating 

characteristic (ROC) was also computed based on fuzzy membership [40]. This statistic illustrates the 
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accuracy of the classification relative to a perfect classification (AUC = 1) and a random classification 

(AUC = 0.5) based on the rate of false positives. Second, an error confusion matrix was created for the 

individual vegetation types at the field point level and all classes from both the decision tree and SVM 

classification. To further illustrate the relationship between the field data and SVM, a boxplot 

distribution of fuzzy membership to true mangroves was computed for each field vegetation class. 

3. Results and Discussion 

3.1. Spectral Separability Analysis 

Class spectral separability at the pixel level for all vegetation field data points is shown in Table 4 

for the Quickbird (A) and Woldview-2 (B) imagery. The spectral separability between vegetation 

classes for the Quickbird imagery was moderate to poor. Not a single value was found to be greater 

than the suggested threshold of 1.9, though many values were greater than 1.8. More importantly, there 

was not a consistently high separability for any individual species. This indicates that the ability to 

discriminate vegetation types with high accuracy using Quickbird imagery is very unlikely. Although 

the Worldview-2 imagery had better spectral separability than the Quickbird imagery (Table 3(C)), 

likely due to the greater number of spectral bands, only manzanillo (MZ) was consistently separable 

from mangroves. Separability between mangrove species was particularly low, especially between red 

and white mangroves. This result is consistent with field measurements taken from a handheld 

spectroradiometer during the field campaign [41]. The spectral overlap and confusion between species 

was consistent with the accuracy assessment of previous studies using various classification 

techniques. Neukermans et al. [14] reported an overall accuracy of 72% using a fuzzy classification 

and Wang et al. [19] reported an overall accuracy of 75% using a maximum likelihood technique, 

although the user's accuracy for some species was as low as 55%. During the exploratory analysis of 

this study, a MLC classification failed to detect two separate true mangrove and mangrove associate 

classes. 

Table 4(D) shows spectral separability of true mangroves (TM) and mangrove associates (MA) for 

all vegetation field points and dense vegetation objects from OBIA segmentation and decision tree 

classification. In most cases, spectral separability increased with the inclusion of band ratios and 

spatial information through image segmentation into objects. However, the maximum value of 1.665 

demonstrates that there is considerable spectral overlap between the two classes and that non-

traditional classification methods are likely required (i.e., SVM). The use of an object-based approach 

worked best for dense vegetation objects. Results for sparse vegetation objects (not shown) did not 

improve the separability results and were sometimes worse than the pixel-based analysis due to the 

inclusion of background substrate reflectance. Moreover, the moderate to poor spectral separability 

indicates the in ability to discern between species using this imagery which includes noise from non-

leaf surfaces such as braches and background substrate. Given, pure leaf reflectance from finer scale 

imagery or spectral unmixing, spectral separability may be higher. 
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Table 4. Spectral Separability (Jeffries-Matustia Distance) for individual species using 

Quickbird (A) or Worldview-2 (B) imagery, the difference between the Quickbird and 

Worldview-2 imagery (C) and a comparison between pixels and objects for both types of 

imagery using true mangrove and mangrove associate classes (D). 

(A) Quickbird  
AC MZ OV BW RM WM BM 

AC   1.892 1.342 1.455 1.837 1.703 1.543 
MZ 1.892   1.734 1.690 1.593 1.814 1.355 
OV 1.342 1.734   0.994 1.725 1.673 1.233 
BW 1.455 1.690 0.994   1.256 1.185 0.702 
RM 1.837 1.593 1.725 1.256   0.508 1.129 
WM 1.703 1.814 1.673 1.185 0.508   1.258 
BM 1.543 1.355 1.233 0.702 1.129 1.258   

(B) Worldview-2 
AC MZ OV BW RM WM BM 

AC   1.963 1.647 1.698 1.820 1.498 1.785 
MZ 1.963   1.861 1.925 1.900 1.943 1.647 
OV 1.647 1.861   1.532 1.622 1.584 1.381 
BW 1.698 1.925 1.532   1.617 1.336 1.634 
RM 1.820 1.900 1.622 1.617   0.866 1.226 
WM 1.498 1.943 1.584 1.336 0.866   1.540 
BM 1.785 1.647 1.381 1.634 1.226 1.540   

