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The spatial scan statistic is widely used in epidemiology and
medical studies as a tool to identify hotspots of diseases. The clas-
sical spatial scan statistic assumes the number of disease cases in
different locations have independent Poisson distributions, while in
practice the data may exhibit overdispersion and spatial correlation.
In this work, we examine the behavior of the spatial scan statistic
when overdispersion and spatial correlation are present, and propose
a modified spatial scan statistic to account for that. Some theoretical
results are provided to demonstrate that ignoring the overdispersion
and spatial correlation leads to an increased rate of false positives,
which is verified through a simulation study. Simulation studies also
show that our modified procedure can substantially reduce the rate
of false alarms. Two data examples involving brain cancer cases in
New Mexico and chickenpox incidence data in France are used to
illustrate the practical relevance of the modified procedure.

1. Introduction. Detection of clusters in spatial point processes is of
great practical importance in a broad range of disciplines, such as epi-
demiology, astronomy and forestry, and has generated considerable interest
among statisticians in recent years. See Lawson and Denison (2002) for a
review of the diverse approaches to this problem. In recent literature spa-
tial scan statistics have been widely used in studies of disease clustering
in epidemiology and health science [e.g., Hjalmars et al. (1996), Viel et al.
(2000), Sankoh et al. (2001) and Perez et al. (2002)]. The scan statistic was
first studied by Naus (1965) and others as a means to detect clusters in a
one-dimensional point process. The basic idea is to move a window with
width w along the interval over which the point process is observed. The
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maximum number of points over all possible windows is recorded and used
to test the null hypothesis of a purely random Poisson process. Kulldorff
(1997) extended the scan statistic to the spatial setting, allowing for the
detection of clusters of a multi-dimensional point process.

The spatial scan statistic is based on the likelihood ratio test: for a region
C, a likelihood ratio test statistic is computed for testing the null hypoth-
esis of equal rates within and outside C versus the alternative of higher
rates inside C. The spatial scan statistic is the likelihood ratio test statistic
maximized over all possible C (perhaps limited to, say, half the size of the
observation region). A p value for the cluster C with the maximum value
of the likelihood ratio test statistic is obtained by comparing the value of
the spatial scan statistic for that dataset with the distribution under the
independent Poisson or binomial model. Since the exact distribution of the
test statistic cannot be easily determined analytically, it is approximated
by the Monte Carlo simulation. This has been implemented in the SatScan
software [Kulldorff et al. (1998b)].

In this work we examine the behavior of the spatial scan statistic when
there is underlying overdispersion and spatial correlation in the data, and
propose a modified spatial scan statistic to account for the overdispersion
and spatial correlation. Overdispersion is commonly found in count data
fitted with Poisson models [see Cox (1983), Breslow (1984), Lawless (1987)
and McCullagh and Nelder (1989)]. For typical disease counts data in spatial
epidemiology studies, it is also reasonable to expect some positive correlation
between nearby locations. Both are evident in the real data examples we
consider here.

We first look at this problem from a theoretical perspective, and show
that when overdispersion or spatial correlation is present, the classical spa-
tial scan statistic tends to produce more false positives than the nominal
significance level asymptotically under certain conditions. This is confirmed
by our simulation studies, which show that the classical spatial scan statis-
tic identifies too many clusters when overdispersion or spatial correlation is
present.

We provide a simple modification to the spatial scan statistic procedure
to adjust the p values of identified clusters (Section 2.3). Essentially, we fit
a spatial generalized linear mixed model to the data which specifically in-
cludes a spatial component. This spatial component is designed to capture
any spatial correlation or overdispersion in the data. In the Monte Carlo
simulation to obtain the distribution of the test statistic, we use this new
model rather than the independent Poisson model to simulate the distribu-
tion of the scan statistic. In our simulation study we find that, by using this
simple modification, we substantially reduce the number of false positives.
Details of our simulation study are given in Section 3.
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For the purpose of illustration, we apply both the classical spatial scan
statistic and our adjusted version to the New Mexico brain cancer data
[Kulldorff et al. (1998b)]. A cluster which is identified by the classical spatial
scan statistic as highly significant is not significant using our adjusted scan
statistic. Our result is consistent with the result in Kulldorff et al. (1998b)
which used extra covariates in the model. We also applied these methods to
chickenpox incidence data in France. Here, we find that the classical spatial
scan statistic identifies an excessive number of hot spots (one in almost every
time period), while the adjusted scan statistic yields more reasonable results
(see Section 4).

