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Abstract

The evolution of optical pulses in fiber optic communication systems

with strong, higher order dispersion management is modeled by a cubic

nonlinear Schrödinger equation with periodically varying linear dispersion

at second and third order. Through an averaging procedure, we derive

an approximate model for the slow evolution of such pulses, and show

that this system possesses a stable ground state solution. Furthermore,

we characterize the ground state numerically. The results explain the ex-

perimental observation of higher order DM solitons, providing theoretical

justification for modern communication systems design.

1 Introduction

1.1 Conventional dispersion management

The technique of dispersion management (DM), introduced in the early eight-
ies [16] and refined during the past decade [27], has emerged as the dominant
technology for high bandwidth data transmission through optical fibers. In a
dispersion managed fiber link, short sections of fiber with opposite linear dis-
persion characteristics are joined together in a periodically repeated structure,
forming a fiber whose linear dispersion is effectively canceled out over each pe-
riod of dispersion management. In such a system, the characteristic length of
local dispersion is much shorter than that of nonlinearity or average dispersion,
so that on the scale of a typical dispersion management segment, the effects of
nonlinearity and average dispersion can be made small relative to those of the
local dispersion. In this regime, destabilizing effects such as four-wave mixing
[2, 5, 22] and Gordon-Haus jitter [14, 36] are minimized.

In the case of dispersion management at second order, the propagation equa-
tion for the wave envelope can be written in the dimensionless form

iuz + d2(z)utt + ε|u|2u = 0 (1)
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with the dispersion coefficient d2(z) decomposed into its varying and average
components

d2(z) = d̃2(z) + εα2,

where
∫ 1

0
d̃2(z

′)dz′ = 0. Typically d2(z) is piecewise constant and periodic, and
the parameter ε corresponds to the ratio of the characteristic length scales of
local dispersion to that of nonlinearity and average dispersion [1, 10].

The system performance of dispersion managed fiber links is truly remark-
able [8, 25]. Not only are stable pulse structures observed for α2 > 0, the
focusing (anomalous) regime for NLS [9], but also for the case when α2 ≤ 0
[14, 28]. These DM solitons are characterized by nearly Gaussian central peaks
and rapidly decaying secondary peaks which comprise the tails [20, 28]. Also, in
contrast to the soliton solutions for the NLS equation, the DM solitons possess
a nontrivial quadratic phase component, namely chirp [10].

The energy of the DM soliton is higher than that of the corresponding NLS
soliton with the same full width at half maximum (FWHM) and average dis-
persion [29, 37]. This makes DM solitons more resistant to the effects of spon-
taneously emitted amplifier noise, giving dispersion managed systems a higher
signal to noise ratio than traditional soliton based systems [34]. Also, this en-
ergy enhancement can be exploited to reduce energy variation per channel in
wavelength division multiplexing (WDM) systems operating near zero average
dispersion [29].

The first analytical results for DM solitons were obtained in the late nineties,
when an averaged equation describing the slow evolution of solutions to (1) was
derived in [10] through path averaging and in [1] through multiple scales expan-
sion. A rigorous justification for this averaged equation was given in [38], where,
moreover, it was shown that for α2 > 0, the Hamiltonian corresponding to the
averaged equation possesses a ground state solution in the class of functions
Aλ = {u :

∫

R
|u|2 = λ,

∫

R
|ut|2 < ∞}. These results indicate the existence of

a stable, stationary solution to the averaged equation that propagates nearly
periodically for (1) on time scales up to O( 1

ε ). The existence of a standing wave
solution for the averaged equation in this regime was also established in [12]
by means of a general theorem on bifurcation of solutions from the essential
spectrum. Furthermore, the existence of a ground state for the case α2 = 0 was
recently demonstrated [13].

1.2 Higher order dispersion management

Waves of the form exp(iD(ω)z − iωt) traveling through an optical fiber satisfy
the dispersion relation

D(ω) =
n(ω)ω

c
,

where D(ω) is termed the propagation constant, n(ω) is the index of refraction,
ω is the frequency, and c is the speed of light in a vacuum [3]. Thus, in gen-
eral, the propagation constant is a complicated function of frequency. Explicit
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forumlas for D(ω) are generally unknown, and in the derivation of the evolution
equation for the electric field’s slowly varying amplitude, D(ω) is approximated
by its Taylor polynomial in a neighborhood of the carrier frequency.

D(ω) ' d0 + d1(ω − ω0) + d2(ω − ω0)
2 + ...

where dn = D(n)(ω0)
n! . In the derivation of the conventional dispersion manage-

ment model (1), one assumes that pulses are sufficiently narrow in the frequency
domain, |ω−ω0| << 1, so that D(ω) is accurately approximated by its quadratic
Taylor polynomial, and the effects of changes in the values of d2 in a neighbor-
hood of ω0 are neglected. However, for the propagation of pulses which are
broader in the frequency domain, the inclusion of the cubic term in the Tay-
lor approximation is necessary, with the resulting model taking into account
variations in d2.

This additional term in the Taylor series gives rise to a third order linear
dispersive term in the governing NLS-type equation for the electric field’s slowly
varying envelope [3]. In single channel systems, third order dispersion generally
causes an asymmetric broadening of pulses. Moreover, in WDM systems, which
utilize many optical channels separated in the frequency domain, third order
dispersion can prevent conventional dispersion compensation across neighbor-
ing channels.

A natural way to surmount these difficulties is to manage dispersion at both
second and third order. By utilizing this technique of higher order disper-
sion management (HODM), the asymmetric broadening that takes place
for ultrashort optical pulses in single channel systems with conventional DM is
almost exactly compensated for. Furthermore, in WDM systems, HODM makes
it possible to compensate for dispersion over many neighboring frequency chan-
nels simultaneously. In fact, advances in fiber manufacturing techniques [18]
have made it possible to incorporate this idea into new optical fibers, termed
dispersion slope compensating fibers, and recent experiments have yielded
impressive results [7, 11, 19, 23, 26].

The evolution of optical pulses in a fiber with dispersion management at
second and third order is governed by the following dimensionless nonlinear
Schrödinger type equation [24]

iuz + d2(z)utt + id3(z)uttt + εnl|u|2u = 0,

with

dj(z) = d̃j(z) + εjαj

and

∫ 1

0

d̃j(z
′)dz′ = 0.
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Here the αj , j = 2, 3 are order one measures of average dispersion at second
and third order, respectively, εnl is a small parameter representing the ratio
of characteristic lengths of the local dispersions to the nonlinearity, and the
εj are small parameters representing the ratio of characteristic lengths of the
local dispersions to the average dispersions. The dispersion coefficients dj(z),
j = 2, 3, are piecewise constant and, due to the manufacture process, periodic
with the same period, here normalized to be 1. In the operating regimes we
consider, the parameters satisfy ε3 << εnl ∼ ε2, so we set ε = εnl = ε2, neglect
the effects of average third order dispersion by setting α3 = 0, and consider the
equation

iuz + d2(z)utt + id3(z)uttt + ε|u|2u = 0

d2(z) = d̃2(z) + εα2 (2)

d3(z) = d̃3(z).