(C) Difference 
AC MZ OV BW RM WM BM 

AC   0.071 0.304 0.243 −0.017 −0.205 0.242 
MZ 0.071   0.127 0.235 0.307 0.129 0.292 
OV 0.304 0.127   0.537 −0.103 −0.089 0.148 
BW 0.243 0.235 0.537   0.361 0.151 0.932 
RM −0.017 0.307 −0.103 0.361   0.358 0.097 
WM −0.205 0.129 −0.089 0.151 0.358   0.282 
BM 0.242 0.292 0.148 0.932 0.097 0.282   

(D) Pixel vs. Object for TM and MA 
QB QB w/BR WV WV w/ BR QB = Quickbird 

All Veg Points 0.664 1.141 0.734 1.084 WV = Worldview-2

Dense Veg Objects 0.839 1.118 1.321 1.665 BR = Band Ratios 

3.2. Classification 

The classification is illustrated in Figure 5. Table 5 shows the proportion of each land cover type. 

For both study areas, lava and ocean are the dominant cover types and coastal vegetation comprises 

about 5.5 km2 or 12% and 8% of Puerto Villamil and Cartago images, respectively. The composition 

of coastal vegetation differs between the two study areas. The Puerto Villamil study area is mostly 

sparse vegetation with mangrove associates and true mangroves comprising a minority of coastal 

vegetation. The Cartago study area is mostly true mangroves with much less sparse vegetation and 
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almost no mangrove associate species present. However, much of the dense coastal vegetation was 

obstructed by clouds or cloud shadow in the Worldview-2 image (24.8%). 

Figure 5. Land cover classification for Puerto Villamil (top) and Cartago (bottom). 

 

 

The satellite classification has shown that true mangroves are widespread and the dominant 

vegetation cover in the Cartago study area, while true mangroves are part of a wider range of 
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vegetation in the Puerto Villamil study area. In both study areas, mangroves grow along the sheltered 

coastline and thrive where there is likely subsurface freshwater from the humid highlands emerging 

along the coast as springs. Several of these springs are found near the town of Puerto Villamil and 

these reflect the large dense mangrove patches observed. 

Table 5. Land Cover Classification for all classes (A) and coastal vegetation (B). 

(A) 

Puerto Villamil Cartago 
Cover Area Percent Area Percent 

OC 17.9304 38.1463 29.2249 43.4184 
PD 1.5400 3.2763 * 
LV 14.1150 30.0291 32.4511 48.2114 
SD 0.8032 1.7087 0.0397 0.0589 
UV 6.8491 14.5712 0.2722 0.4043 

QBC 0.0985 0.2096 0.0000 0.0000 
SCV 2.8796 6.1262 1.2552 1.8648 

DCVC 0.1785 0.3798 1.0119 1.5033 
MA 1.5091 3.2106 0.0006 0.0009 
TM 1.1010 2.3423 3.0544 4.5379 

Total 47.004 12.0588 67.310 7.9069 

(B) Coastal vegetation classes and total. 
Puerto Villamil Cartago 

Cover Area Pct CV Area Pct CV 
SCV 2.8796 0.5080 1.2552 0.2358 

DCVC 0.1785 0.0315 1.0119 0.1901 
MA 1.5091 0.2662 0.0006 0.0001 
TM 1.1010 0.1942 3.0544 0.5739 

Total 5.668 5.322 

OC = Ocean  UV = Upland Vegetation 

PD = Pond  QBC = Quickbird Clouds 

LV = Lava  SCV = Sparse Coastal Veg 

SD = Sand  DCVC = Dense Coast Vegetation w/Clouds 

TM = True Mangrove MA = Mangrove Associates 

The differences in land cover reflect the differences in the climatic and geomorphic environment. 

The Puerto Villamil study area is along the southern edge of the Sierra Negra volcano and has 

considerably more cloud cover during the year than the Cartago study area (unpublished MODIS data). 

Furthermore, elevation increases rapidly from the coast to the area west of Puerto Villamil, where 

mists and fog increase with elevation providing moisture to plants. In the Cartago study area, the 

elevation remains near sea-level with little available moisture, as observed from the barren lava beds, 

except along the coast where there are likely isolated fresh water springs fed by rain in the humid 

highlands on Sierra Negra.  
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Another major difference between the two study areas is the presence of ponds and lagoons. The 

Puerto Villamil study area contains the largest lagoon system in the Galapagos Islands. The hydrologic 

connectivity of these lagoons is complex as some lagoons are hyper-saline and others are nearly fresh 

water [41]. The ranges of hydrologic conditions near Puerto Villamil are likely the cause of the range 

of vegetation types (i.e., true mangroves vs. mangrove associates) and vegetation conditions (i.e., LAI 

and canopy height) observed. As Song et al. [42] observed in this study area, salinity can have an 

observable impact on remote sensing-derived photosynthetic productivity. 