Section 2 introduces the notation, reviews the classical spatial scan statis-
tic, presents the main theoretical results, and describes the algorithm for the
adjusted scan statistic. Section 3 gives the simulation results and the data
examples are in Section 4. The proof of Proposition 2 is relegated to the
Appendix.

2. Spatial scan statistic. We begin by introducing some notation and
the basic statistical model. Let G=

⋃m
i=1Ai be the study region, where A=

{Ai, i= 1,2, . . . ,m} is a partition of G, that is, the study region G is divided
into m nonoverlapping subregions Ai. At each subregion Ai, we observe Yi,t,
the number of cases of disease during time interval t, and the covariates xi,t =
(x1i,t, . . . , x

p
i,t)

′. Examples of covariates include Ni,t, the baseline population
at risk in Ai, age, race, gender distribution etc. Poisson and Bernoulli models
are two typical models for Yi,t. In this paper we focus on the Poisson models.
Similar results can be derived for Bernoulli models as well. We are interested
in detecting clusters of subregions for which the number of observed cases
of disease is significantly higher than that predicted from the model.

2.1. The classical spatial scan statistic. Kulldorff (1997) introduced a
spatial scan statistic for the detection of clusters where the null hypothesis
is that the baseline process is an inhomogeneous Poisson process. We will
refer to this null model as the following:

Model I: (inhomogeneous Poisson process/log-linear model)

Yi,t|λi,t ∼ indep. Poisson(λi,t),
(1)

logλi,t = log

∫

Ai

λs,t ds= β + xi,tγ + logNi,t.

For fixed t, we are interested in testing whether β is a constant across all
the subregions. A cluster is defined to be a region C, consisting of one or
more of the Ai ∈ A, within which β is higher. For a given fixed C, testing
whether C is a cluster is just the generalized likelihood ratio test [e.g., Rice
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(1995)] with the test statistic given by

LRC =

(

YC

NC

)YC
(

YG − YC

NG −NC

)YG−YC

,(2)

where YG and NG are the total number of cases and population at risk,
YC =

∑

Ai⊂C Yi and NC =
∑

Ai⊂C Ni are the number of cases and population
at risk in region C. Kulldorff suggested computing LRC for all C ⊂A to find
LR∗ =maxC LRC over all possible subsets, and use it as the test statistic.
The distribution of this test statistic is computed using Monte Carlo sim-
ulation under Model I, conditional on the total number of cases observed.
Kulldorff, Tango and Park (2003) compared the spatial scan statistic with
several other cluster detection methods, and concluded that the spatial scan
statistic has an advantage for localized hotspot type clusters.

2.2. Spatial scan statistic with spatial correlation: theoretical results. The
spatial scan statistic in its original setup (Model I) assumes that when there
are no clusters, the numbers of disease cases in the individual subregions
have Poisson distributions with rates that are spatially independent. Both
the Poisson distribution and the spatial independence assumptions may be
violated in some practical problems. In the context of disease surveillance, it
is not unusual for the variability of the disease cases to be larger than those
predicted by the Poisson distribution (over-dispersion). Spatial correlation
is often present as well, due to the contagious nature of the disease, or to
some latent variables that are related to the disease but were not included in
the data collection or in the model. In what follows we present a null model
that includes spatial correlation, which we refer to as Model II:

Model II: (Spatial GLMM/GSLM)

Yi,t|λi,t ∼ indep. Poisson(λi,t),
(3)

logλi,t = β + xi,tγ + logNi,t +Zi,t,

where Zi,t is a Gaussian process with covariance given by Cov(Zi,t,Zi′,t′) =
Cθ(si − si′ , t− t′), si and si′ are the centers of subregions i and i′, and Cθ is
a positive definite function with parameter θ, which may be a vector.