We develop an averaging theory for (2), and show that for the case α2 > 0,
the corresponding averaged equation possesses a ground state solution which
propagates nearly periodically for the full equation. Furthermore, we solve the
Euler-Lagrange equation numerically, revealing the structure of this new DM
soliton. We also report that analysis for the case α2 = 0 will appear elsewhere.

2 Averaging

Solutions of (2) evolve on two distinct spatial scales, which suggests performing
an averaging procedure. We note that the analysis in this section does not
require the condition α3 = 0, but is necessary later when proving the existence
of ground states .

2.1 Averaged equation

We first perform the transformation u(z, t) = L(z){v(z, t)}, where L{·} is the
unitary semigroup for the linear evolution equation

iuz + d̃2(z)utt + id̃3(z)uttt = 0. (3)

The operator is easily computed via Fourier transform

L(z){v(0, t)} =
1√
2π

∫

R

θ(z, k)v̂(0, k) exp(ikt)dk (4)

where

θ(z, k) = exp

∫ z

0

−i[k2d̃2(τ) − k3d̃3(τ)]dτ.

We observe that L(z) is an isometry on Hs(R) for all s ∈ R. Moreover, due to
the periodicity of d̃2(z) and d̃3(z), both θ(z, k) and L(z) are periodic in z. For
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ease of notation, we henceforth suppress the variable dependencies of v.

Using

∂u

∂z
=

∂
(

L(z){v}
)

∂z
= L(z)

{

∂v

∂z

}

+ id̃2(z)
∂2

(

L(z){v}
)

∂t2
− d̃3(z)

∂3
(

L(z){v}
)

∂t3

we obtain by direct substitution into (2), the evolution equation for v

i
∂v

∂z
+ ε

(

α2
∂2v

∂t2
+ C(z){v}

)

= 0, (5)

where

C(z){v} = L(−z){|L(z){v}|2L(z){v}}. (6)

Formally the averaged equation is

i
∂v

∂z
+ ε

(

α2
∂2v

∂t2
+ 〈C〉{v}

)

= 0 (7)

where

〈C〉{v} =

∫ 1

0

L(−z′){|L(z′){v}|2L(z′){v}}dz′. (8)

In Fourier space, (7) takes the form

i
∂v̂

∂z
+ ε(−k2α2v̂ + 〈Ĉ〉{v}) = 0 (9)

with

〈Ĉ〉{v} =

∫ 1

0

∫

R3

δ(k − k1 + k2 − k3)Θ(z′, k, k1, k2, k3)v̂1(z) ¯̂v2(z)v̂3(z)dk1dk2dk3dz′. (10)

Here v̂i(z) = v̂(z, ki) and

Θ(z′, k, k1, k2, k3) = exp

∫ z′

0

i{−d̃2(τ)[k2
1 − k2

2 + k2
3 − k2] + d̃3(τ)[k3

1 − k3
2 + k3

3 − k3]}dτ.

Performing the integration over z′ in (10) gives

〈Ĉ〉{v} =

∫

R3

δ(k − k1 + k2 − k3)Θl(k, k1, k2, k3)v̂1(z) ¯̂v2(z)v̂3(z)dk1dk2dk3 (11)

where

Θl(k, k1, k2, k3) =

∫ 1

0

Θ(z′, k, k1, k2, k3)dz′. (12)
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is a bounded function on R
4. The averaged equation (7) corresponds to the

variational equation

uz = J∇〈H〉

where J = −i is a skew-symmetric operator, ∇ is the Fréchet derivative, and
〈H〉 is the Hamiltonian

〈H〉(v) = α2

∫

R

|vt|2dt − 1

2

∫ 1

0

∫

R

|L(z′){v}|4dtdz′ (13)

We note that 〈H〉(v) is a bounded functional on H1(R), as

||L{v}||4L4 ≤ M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂
(

L{v}
)

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

· ||L{v}||3L2 = M ||L{vt}||L2 · ||L{v}||3L2 = M ||vt||L2 · ||v||3L2

where we have used the Gagliardo-Nirenberg inequality [4] and the fact that
L(z) is an isometry on any space Hs(R).

We comment briefly on the regularity of the averaged operator 〈C〉. We will
first show that 〈C〉{·} is bounded on Hs(R) for s > 1

2 . Now

|〈Ĉ〉{v}| =

∣

∣

∣

∣

∫

R3

δ(k − k1 + k2 − k3)Θl(k, k1, k2, k3)v̂(k1)¯̂v(k2)v̂(k3)dk1dk2dk3

∣

∣

∣

∣

≤ ||Θl||L∞(R4)

∫

R3

δ(k − k1 + k2 − k3)|v̂(k1)¯̂v(k2)v̂(k3)|dk1dk2dk3

≤ ||Θl||L∞(R4)

∫

R2

|v̂(k1)||¯̂v(k2)||v̂(k − k1 + k2)|dk1dk2

If we denote Î{v} =
∫

R2 |v̂(k1)||¯̂v(k2)||v̂(k − k1 + k2)|dk1dk2, then by the above
estimate, it suffices to show that

||I{v}||Hs(R) ≤ ||v||3Hs(R)

Now for any u and w ∈ Hs(R), we have that

||uw||Hs(R) ≤ ||u||Hs(R)||w||Hs(R), (14)

or equivalently in Fourier domain,

||û ∗ ŵ||L2
w(R) ≤ ||û||L2

w(R)||ŵ||L2
w(R), (15)

where ∗ is the convolution operator and

||u||L2
w(R) = ||(1 + |k|2) s

2 û||L2(R).

If we denote

F̂ (k + k2) =

∫

R

|v̂(k1)||v̂(k − k1 + k2)|dk1 = |v̂| ∗ |v̂|
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then (14) and (15) applied to û = ŵ = |v̂| ∈ L2
w yields

||(|v̂| ∗ |v̂|)̌||Hs(R) ≤ ||(|v̂|)̌||2Hs(R) = ||v||2Hs(R)

whereˇdenotes the inverse Fourier transform. Now

Î{v} =

∫

R

|v̂(k2)|F̂ (k + k2)dk2 = |v̂| ∗ F̂ ,

so we apply the above argument to û = |v̂|, ŵ = F̂ to conclude that

||I{v}||Hs(R) ≤ ||v||3Hs(R).

A standard extension of this argument shows that 〈C〉{·} is locally Lipschitz on
Hs(R) for s > 1

2 .

||〈C〉{u − v}||Hs(R) ≤ M ||u − v||Hs(R)

where M depends on ||u||Hs(R) and ||v||Hs(R).

2.2 Well posedness

The averaged equation (7) is similar in form to the focusing NLS equation, and
local well posedness is a straightforward application of semigroup theory.