The lagoon complex is the result of volcanic topographic features seemingly unique to that area. In 

contrast, the structure of the Cartago coastline reflects a more fluvial pattern of inter-tidal channels. 

The relatively simple topography and hydrology and more arid environment near Cartago has led to 

isolated but large, dense mangrove patches around protected coves and likely fresh water springs. 

Future research is needed to investigate the link between hydrologic conditions including subsurface 

flow and coastal vegetation. 

3.3. Accuracy Assessment 

The accuracy assessment was considered at two levels: (1) validation objects for a typical 

assessment of just the SVM classification, and (2) validation field points to understand the accuracy 

from the decision tree classification and the sub-object level.  

3.3.1. SVM 

The overall accuracy of the SVM classification between true mangroves and mangrove associates 

was 94.4% with a kappa statistic of 0.863. The greatest source of error was the misclassification of 

mangrove associates as true mangroves (Table 6). The producer’s and user’s error were consistent for 

each class and greater than 90% in all cases. The AUC-ROC was 0.991 for true mangroves and 0.987 

for mangrove associates. The overall accuracy of the classification was very good and better than most 

previous mangrove studies [4] and thus demonstrates the ability of this approach to accurately 

distinguish between true and associate mangroves in fringe and basin environments. 

Table 6. Classification confusion matrix (A) and classification accuracy (B) of SVM 

classification. 

(A) TM (Pix) TM (%) MA (Pix) MA (%) Total 

Unclassified 0 0 0 0 0 

TM 3,152 96.04 128 9.69 3,280 

MA 130 3.96 1,193 90.31 1,323 

Total 3,282 100 1,321 100 4,603 

 

(B) Prod. (Pix) Prod.(%) User (Pix) User (%) 

TM 3,152/3,282 96.04 3,152/3,280 96.1 

MA 1,193/1,321 90.31 1,193/1,323 90.17 
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3.3.2. Total Classification vs. Field Points 

Table 7 shows the distribution of validation vegetation field data points (i.e., points that did not fall 

within objects used for the SVM classification). The majority of field points were classified either as 

sparse coastal vegetation or lava. This is indicative of the arid environment of the study area, 

particularly in an OBIA classification framework where the spectral signature of the object and not 

individual pixels are used for classification. Furthermore, given the sparse nature of the vegetation, the 

spectral signal strength of these vegetation points was relatively weak, preventing further classification 

with detailed spectral unmixing, requiring hypersepctral data. Of the true mangrove species, about 

50% of red and black mangroves points were classified as sparse vegetation, while nearly all of the 

white mangrove points were classified as sparse. It should be noted that since the field sampling 

scheme was opportunistic due to Galapagos National Park regulations about cutting vegetation, 

sampling was likely biased towards less dense and more accessible vegetation, especially for the field 

plots.  

Table 7. Accuracy Assessment of Decision Tree and SVM Classification from Field Data 

by number of points (A) and percent of points (B).  

Remote Sensing Classes 

Field 
Data 
Classes 

 (A) TM MA QBC SCV DCVC LV OC PD SD UV Total 

AC 2 0 0 18 0 11 0 0 0 0 31 
MZ 5 27 0 2 0 0 0 0 0 0 34 
OV 4 9 0 14 0 10 0 0 0 0 37 
BW 18 6 0 52 0 12 0 4 0 0 92 
RM 84 8 0 71 0 23 1 18 0 0 205 
WM 43 1 0 159 0 120 7 7 0 0 337 

BM 9 22 0 16 0 6 0 0 0 0 53 

Total 165 73 0 332 0 182 8 29 0 0 789 

 

Field 
Data 
Classes 

Remote Sensing Classes 

 (B) TM MA QBC SCV DCVC LV OC PD SD UV Total 

AC 6.45 0.00 0.00 58.06 0.00 35.48 0.00 0.00 0.00 0.00 100 
MZ 14.71 79.41 0.00 5.88 0.00 0.00 0.00 0.00 0.00 0.00 100 
OV 10.81 24.32 0.00 37.84 0.00 27.03 0.00 0.00 0.00 0.00 100 
BW 19.57 6.52 0.00 56.52 0.00 13.04 0.00 4.35 0.00 0.00 100 
RM 40.98 3.90 0.00 34.63 0.00 11.22 0.49 8.78 0.00 0.00 100 
WM 12.76 0.30 0.00 47.18 0.00 35.61 2.08 2.08 0.00 0.00 100 

BM 16.98 41.51 0.00 30.19 0.00 11.32 0.00 0.00 0.00 0.00 100 

Total 0.209 0.093 0 0.421 0 0.231 0.010 0.037 0 0 1 

Figure 6 shows the fuzzy SVM true mangrove classification distribution for each vegetation type. 