Model II is a special case of the model-based geostatistics model intro-
duced in the seminal work of Diggle et al. (1998). It is also referred to in
the literature as the spatial generalized linear mixed model, or generalized
spatial linear model [Zhang (2002) and Christensen and Ribeiro Jr. (2002)].
Wikle (2002) used this model for a breeding bird survey dataset and ad-
dressed some of the computational issues on applying this model to large
datasets. The role of the Zi,t term in (3) is to capture any (residual) spatial
correlation in the data. The range of the correlation, smoothness of Z as
well as anisotropy, can be modeled with different choice of Cθ.
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As an aside, note the subtle differences between Model II and the follow-
ing log-Gaussian Cox process model [Møller, Syversveen and Waagepetersen
(1998)]:

Model III: (Cox process)

Yi,t|λi,t ∼ indep. Poisson(λi,t),

λi,t =

∫

Ai

λs,t ds, logλs,t = β + xi,tγ + logNi(s),t +Zs,t,

where Zs,t is a Gaussian process with covariance given by Cθ(s− s′, t− t′).
Here we have logλi,t = β+xi,tγ+logNi,t+Zi,t, where Zi,t = log

∫

Ai
exp{Zs,t}ds

does not have a Gaussian distribution. Model III may be conceptually more
appealing based on the principle of invariance under scaling [Gelman (1996)],
but Model II is easier to fit for the type of aggregated disease surveillance
data we intend to model, and will be the model we use for the rest of the
paper. We note that in this paper we assume that the Ai’s are pre-specified,
as they usually are by the data collection process. In the case when the exact
location of each case is known, it will be more desirable to model the point
process of cases directly, in which case Model III will be a more appropriate
model. The method we propose to modify the spatial scan statistic can be
applied using Model III, if so desired. The only differences in the method
would be in the way the parameters are estimated and in the simulation of
the reference distribution.

In the rest of this section we restrict our attention to pure spatial processes
and drop the subscript t for brevity. All the results are applicable with the
added time dimension. For simplicity of notation, we ignore covariates in the
theoretical derivation below. The generalization to include covariates xi,t is
trivial.

Let A=
⋃

i∈I Ai be a subset of A, I ⊂ {1,2, . . . ,m}, YA =
∑

i∈I Yi be the
observed counts in A, with Yi satisfying (3), λA =

∑

i∈I λi, and λ̄A =E[λA].

We define P
(1)
k and P

(2)
k by

P
(1)
k =Pr(YA = k|λ̄A),

P
(2)
k =Pr(YA = k) = E[Pr(YA = k|λA)],

where the expectation is taken over λA.

Proposition 1. There exists a constant K such that, for any k > K,
∑

∞

j=kP
(2)
j >

∑

∞

j=k P
(1)
j .

Proof. Let µ1(dx) be the measure that has mass (x!)−1 at x= 0,1, . . . ,
and µ2(dλA) be the probability measure of λA. Furthermore, let

f1(x) = exp{x log λ̄A − λ̄A},
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f2(x) =

∫

exp{x logλA − λA}µ2(dλA).

It is easy to check that

∫

xf1(x)µ1(dx) =

∫

xf2(x)µ1(dx) = λ̄A.

Theorem 1 in Shaked (1980) implies that f2 − f1 has two sign changes, and
the sign sequence is +,−,+. Proposition 1 follows as

∞
∑

j=k

(P
(2)
j − P

(1)
j ) =

∫

∞

k
[f2(x)− f1(x)]µ1(dx).

�

Remark. Proposition 1 shows that a mixture of Poisson distributions
has a heavier right tail than the Poisson distribution with the same mean.
It was used as an example in Shaked (1980). In the context of spatial scan
statistics, it implies that if Model II is the truth, and the significance level is
small enough, Model I gives a p value which is on average smaller, resulting
in more false positives.