Theorem 2.2.1 If v0 ∈ Hs(R), s > 1
2 , then there exists zmax > 0 and a

unique solution v(z, t) ∈ C([0, zmax), Hs(R)) for (7) with initial data v0, with
the property that either zmax = ∞ or zmax < ∞ and
limz→zmax ||v(z)||Hs = ∞.

Proof :

The linear part can be solved via Fourier transform, generating a C0 group
of unitary operators S(z) on Hs(R) for z ∈ R. Since 〈C〉{·} is locally Lipschitz
from Hs(R) → Hs(R), local existence follows [33].

�

To prove a global existence theorem, a priori estimates on solutions of (7)
of the form ||v(z)||Hs(R) < C(z) for any z ∈ R

+ are needed. This is possible for
initial data in Hs(R), s ≥ 1, using conservation of the L2 norm, conservation of
the Hamiltonian, and regularity of the operator 〈C〉.

Theorem 2.2.2 If v0 ∈ Hs(R), s ≥ 1, then there exists a unique solution
v(z, t) ∈ C([0,∞), Hs(R)) for (7) with initial data v0.

Proof :
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Multiplying (9) by ¯̂v, its conjugate by v̂, subtracting, and integrating over
R yields

∂z

∫

R

|v̂|2dk = −2Im

∫

R

¯̂v〈Ĉ〉{v}dk,

where
∫

R

¯̂v〈Ĉ〉{v}dk =

∫

R

ˆ̄v

∫

R3

δ(k − k1 + k2 − k3)Θl(∆2, ∆3)v̂1
¯̂v2v̂3dk1dk2dk3dk =

∫

R

∫

R3

δ(k − k1 + k2 − k3)Θl(∆2, ∆3)¯̂vv̂1
¯̂v2v̂3dk1dk2dk3dk

with

∆2 = k2
1 − k2

2 + k2
3 − k2

∆3 = k3
1 − k3

2 + k3
3 − k3.

Since Θl(∆2, ∆3) = Θl(−∆2,−∆3), making the change of variables k → k3,
k1 → k2 we see that

∫

R

∫

R3

δ(k − k1 + k2 − k3)Θl(∆2, ∆3)¯̂vv̂1(z)¯̂v2(z)v̂3(z)dk1dk2dk3dk =

∫

R

∫

R3

δ(k − k1 + k2 − k3)Θl(∆2, ∆3)¯̂vv̂1(z)¯̂v2(z)v̂3(z)dk1dk2dk3dk,

so that

∂z

∫

R

|v|2 = ∂z

∫

R

|v̂|2dk = 0

and the L2 norm is conserved.
By conservation of the Hamiltonian,

〈H〉(v0) = α2

∫

R

∣

∣

∣

∣

∂v0

∂t

∣

∣

∣

∣

2

dt − 1

2

∫ 1

0

∫

R

|L(z′){v0}|4dtdz′ =

〈H〉(v) = α2

∫

R

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dt − 1

2

∫ 1

0

∫

R

|L(z′){v}|4dtdz′.

Thus

∫

R

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dt =
〈H〉(v0)

α2
+

1

2α2

∫ 1

0

∫

R

|L(z′){v}|4dtdz′

≤ 〈H〉(v0)

α2
+

M

2α2
||v||3/2

L2(R) ·
∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2(R)
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by the Sobolev inequality. From standard estimates [35],

∫

R

∣

∣

∣

∣

∂v

∂t

∣

∣

∣

∣

2

dt ≤ M ′

At this point we note that the boundedness of ||v(z)||H1 implies the boundedness
of ||v(z)||Lp for p ≥ 2.

We complete the proof by demonstrating that ||v(z)||Hs(R) < M(z). We
start with the integral formulation of (7)

v(z, t) = S(z){v0} −
∫ z

0

S(z − z′){〈C〉{v(z′)}}dz′ (16)

so that for s ≥ 1,

||v(z)||Hs(R) ≤ ||S(z){v0}||Hs(R) +

∫ z

0

||S(z − z′){〈C〉{v(z′)}}||Hs(R)dz′

= ||v0||Hs(R) +

∫ z

0

||〈C〉{v(z′)}||Hs(R)dz′

≤ ||v0||Hs(R) +

∫ z

0

||v(z′)||3Hs(R)dz′

≤ ||v0||Hs(R) +

∫ z

0

||v(z′)||2L∞(R)||v(z′)||Hs(R)dz′

≤ ||v0||Hs(R) + M ′

∫ z

0

||v(z′)||Hs(R)dz′

Gronwall’s inequality gives that ||v(z)||Hs(R) is bounded on [0, z), and this, in
combination with the local well posedness result, gives global existence [30].

�

2.3 Averaging theorem

For this section it is most convenient to rescale z → z
ε in the transformed and

averaged equations (5) and (7) so that

i
∂vε

∂z
+ α2

∂2vε

∂t2
+ C

(z

ε

)

{vε} = 0 (17)

and

i
∂v

∂z
+ α2

∂2v

∂t2
+ 〈C〉{v} = 0 (18)

The validity of the averaging procedure is addressed in the following theorem.
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Theorem 2.3.1 Let v(z, t) ∈ C0([0, z∗], Hs(R)) be a solution of (18) on the
time interval [0, z∗] for any z∗ > 0 and s > 7

2 . Then for ε sufficiently small,
there exists vε(z, t) a solution of (17) with initial data v(0, t) such that
||vε − v||L∞([0, z∗

ε ],Hs−3(R)) < Cε.

Remark : We note that since u = L{vε}, the standard averaging result

||u −L{v}||L∞([0, z∗

ε ],Hs−3(R)) < ε

follows immediately by isometry.
Proof :
The proof is similar in spirit to classical averaging results in finite dimensions
[32], and follows closely the method of [38]. We first split C( z

ε ){v} into its
average and varying components

C
(z

ε

)

{v} = 〈C〉{v} + R
(z

ε

)

{v}

where

R̂
(z

ε

)

{v} =

∫

R3

δ(k − k1 + k2 − k3)A
(z

ε
, k, k1, k2, k3

)

v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3

and

A
(z

ε
, k, k1, k2, k3

)

= Θ
(z

ε
, k, k1, k2, k3

)

− Θl(k, k1, k2, k3).

The function A is bounded in its spatial variables, uniformly in z and ε. Now
consider

Bε(z, k, k1, k2, k3) =

∫ z

0

A
(τ

ε
, k, k1, k2, k3

)

dτ = ε

∫ z
ε

0

A(τ ′, k, k1, k2, k3)dτ ′

where τ ′ = τ
ε . Since the integrand is 1 - periodic with zero mean, we may write

ε

∫ z
ε

0

A(τ ′, k, k1, k2, k3)dτ ′ = ε

∫ z′′

0

A(τ ′, k, k1, k2, k3)dτ ′

where z′′ = z
ε − [ z

ε ] ∈ [0, 1), with [·] denoting the greatest integer function. Thus

||Bε||L∞(R5) ≤ ε

∫ z′′

0

||A||L∞(R5) ≤ εz′′||A||L∞(R5) ≤ Mε

where M is independent of z.
We define the local average ṽ = v + v1, where

v̂1(z, k) = i

∫

R3

δ(k − k1 + k2 − k3)Bε(z, k, k1, k2, k3)v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3.
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By direct estimation

|v̂1(z, k)| =

∣

∣

∣

∣

i

∫

R3

δ(k − k1 + k2 − k3)Bε(z, k, k1, k2, k3)v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3

∣

∣

∣

∣

≤ ||Bε||L∞(R5)

∣

∣

∣

∣

∫

R3

δ(k − k1 + k2 − k3)|v̂(z, k1)||¯̂v(z, k2)||v̂(z, k3)|dk1dk2dk3

∣

∣

∣

∣

.