Manzanillo, other vegetation, red mangrove, and white mangrove had appropriate membership to true 

mangroves. However, black mangrove and buttonwood had low and high membership, respectively, 

indicating misclassification of these vegetation types.  
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There are many aspects to this error. First, there is a spatial scale mismatch between the field points 

and the objects in that many points may occur in a single object. For example, field plots dominated by 

black mangroves (~11 of 29 dense black mangrove points) were misclassified as mangrove associates 

due to the misclassification of a single object. Moreover, single points may not be representative of a 

whole object, not to mention the inherent geometric error in both the field data and remote sensing 

imagery that may results in a data classification mismatch. Second, fuzzy classification or mixed 

classes were not explicitly considered. Only pure objects were used for calibrating the classification as 

the exact composition of mixed objects was unknown due to the lack of a tree census. While 

mangroves often have detectable patterns of zonation, this is not always observed [43]. This was 

certainly the case in some parts of the study area where edaphic and topographic conditions changed 

rapidly over small distance such that for a given field plot, multiple species were present. 

Figure 6. Boxplot of true mangrove (TM) fuzzy membership for validation field points. 

 

This second point demonstrates a gap in the current knowledge of methods in remote sensing. While 

there are several papers that assess methods of image segmentation and object classification [44], there is 

not a good assessment of linking field sampling schemes with OBIA of natural landscapes where 

visual interpretation is not as straight forward as human landscapes (e.g., buildings, roads, impervious 

surfaces). Field sampling protocols for remote sensing have been largely designed for pixel-based 

analysis from a legacy of 25-m pixels from Landsat and SPOT. The type of sampling for pixel based 

analysis does not lend itself to assessing whole objects created after field data collection, especially 

fuzzy membership of heterogeneous objects. Two alternative sampling schemes such as large-scale 

quadrat sampling or mapping boundaries of homogeneous patches may be more appropriate of OBIA, 

but this type of field data collection is difficult and time-consuming in the best of conditions, let alone 

in dense mangrove swamps. Another alternative is the visual interpretation of ultra-high resolution 

(i.e., pixel size less than 5 cm) airborne imagery for a small subset of the study area to generate 

calibration/validation data. Recent advancements in radio-controlled helicopter platforms are 

particularly promising for this application. Furthermore, this type of sampling would be prohibitively 

destructive in the Galapagos National Park. Future research is needed to assess effective and efficient 

field sampling schemes for use with OBIA. 
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4. Conclusions 

Effective monitoring and management of mangrove forests requires accurate and repeatable 

measures of forest extent and species composition. While previous studies have successfully mapped 

mangrove extent and species, these studies have largely ignored fringe mangroves. This study has 

addressed this issue. Spectral separability analysis revealed that the spectral signatures between 

mangrove species and even associate species were moderately separable using Quickbird or 

Worldview-2 imagery at both the pixel and object level. The best separability was found using dense 

vegetation objects, indicating that even for very high resolution imagery, the multispectral signature of 

non-vegetation components for sparse vegetation produce mixed pixel effects that seriously limit 

multispectral analysis. Using a hybrid decision-tree and SVM approach, true mangrove species and 

associate mangrove species were classified with an accuracy of 94% at the object level. However, 

when the classification was assessed at the species level, the accuracy was poor for some species such 

as black and buttonwood mangrove, which had accuracies of 29% and 25%, respectively. This 

research demonstrates that while non-linear machine-learning classification techniques such as support 

vector machine, in combination with OBIA of very-high spatial resolution data, can provide marked 

improvement in the classification of vegetation types, there is a necessity for greater spectral resolution 

to distinguish between the subtle differences between individual species. Given these findings, future 

research should focus on hyperspectral image analysis to improve spectral separability between species 

and LiDAR to enhance image segmentation based on canopy structure as well as spectral properties. 
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