Proposition 2. For Var(Zi) =
σ2

n , as n→∞,

∞
∑

j=k

P
(2)
j =

∞
∑

j=k

P
(1)
j + (P

(1)
k−2 −P

(1)
k−1)e

2β Vn

2n
+Op(n

−3/2),(4)

where Vn = nVar(
∑

NiZi) =O(1).

The proof of Proposition 2 is provided in the Appendix. The following
corollary follows directly from Proposition 2.

Corollary 1.
∑

∞

j=kP
(2)
j is asymptotically larger than

∑

∞

j=kP
(1)
j iff

k > λ+1.

Remark. Corollary 1 gives a specific condition on the critical value
(k > λ + 1) under which Model I gives a smaller p value even when the
variance of the random effects Zi is very small. It implies that the classical
spatial scan statistic test procedure would be more likely to reject H0 at
any reasonable significance level if Model II is correct, resulting in more
false positives. From Proposition 2, it is also clear that positive correlation
leads to more extreme p values for Model I and more false positives.
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2.3. Spatial scan statistic with spatial correlation: algorithm. If Model II
is the appropriate null hypothesis, the classical spatial scan statistic (which
assumes Model I) tends to give smaller p values, resulting in more false
alarms. A remedy for this is to obtain the distribution of the spatial scan
statistic by simulation under Model II. We propose the following algorithm
to appropriately account for the spatial correlation in the computation of
p values for the spatial scan statistic. It is only moderately more time con-
suming than the classical spatial scan statistic algorithm.

1. Use the regular spatial scan statistic to identify regions in space and time
where there are no clusters.

2. Estimate parameters in Model II using data that excludes clusters.
3. Simulate M realizations of the process under Model II using the estimated

parameters from step 2, and compute LR∗ for each realization to form a
distribution of LR∗ under Model II.

4. Compute LR∗ for the data and find clusters in the data using the distri-
bution of LR∗ from step 3.

5. Repeat steps 2–4 until the clusters in steps 2 and 4 are similar.

Parameter estimation for Model II is nontrivial, as the likelihood function
is not in closed form: it involves a high-dimensional integral over random ef-
fects Zi. We use the Bayes inference method for the generalized spatial linear
model implemented in the R package geoRglm [Christensen and Ribeiro Jr.
(2002)]. The Bayes method assumes a prior distribution on the parameters
(β, θ), and give samples from the posterior distribution of (β, θ) conditional
on the data using MCMC. More details on the choice of prior and correlation
models are given in the simulation studies and data examples.

To simulate data Yi from Model II, one needs to first simulate Zi, a
Gaussian process with covariance given by Cθ. Let Σ be the covariance
matrix of Z = (Z1, . . . ,Zm)′, and Σ = LL′ be its Cholesky decomposition.
Zi can be simulated by multiplying L and a vector of independent normal
random variables. To simplify the computation, we simulate Zi using the
covariance matrix computed from Cθ̂, where θ̂ is the mean of the posterior
distribution of θ.

We would like to note here similar ideas presented in Efron (2004, 2007). In
these two papers Efron considered simultaneous testing with a large number
of tests, in the context of using false discovery rate (FDR) in genetic studies.
Efron (2004) shows that the choice of different null hypotheses can yield
different test decisions, and argues for the use of what he calls the empirical
null to approximate the correct null. In Efron (2007) he examines the effect of
correlation of test statistics on simultaneous testing procedures, and shows
that the presence of correlation can affect the null and have substantial
impact on the results of simultaneous testing. He recommends accounting
for this effect, for example, with the use of the empirical null. An important
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assumption made in these two papers is that the number of interesting cases
is small: about 1–5%, but not more than 10%.