Repeating the arguments for regularity of 〈C〉 in Section 2.1, we have that for
every σ > 1

2 ,

‖v1(z)‖Hσ ≤ Mε‖v(z)‖3
Hσ

Moreover, by the energy estimate in the well posedness Theorem 2.2.2, the
bound is uniform in z for s ≥ 1,

sup
0≤z≤z∗

||v1(z)||Hσ ≤ Mε sup
0≤z≤z∗

‖v(z)‖3
Hσ ≤ M ′ε.

We directly compute

i
∂v̂1

∂z
= R̂′ − R̂,

where

R̂′ = i

∫

R3

δ(k−k1+k2−k3)Bε(z, k, k1, k2, k3)∂z{v̂(z, k1)¯̂v(z, k2)v̂(z, k3)}dk1dk2dk3.

Using equation (7), we estimate

‖R′‖Hs−3 ≤ Mε.

The local average ṽ satisfies

i
∂ṽ

∂z
+ α2

∂2ṽ

∂t2
+ C

(z

ε

)

{ṽ} = R′′,

where

R′′ = C
(z

ε

)

{ṽ} − C
(z

ε

)

{v} + R′ + α2
∂2v1

∂t2
.

By continuity of C( z
ε ){·}

‖C
(z

ε

)

{ṽ} − C
(z

ε

)

{v}‖Hs ≤ Mε

for all s > 1
2 , and so

‖R′′‖Hs−3 ≤ Mε.

Finally we consider

fε = vε − ṽ
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which satisfies

i
∂fε

∂z
+ α2

∂2fε

∂t2
+ C

(z

ε

)

{ṽ + fε} − C
(z

ε

)

{ṽ} = −R′′.

Again by continuity of C( z
ε ){·}

∥

∥

∥
C

(z

ε

)

{ṽ + fε} − C
(z

ε

)

{ṽ}
∥

∥

∥

Hs−3
≤ M‖fε‖Hs−3 .

Writing (19) in Fourier space, multiplying the equation by (1 + |k|2)s−3f̂ε, its
conjugate by (1 + |k|2)s−3fε, subtracting and integrating over k, one obtains

∂

∂z
‖fε‖2

Hs−3 ≤ Mε‖fε‖2
Hs−3 + M‖fε‖4

Hs−3 .

Since ‖fε‖2
Hs−3 < M , we can write the estimate

∂

∂z
‖fε‖2

Hs−3 ≤ M2ε + M2‖fε‖2
Hs−3 .

Now using the fact that ‖fε(0)‖2
Hs−3 = 0 and applying Gronwall’s inequality we

have
‖fε(z)‖Hs−3 ≤ eM2εzM2ε ≤ eKM2ε

where K is a time-independent constant for z ∼ O( 1
ε ), so

sup
0≤z≤ z∗

ε

‖fε‖Hs−3 ≤ M ′ε.

Overall, we have

sup
0≤z≤ z∗

ε

‖vε − v‖Hs−3 ≤ sup
0≤z≤ z∗

ε

‖vε − ṽ‖Hs−3 + sup
0≤z≤ z∗

ε

‖ṽ − v‖Hs−3

= sup
0≤z≤ z∗

ε

‖fε‖Hs−3 + sup
0≤z≤ z∗

ε

‖v1(z)‖Hs−3 ≤ Mε

�

3 Existence of a ground state

Here we show that for the case α2 > 0 and α3 = 0, the averaged Hamiltonian
possesses a minimizer in the class of admissible functions Aλ = {v :

∫

R
|v|2 =

λ,
∫

R
|vt|2 < ∞}. We adapt an argument first established for the NLS equa-

tion [6] and later adapted for the case of second order dispersion management
[38]. We first present properties of the Hamiltonian that are essential to the
minimization argument.

12



3.1 Properties of 〈H〉
3.1.1 infAλ

〈H〉{v} < 0

Proof :
We first assume that the 1 - periodic dispersion maps di(z), i = 2, 3, are piece-
wise constant and of the following form, which is standard in optical communi-
cations

d̃i(z) =

{

D̃i if z ∈ [0, θ) or z ∈ [1 − θ, 1)

−D̃i if z ∈ [θ, 1 − θ) .

For these dispersion profiles we define the map strength parameters si by si =
θD̃i. The Hamiltonian can be written

〈H〉{v} = α2

∫

R

|vt|2dt−

1

2

∫ 1

0

∫

R

∫

R4

ei(k1−k2+k3−k4)te−i∆2

R z
0

d2(z
′)+i∆3

R z
0

d3(z
′)dz′

×v̂(k1)¯̂v(k2)v̂(k3)¯̂v(k4)dk1dk2dk3dk4dtdz

where ∆2 = k2
1 − k2

2 + k2
3 − k2

4 and ∆3 = k3
1 − k3

2 + k3
3 − k3

4 . Performing the
integration in z yields

〈H〉{v} = α2

∫

R

|vt|2dt

−1

2

∫

R

∫

R4

ei(k1−k2+k3−k4)t
(θ sin(s2∆2 + s3∆3)

s2∆2 + s3∆3

)

×v̂(k1)¯̂v(k2)v̂(k3)¯̂v(k4)dk1dk2dk3dk4dt

Let v be an arbitrary element of Aλ and consider the rescaled function

vγ(t) = γ
1
2 v

(

γt
)

,

which is also an element of Aλ. A scaling property of the Fourier transform
gives that

v̂γ(k) = γ
−1
2 v̂(

k

γ
)

and the chain rule yields

∂vγ(t)

∂t
= γ

3
2
∂v(t′)

∂t′

13



where t′ = γt. Substituting vγ into the Hamiltonian, we have

F (γ) = 〈H〉{vγ} = α2

∫

R

∣

∣

∣

∣

γ
3
2
∂v(t′)

∂t′

∣

∣

∣

∣

2

dt−

1

2γ2

∫

R

∫

R4

ei(k1−k2+k3−k4)t
(θ sin(s2∆2 + s3∆3)

s2∆2 + s3∆3

)

×v̂

(

k1

γ

)

¯̂v

(

k2

γ

)

v̂

(

k3

γ

)

¯̂v

(

k4

γ

)

dk1dk2dk3dk4dt

= γ2α2

∫

R

∣

∣

∣

∣

∂v(t′)

∂t′

∣

∣

∣

∣

2

dt′−

1

2γ3

∫

R

∫

R4

ei(
k1
γ −

k2
γ +

k3
γ −

k4
γ )t′

(θ sin(s2γ
2∆̃2 + s3γ

3∆̃3)

s2γ2∆̃2 + s3γ3∆̃3

)

×v̂

(

k1

γ

)

¯̂v

(

k2

γ

)

v̂

(

k3

γ

)

¯̂v

(

k4

γ

)

dk1dk2dk3dk4dt′,

where

∆̃2 =

(

k1

γ

)2

−
(

k2

γ

)2

+

(

k3

γ

)2

−
(

k4

γ

)2

and

∆̃3 =

(

k1

γ

)3

−
(

k2

γ

)3

+

(

k3

γ

)3

−
(

k4

γ

)3

.

Making the change of variable k′
j =

kj

γ , we have

F (γ) = Cγ2−

γ

2

∫

R

∫

R4

ei(k′

1−k′

2+k′

3−k′

4)t
′

(θ sin(s2γ
2∆′

2 + s3γ
3∆′

3)

s2γ2∆′
2 + s3γ3∆′

3

)

×v̂(k′
1)

¯̂v(k′
2)v̂(k′

3)
¯̂v(k′

4)dk′
1dk′

2dk′
3dk′

4dt′

= Cγ2 − γG(v; γ, s2, s3, θ)

14



where ∆′
2 = (k′

1)
2 − (k′

2)
2 + (k′

3)
2 − (k′

4)
2, ∆′

3 = (k′
1)

3 − (k′
2)

3 + (k′
3)

3 − (k′
4)

3,
and G is a functional of v also depending on γ, s2, s3 and θ. At this stage, we
can see that as sj → 0 and θ → 1, we recover the exact scaling of the integrable
NLS Hamiltonian evaluated at vγ . To show that this Hamiltonian can be made
negative, we first note that by continuity of the kernel

K(γ, θ, sj , ∆
′
j) =

(θ sin(s2γ
2∆′

2 + s3γ
3∆′

3)

s2γ2∆′
2 + s3γ3∆′

3

)

in γ, F (0) = 0. Moreover, differentiating the functional F in γ yields

F ′(γ) = 2Cγ − γG′(v; γ, s2, s3, θ) − G(v; γ, s2, s3, θ)

To compute G′, we differentiate under the integral sign and apply the chain
rule. This gives G′(v; 0, s2, s3, θ) = 0, so that

F ′(0) = −G(v; 0, s2, s3, θ) = −1

2

∫

R

∫

R4

ei(k′

1−k′

2+k′

3−k′

4)t′

×v̂(k′
1)

¯̂v(k′
2)v̂(k′

3)
¯̂v(k′

4)dk′
1dk′

2dk′
3dk′

4dt′

= −1

2

∫

R

|v(t′)|4dt′ < 0.

Thus for γ small enough, the Hamiltonian is negative.

�

3.1.2 〈H〉{v} is subadditive :

If Iλ = infv∈Aλ
〈H〉{v}, then Iλ1+λ2 < Iλ1 + Iλ2

Claim : For θ > 1, Iθλ < θIλ

Proof of claim :

Iθλ = inf
v∈Aθλ

〈H〉{v}

= inf
w∈Aλ

〈H〉{
√

θw}

since

||w||2L2 = λ ⇒ ||
√

θw||2L2 = θλ.

But

〈H〉(
√

θw) = α2

∫

R

|(
√

θw)t|2dt − 1

2

∫ 1

0

∫

R

|L(z){
√

θw}|4dtdz

= θα2

∫

R

|wt|2dt − θ2

2

∫ 1

0

∫

R

|L(z){w}|4dtdz

15



< θ
(

α2

∫

R

|wt|2dt − 1

2

∫ 1

0

∫

R

∫

R

|w|4dtdz
)

for θ > 1. So

Iθλ = inf
w∈Aλ

〈H〉{
√

θw} < θ inf
w∈Aλ

〈H〉{w} = θIλ.

�

Proof of subadditivity:
If we set λ1 = αλ2 with α < 1, we have

Iλ1+λ2 = Iαλ2+λ2 < (α + 1)Iλ2 = αI(α−1λ1) + Iλ2 < Iλ1 + Iλ2 .

3.1.3 Localization of minimizing sequences

In the minimization proof, we used the fact that for a minimizing sequence
vk(t) ∈ H1(R), there exists a subsequence vkm(t) which remains localized. That
is, for any ε > 0 there exists an R > 0 such that

∫ +R

−R

|wm(t)|2dt > λ − ε

where wm(t) = vkm(t − tm) and λ =
∫

R
|wm(t)|2dt. To prove this result, we

apply a version of Lions’ concentration-compactness lemma [17, 38].

Lemma 3.1.1 If um ∈ H1(R) is a bounded sequence with ||um||L2 = λ, then
there exists a subsequence umk

for which one of the following properties hold

1. (localization) There exists a sequence tk such that for any ε > 0 there
exists R > 0 and

∫ tk+R

tk−R

|umk
|2dx ≥ λ − ε.

2. (vanishing) For any R > 0

lim
k→∞

sup
y∈R

∫ y+R

y−R

|umk
|2dx → 0.

3. (splitting) There exists 0 < γ < λ such that for any ε > 0, there exist k0

and two sequences vk, wk with compact support so that for k ≥ k0

||vk||H1 + ||wk||H1 ≤ 4 sup
k∈N

||umk
||H1 (19)

||umk
− (vk + wk)||L2 ≤ 2ε (20)

|||vk||L2 − γ| ≤ ε |||vk||L2 − (λ − γ)| ≤ ε (21)
∣

∣

∣

∣

∣

∣

∣

∣

∂vk

∂x

∣

∣

∣

∣

∣

∣

∣

∣

L2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂wk

∂x

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∂umk

∂x

∣

∣

∣

∣

∣

∣

∣

∣

L2

+ ε (22)

and dist(supp(vk), supp(wk)) > 2ε−1.
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Thus, for the minimization problem there exists a localized subsequence of
the minimizing sequence if vanishing and splitting can be ruled out.

We first rule out vanishing. Let vk be a minimizing sequence for 〈H〉{v} and
assume that a subsequence vmk

vanishes. Since vk is a minimizing sequence, for
some k we have

α2

∫

R

|∂vk

∂t
|2dt − 1

2

∫ 1

0

∫

R

|L(z′){vk}|4dtdz′ < 0

so that

∫ 1

0

∫

R

|L(z′){vk}|4dtdz′ > 0.

Thus for some z∗, we have

∫

R

|L(z∗){vk}|4dt > 0.

Applying a lemma of Cazenave [6] for arbitrary H1(R) functions

∫

R

|u|4dt ≤ C||u||2H1 sup
y∈R

∫ y+1

y−1

|u|2dt

gives that

sup
y∈R

∫ y+1

y−1

|L(z∗){vk}|2dt > 0. (23)

Now we relate supy∈R

∫ y+1

y−1
|L(z∗){vk}|2dt to supy∈R

∫ y+1

y−1
|vk|2dt with the fol-

lowing localization lemma, which is similar to the lemma of [38].