The method presented in this work is in the same spirit as Efron (2004,
2007). Searching for clusters involves multiple testing of overlapping regions,
so that these tests are correlated. The regular spatial scan statistic procedure
accounts for the correlation in the overlapping regions by using the Monte
Carlo simulation to approximate the distribution of the scan statistic. In
this work we show that when there is spatial correlation in the data itself,
the independent Poisson model used in the original spatial scan statistic
does not produce the appropriate null hypothesis. By modeling the spatial
correlation, and incorporating this in the Monte Carlo simulation, a more
appropriate null distribution is used in the testing, and reduces the number
of false positives. One difference from Efron (2004, 2007) is that instead of
using the data to obtain an empirical null, we are proposing a parametric
model to model the spatial correlation.

Remark 1. The above algorithm essentially uses a parametric boot-
strap approach. We do not have any theoretical results showing consistency
of the approach. However, we found empirically that this procedure does
help address the issue of excessive false alarms with the original spatial scan
statistics (see Sections 3 and 4).

Remark 2. As in Efron (2004, 2007), we require that the number of
interesting clusters be small, say, at most 10% of detected clusters. This is
usually the case in applications of disease surveillance. If many clusters are
expected to be found, sophisticated statistical methods are probably not
needed. Accordingly, we suggest that the significance level for step 1 of the
algorithm be set to 0.1.

Remark 3. When there is spatial correlation, instead of using the scan
statistic, LR∗ = maxC LRC , with LRC defined in (2), ideally LRC should
be re-defined to include the modeled spatial correlation. However, this is of-
ten computationally prohibitive, since to evaluate the likelihood one would
need to compute multiple integrals involving the nuisance parameters Zi.
Our proposed method is a simple, if ad hoc, procedure to improve the per-
formance of the spatial scan statistic in the presence of spatial correlation.

3. Simulation study. Our simulation study consists of two parts. First,
we investigate how the classical spatial scan statistic behaves when there is
underlying correlated error in the true model. Second, we study the effec-
tiveness of the modified procedure in reducing the number of false positives
found by the spatial scan statistic.



ACCOUNTING FOR SPATIAL CORRELATION IN THE SCAN STATISTIC 9

We base our simulations around the New Mexico brain cancer dataset con-
sidered in Kulldorff et al. (1998a). In particular, we use the counties in this
dataset as the regions for our simulation. We also use the 1991 population
numbers. To keep things simple, we do not include any covariates in this sim-
ulation. Specifically, we model the number of disease cases Y = (Y1, . . . , Ym)
using Model II, with Z= (Z1, . . . ,Zm)∼N(0,Σ). The quantity β in (3) is
related to the incidence rate of the disease.

We take Z to be a realization of a Gaussian random field with the Matérn
covariance function, that is,

Cov(Zi,Zj) =
σ2

2ν−1Γ(ν)

(

ν1/2dij
ρ

)ν

Kν

(

dij
ρ

)

,(5)

where dij is the distance between the centers of regions i and j, Γ is the
gamma function and Kν is a modified Bessel function [Abramowitz and Stegun
(1965)]. The parameter ν is related to the smoothness or differentiability of
the random field with larger ν corresponding to a smoother field, while the
parameter ρ is related to the range of dependence in the values of the Zi’s,
with larger ρ indicating stronger dependence. Finally, Var(Zi) = σ2.

For a set of values of ν, ρ and σ, we first generate a realization of Z

at the locations of the counties. Each Yi is then simulated from a Poisson
distribution with mean λi, with λi given by (3). Next, we use SatScan to
compute the scan statistic of the simulated values of Y to identify clusters
and the p value of the main cluster is recorded. A small p value would
indicate that the cluster identified by the scan statistic is significant. This
whole procedure is repeated 1,000 times, each time with new values of Y and
Z, yielding 1,000 p values corresponding to the main cluster found in each
of the 1,000 simulated datasets. We then compute the proportion of these
p values that are smaller than a given significance level α. If the datasets
were simulated from Model I, the model assumed for the classical spatial
scan statistic (Poisson, without the error Z), then on average α× 100% of
the p values will be less then α, that is, the type I error (false alarm rate)
is the same as the significance level.