Lemma 3.1.2 Consider the following linear dispersive equation

iuz + d̃2(z)utt + id̃3(z)uttt = 0 (24)

with u ∈ H1(R), ||u||L2(R) = 1, and d̃i(z) piecewise constant. Let un(t, z) be a
sequence of solutions of (24) and define

εn(z) = sup
y∈R

∫ y+1

y−1

|un(t, z)|2

If un(t, 0) is vanishing initial data (limn→∞ εn(0) = 0) with the constraint
||un||L2(R) = 1, then the sequence of the solutions un(t, z) is also vanishing
(limn→∞ εn(z) = 0).
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Proof:

Let χm(t) be a smooth approximation to the characteristic function on the
interval [−m, m], with the property that |∂tχm| < C

m , χm(t) = 1 if |t| ≤ 1,
and χ(t) = 0 if |t| ≥ m. Multiplying (24) by ūχm(t), its conjugate by uχm(t),
subtracting and integrating over t yields

d

dz

∫

R

χm|u|2dt = −2d2(z)Im

∫

R

χmūuttdt − 2d3(z)Re

∫

R

χmūutttdt

Now

Im

∫

R

χmūuttdt = −Im

∫

R

(χmūt + χ′
mū)utdt = −Im

∫

R

χ′
mūutdt

and

Re

∫

R

χmūutttdt = −Re

∫

R

(χmūt + χ′
mū)uttdt = −Re

∫

R

χmūtuttdt − Re

∫

R

χ′
mūuttdt

=
1

2

∫

R

d|ut|2
dt

χm + Re

∫

R

(χ′′
mū + χ′

mūt)utdt =
3

2

∫

R

|ut|2χ′
mdt + Re

∫

R

χ′′
mūutdt

Overall,

d

dz

∫

R

χm|u|2dt = 2d2(z)Im

∫

R

χ′
mūutdt − 2d3(z)

(3

2

∫

R

|ut|2χ′
mdt + Re

∫

R

χ′′
mūutdt

)

and integrating from 0 to z gives

∫

R

χm|u(z)|2dt =

∫

R

χm|u(0)|2dt +

∫ z

0

(

2d2(z
′)Im

∫

R

χ′
mūutdt + 2d3(z

′)
(3

2

∫

R

|ut|2χ′
mdt + Re

∫

R

χ′′
mūutdt

)

)

dz′

≤
∫

R

χm|u(0)|2dt + Cm(||u||H1 , ||χ′
m||L∞ ||χ′′

m||L∞ , ||dj ||L∞)

where Cm → 0 as m → ∞.
Let un(t, z) denote a sequence of solutions of (24) with vanishing initial data

i.e.

εn(0) = sup
y∈R

∫ y+1

y−1

|un(t, 0)|2 → 0

If εn(z) < εn(0) then we are done, so let εn(z) > εn(0). Choosing χmn(∗ − tn)
such that it is centered with respect to un(z, t), we have

∫

R

χmn |un(t, z)|2dt ≥ εn(z).
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and also
∫

R

χmn |un(t, 0)|2dt ≤ 2mnεn(0).

and taking the limit mn → ∞ with mn ∼
√

1
εn(0) gives the result.

�

Returning to (23) and applying the contrapositive of the localization lemma, we
have

sup
y∈R

∫ y+1

y−1

|vk|2dt > 0,

contradicting the assumption that a subsequence vmk
vanishes.

To rule out splitting, it is enough to show that

〈H〉{vmk
} > 〈H〉{wk} + 〈H〉{uk} + α(ε)

where α(ε) is independent of k and goes to 0 as ε → 0, as this causes 〈H〉{vmk
}

to violate subadditivity. We directly evaluate 〈H〉{vmk
}

〈H〉{vmk
} = α2

∫

R

|∂(uk + wk + hk)

∂t
|2dt

−1

2

∫ 1

0

∫

R

|L{uk + wk + hk}|4dtdz

where

||hk||2L2 < ε

and we have suppressed the notation L(z).
Expanding the terms, this can be rewritten

〈H〉{vmk
} = 〈H〉{uk} + 〈H〉{wk}

+2α2Re

∫

R

(∂tuk∂twk + ∂tuk∂thk + ∂twk∂thk + |∂thk|2)dt

−Re

∫ 1

0

∫

R

(

|L{uk + wk}|2|L{hk}|2 +
1

2
|L{hk}|4

+2|L{uk + wk}|2(L{uk + wk})(L{hk}) + (L{uk + wk})2(L{hk})2
+2L{uk + wk}|L{hk}|2Lhk

)

dtdz
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+
1

2

∫ 1

0

∫

R

(

2|L{uk}|2|L{wk}|2 + 2|L{uk}|2L{uk}L{wk}

+(L{uk})2(L{wk})2 + 2|L{wk}|2L{uk}L{wk}
)

dtdz.

We proceed exactly as in [38]. The terms

2α2Re

∫

R

(∂tuk∂twk + ∂tuk∂thk + ∂twk∂thk + |∂thk|2)dt

can be estimated from below by −C1ε, with C1 depending only on λ and α2.
The terms

Re

∫ 1

0

∫

R

(

2|L{uk + wk}|2|L{hk}|2 +
1

2
|L{hk}|4

+2|L{uk + wk}|2(L{uk + wk})(L{hk}) + (L{uk + wk})2(L{hk})2
+2L{uk + wk}|L{hk}|2Lhk

)

dtdz

are all estimated by Holder’s inequality and the Sobolev inequality

∫ 1

0

∫

R

|L(z){v}|4dtdz ≤ M ||v(t)||3L2(R)||vt(t)||L2(R),

yielding a lower bound of the form −C2(ε). The remaining terms

∫ 1

0

∫

R

(

2|L{uk}|2|L{wk}|2 + 2|L{uk}|2L{uk}L{wk}

+(L{uk})2(L{wk})2 + 2|L{wk}|2L{uk}L{wk}
)

dtdz

are estimated using the boundedness of H1(R) solutions of linear Schrödinger
equations in L∞(R), and the following lemma, which is a straightforward con-
sequence of the localization lemma :

In the notation of the Concentration-Compactness Lemma the following esti-
mates hold

∫

|t−tk|≤tc

|L{wk}|2dt ≤ Cε

∫

|t−tk|≥tc

|L{uk}|2dt ≤ Cε,

where tc = t1+t2
2 .

Overall, we have

〈H〉{vmk
} > 〈H〉{wk} + 〈H〉{uk} + α(ε)

where α(ε) is independent of k and goes to 0 as ε → 0. Thus splitting causes
〈H〉 to violate subadditivity, a contradiction.
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3.2 Minimization theorem

Theorem 3.2.1 Let α2 > 0 and α3 = 0. Then there exists a solution to the
following constrained minimization problem :
Minimize

〈H〉{v} = α2

∫

R

|vt|2dt − 1

2

∫ 1

0

∫

R

|L(z′){v}|4dtdz′

over the set of admissible functions

Aλ = {v ∈ H1(R),

∫

R

|v|2 = λ}

Moreover, every minimizing sequence has a subsequence which converges strongly
in H1(R).

Remark : We note that the constraint
∫

R
|v|2 = λ is quite natural, as the L2

norm of the initial data is preserved by solutions of the Euler-Lagrange
equation (7). Posing the problem in this way is also critical to proof of the
stability of the ground state which is given in a later section.

Proof :
We follow the arguments of [6, 38]. The idea is to first show strong convergence
in L2(R) by using Lions’ concentration-compactness principle. This involves
using structural properties of the Hamiltonian to rule out possible loss of com-
pactness. Strong convergence in L2(R), along with an appropriate Sobolev
inequality, implies convergence of the quartic term in the Hamiltonian. These
results, in combination with lower semicontinuity of the H1(R) norm, give the
existence of a minimizer. We show a posteriori that all minimizing sequences
have a subsequence which converges strongly in H1(R).

We first argue that Iλ > −∞. To prove the lower bound, we use the Sobolev
inequality [4]

||Lv||4L4 ≤ C||Lvt||L2 ||Lv||3L2 = C||vt||L2 ||v||3L2 = Cλ3/2||vt||L2 .

Integrating the inequality over z′ gives

∫ 1

0

∫ +∞

−∞

|L(z)v|4dtdz ≤ Cλ3/2||vt||L2 .

Thus

〈H〉(v) ≥ ||vt||2L2 − Cλ3/2||vt||L2 =

(

||vt||2L2 − Cλ3/2

2

)2

− C2λ3

4
> −∞,

for all v ∈ H1(R). Taking the infimum over v ∈ Aλ gives the desired result.
Let vk be a minimizing sequence for 〈H〉(v). By the previous inequality,
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||vk||H1 must be bounded. By Alaoglu’s theorem, there exists a weakly con-
verging subsequence in H1(R), vkm . We will prove strong convergence of vkm

to a minimizer in H1(R), and first establish strong convergence in L2(R).
From previous analysis, we conclude that the minimizing sequence remains

localized as m → ∞. That is, for any ε > 0 there exists an R > 0 such that

∫ +R

−R

|wm(t)|2dt > λ − ε. (25)

where wm(t) = vkm(t − tm). Now wm ⇀ w∗ for some w∗ ∈ H1(R). For any
R > 0, the embedding H1(R) ↪→ L2([−R, R]) is compact and we have

∫ R

−R

|w∗|2dt = lim
m→∞

∫ +R

−R

|wm|2dt.

Together with (25), this implies

∫ +∞

−∞

|w∗|2dt > λ − ε for any ε > 0,

and therefore
∫ +∞

−∞

|w∗|2dt = λ.

This norm convergence, along with weak convergence in L2(R), gives strong
convergence in L2(R).

Since wm converges weakly to w∗ and the Sobolev norm || ∗ ||H1(R) is weakly
lower semi-continuous, we have

||w∗||H1(R) ≤ lim inf
m→∞

||wm||H1(R),

which together with wm → w∗ ∈ L2(R), implies that

||∂twm||L2(R) ≤ lim inf
m→∞

||∂twm||L2(R) (26)

Now for any u∗, um ∈ H1(R) the Sobolev inequality gives

∫ +∞

−∞

|um − u∗|4dt ≤ C

∫ +∞

−∞

|∂tum − ∂tu
∗|2dt

(
∫ +∞

−∞

|um − u∗|2dt

)3/2

≤ C

(
∫ +∞

−∞

|um − u∗|2dt

)3/2

It follows that if um → u∗ in L2(R),

∫ +∞

−∞

|um − u∗|4dt → 0.
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Applying the same argument to L(z)wm and L(z)w∗, we establish that

L(z)wm → L(z)w∗in L4(R).

and so

||L(z)w∗||L4(R) = lim
m→∞

||L(z)wm||L4(R). (27)

Combing (26) and (27),

〈H〉(w∗) ≤ lim inf
m→∞

〈H〉(wm),

which can only happen if

〈H〉(w∗) = lim
m→∞

〈H〉(wm), (28)

so the weak limit w∗ is a minimizer. Furthermore, by (28)

||∂tw
∗||L2(R) = lim

m→∞
||∂twm||L2(R).

Together with weak convergence, this implies strong convergence of ∂twm in
L2(R), so wm → w∗ strongly in H1(R)

�

4 Properties of the ground state

4.1 Regularity

The minimizer for the constrained minimization problem is also a weak solution
to the Euler-Lagrange equation

−ωv + α2vtt + 〈C〉{v} = 0 (29)

If we rewrite (29) in the form

vtt =
1

α2
(ωv − 〈C〉{v}) = f(v),

where f(v) ∈ H1(R) by continuity of 〈C〉{v}, we may use standard elliptic
regularity theory [15] to conclude that v ∈ H3(R). Again, by continuity of
〈C〉{v},

ωv − α2vtt = 〈C〉{v} ∈ H3(R),

forcing v ∈ H5(R). We repeat this procedure indefinitely, obtaining v ∈ Hs(R)
for every s ≥ 1, or v ∈ C∞(R). We note however that the Hs(R) norm of v
may depend on α2.
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4.2 Stability

It is clear that the minimizer is not unique, as any translation v(·+ τ0), τ0 ∈ R,
or rotation eiθv, θ ∈ R, of the minimizer is also a solution of the constrained
minimization problem. Also, it is not known that translations and rotations
give all possible minimizers. From now on we consider the class of ground
state solutions Sλ = {vg ∈ Aλ, 〈H〉(vg) = Iλ}. Using the strong convergence
of minimizing sequences and conservation laws for (7), one can show that the
minimizer is stable in the following orbital sense.

Theorem 4.2.1 Let Sλ be the set of ground states Sλ = {vg ∈ Aλ, 〈H〉(vg) =
Iλ}. For any ε > 0, there exists a δ > 0 such that if infSλ

||v − vg ||H1 ≤ δ,
then the solutions of (7) corresponding to initial data v and vg, denoted v(z)
and vg(z), satisfy
supz infSλ

||v(z) − vg(z)||H1 ≤ ε.

Proof:

We argue by contradiction. Let vk(0) be a sequence of initial conditions such
that infSλ

||vk(0) − vg ||H1 → 0, and assume that vk(z) and vg(z) satisfy
supz infSλ

||vk(z) − vg(z)||H1 ≥ ε for some ε > 0. For definiteness, let zn to be
the first time that infSλ

||vk(z)− vg(z)||H1 = ε. By conservation of the L2 norm
and of the Hamiltonian, we have

∫

R

|vk(zn)|2dt =

∫

R

|vk(0)|2dt

〈H〉{vk(zn)} = 〈H〉{vk(0)}.
By the assumption on vk(0) and continuity of 〈H〉, we have

∫

R

|vk(zn)|2dt =

∫

R

|vk(0)|2dt → λ

〈H〉{vk(zn)} = 〈H〉{vk(0)} → 〈H〉{vg}.

By choosing for example wk = λ
1
2 vk(zn)

(
R

R
|vk(zn)|2dt)

1
2
, let wk be a sequence of H1

functions such that

||wk − vk(zn)||H1 → 0

and
∫

R
|wk(z)|2dt = λ. By continuity of 〈H〉, wk is a minimizing sequence and

must have a subsequence wmk
which converges to a ground state. But

||vk(zn) − vg(z)||H1 ≤ ||vk(zn) − wmk
||H1 + ||wmk

− vg(z)||H1 ,

and taking the infimum over Sλ gives

ε = inf
Sλ

||vk(zn) − vg(z)||H1 ≤ ||vk(zn) − wmk
||H1 + inf

Sλ

||wmk
− vg(z)||H1 → 0,

a contradiction. Thus the class of ground states must be orbitally stable.

�
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5 Numerical studies

5.1 Solution of the eigenvalue problem

In Fourier space, the Euler-Lagrange equation (29) becomes

−ωv̂ − α2k
2v̂ + 〈Ĉ〉{v} = 0. (30)

We propose the following explicit iteration scheme

−ωnv̂n+1 − α2k
2v̂n+1 + 〈Ĉ〉{vn} = 0,

so that

v̂n+1 =
〈Ĉ〉{vn}

ωn + α2k2
.

If we multiply (30) by ¯̂v(k) and integrate over k, we can derive a formula for
ωn+1.

ωn+1 =

∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫

R
k2|v̂n+1|2dk

∫

R
|v̂n+1|2dk

.

This idea also suggests a definition for a relaxation factor to hasten convergence
[21, 31],

sn+1 =
ωn+1

∫

R
|v̂n+1|2dk

∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫

R
k2|v̂n+1|2dk

.

The factor sn can be used to compensate the nonlinearity, and as the scheme
converges, sn → 1. We also note that convergence depends strongly on the initial
guess, which is typically taken to be Gaussian. Incorporating the relaxation
factor, the overall scheme becomes

v̂n+1 = (sn)p 〈Ĉ〉{vn}
ωn + α2k2

,

ωn+1 =

∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫

R
k2|v̂n+1|2dk

∫

R
|v̂n+1|2dk

,

sn+1 =
ωn+1

∫

R
|v̂n+1|2dk

∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫

R
k2|v̂n+1|2dk

,

where we use p = 1.5.
To confine our search for minimizers to a fixed level set of L2(R), we nor-

malize the result of each iteration so that its energy is that of the initial guess,

||vn||2L2(R) = ||v0||2L2(R) = λ.

In practice the algorithm is
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1. Choose an initial profile v̂0, typically Gaussian.

2. Compute ω0 with v̂0.

3. Compute s0 with v̂0 and ω0.

4. Compute v̂1 using the scheme.

5. Rescale v̂1 so that ||v̂1||2L2(R) = ||v̂0||2L2(R).

6. Compute ω1 and s1.

7. Repeat 3, 4 and 5 until desired accuracy reached.

5.2 Solution of evolution equations

Both the full evolution equation (2) and averaged equation (7) can easily be
solved with a version of the well known Fourier split-step scheme, which applies
to a wide class of NLS-type equations. Given an evolution equation of the form

iuz + L{u}+ N{u} = 0,

where L is a self-adjoint operator on a Hilbert space and N is a continuous
nonlinear operator, the solution may be written formally as

u(z, t) = u(0, t)ei
R z
0

(L(s){u}+N (s){u})ds. (31)

We consider the evolution for a small propagation step ∆z so that we may
approximate (31) using a formal Taylor expansion

u(∆z, t) = u(0, t)ei
R

∆z
0

(L(s){u}+N (s){u})ds

≈ u(0, t)ei
R ∆z/2
0 L(s){u}ei

R

∆z
0

N (s){u}dsei
R ∆z/2
0 L(s){u}ds,

with a local error on the order of (∆z)3. Performing the approximation for
O( 1

∆z ) time steps gives a global error on the order of (∆z)2. Formally, ei
R

z
0
L(s){u}ds

is the semigroup for the linear evolution

iuz + L{u} = 0

and can be computed explicitly in Fourier domain. Also,

ei
R z
0
N (s){u}ds

is the solution operator for the evolution equation

iuz + N{u} = 0,

and can be computed either by a standard ODE method such as fourth-order
Runge-Kutta or, in special cases, by using conservation laws for the equation.

The overall scheme becomes
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1. Choose an initial profile u(0, t) and compute its Fourier transform with
the FFT.

2. In Fourier space, evolve the linear dispersive operator for ∆z/2.

3. Evolve the nonlinear operator for ∆z.

4. Evolve the linear dispersive operator for ∆z/2.

5. Repeat 3 and 4 until the final propagation step.

6. Evolve the linear dispersive operator for ∆z/2 and compute the inverse
Fourier transform with the IFFT.

5.3 Existence of nearly periodic solutions

Combining the averaging and minimization results, we see that there exist sta-
tionary solutions for (7) that evolve nearly periodically for (2). The ground
state vg(t) for the variational problem corresponds to a standing wave solution
for (7), v(z, t) = exp(iωz)vg(t). The averaging theorem gives that

∣

∣

∣

∣

∣

∣
u −L

(z

ε

)

{v(z, t)}
∣

∣

∣

∣

∣

∣

L∞([0, z∗

ε ],Hs−3(R))
≤ ε

so that u(z, t) is nearly periodic on the scale of validity for the averaging theo-
rem. Moreover, by well-posedness of the averaged equation, the same result is
true for initial data chosen close to the class of ground states infSλ

||v−vg ||H1 ≤
ε.

We define a higher order dispersion managed soliton to be an element
from the class of ground states Sλ and demonstrate the existence of such solu-
tions numerically. Figure 1 shows the shape of the ground state solution for the
parameters

d̃2(z
′) = d̃3(z

′) =

{

5.0 if z′ ∈ [0, .25) or z′ ∈ [.75, 1.0)
−5.0 if z′ ∈ [.25, .75)

(32)

and α2 = 1.0, ε = 0.1. The solution is computed on the time domain [-30,30]
with 2048 Fourier modes. The logarithm of the amplitude |v(t)| is plotted vs.
time on the interval [-20,20]. One observes a nearly Gaussian central peak,
along with many secondary peaks which decay rapidly. This is similar to the
structure of the ground states observed for dispersion management at second
order [1, 28].

From the averaging theorem, one would expect the ground state to evolve
nearly periodic for z ∼ O(10). Figure 2 depicts the evolution of the maximum
amplitude of the ground state for the corresponding full equation. The individ-
ual oscillations are due to the linear compensation of dispersion, and we observe
that the evolution of the amplitude is, in fact, nearly periodic on z scales much
longer than those predicted by the averaging theorem.
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Figure 1: High order dispersion managed soliton
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