We ran the entire simulation described above using a range of values of
ν, ρ and σ and considered significance level α equal to 0.01, 0.05 and 0.1 to
study the relationship between the false alarm rate and these parameters.
The results are plotted in Figure 1. Our results are not affected by changes
in the values of ν, so we only show results for ν = 1.

Figure 1 contains three plots. From left to right, these plots show the pro-
portion of p values that are less than 0.01, 0.05 and 0.1, respectively. In each
plot, the 10 lines from top to bottom correspond to σ = 0.1,0.09,0.08, . . . ,0.01,
respectively. The dots at ρ= 0 give the proportions under the model assumed
in the classical scan statistic, that is, with Z≡ 0.
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Fig. 1. Plots of the proportion of p values that are 0.01, 0.05 and 0.1 (left to right)
or less, obtained by applying the classical spatial scan statistic to data simulated under
Model II. Parameters for Model II used are the following: ρ from 0 to 400 (x-axis) and
σ = 0.01,0.02, . . . ,0.1 (bottom line to top line).

The behavior shown in Figure 1 can be understood by examining the
properties of Z assumed in each simulation run. When Z ≡ 0, we find that
the scan statistic behaves as it should: the proportion of p values less than
or equal to 0.01, say, is about 0.01.

When Z 6= 0, by Propositions 1 and 2, the scan statistic tends to find
more clusters in the data. Figure 1 shows that this is indeed the case: the
proportion of p values less than or equal to 0.01, say, can be as high as 80%,
indicating a severe problem with false alarms. This of course depends on the
variance of Z. When the variance is large, the values of Z vary a lot more,
causing the scan statistic to identify a lot more clusters in the data. As
the variance of Z is reduced, the proportion of false alarms is also reduced.
However, we find that even for σ = 0.01, the proportion of p values less than,
say, 0.01 (left plot of Figure 1) can be as high as 0.07.

When the dependence between the values of Zi is very strong, that is,
when ρ is very large, the values of all Zi become very similar due to the
strong dependence. This may produce an elevated level of risk of disease
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uniformly over all the counties, but with less variability, thus reducing the
number of false alarms found by the spatial scan statistic.

There is a peak in the proportion at some small value of ρ, different from
zero. For even smaller values of ρ, the proportion drops slightly, but even in
the case of independent Zi, we find that the proportion of p values that are
less than p is still larger than the value that we would expect if the model
assumed in the scan statistic is true.

Thus, the scan statistic is sensitive to model misspecification, specifically
of the type where there is some error in the model involving λ, producing
overdispersion or spatial correlation in Y relative to the Poisson model [see,
e.g., McCullagh and Nelder (1989)]. Our simulation studies indicate that
the behavior of the scan statistic Z depends a lot on the variability, as
well as the range of correlation of Z. We expect this type of error to occur
frequently in real settings, through spatial correlation in the data and various
sources of measurement errors. Some spatial correlation may be captured by
incorporating covariates in the model. However, there may still be residual
spatial correlation, and measurement errors in the covariates. Furthermore,
there may be instances where covariates are not recorded in the data.

By modeling the overdispersion and spatial correlation present in a dataset,
the modified algorithm given in Section 2.3 aims to reduce the number of
false positives found by the classical spatial scan statistic. In the context of
our simulation study, the effect will be to reduce the proportion of p values
that are less than the nominal value. The simulation experiments described
below demonstrate the effectiveness of our algorithm.

For each of the 100 previously simulated realizations corresponding to
each parameter set, we use Model II to model the spatial correlation. We
then use the estimated parameters to generate 999 new realizations. The
spatial scan statistic is computed for each of these new realizations. This set
of 999 values gives the reference distribution of the spatial scan statistic. The
p value of the cluster found in the original realization is given by the rank of
the spatial scan statistic relative to the values in the reference distribution.

Figure 2 (left column) shows histograms of draws from the posterior dis-
tribution of ρ and σ obtained from fitting Model II to a single simulated
realization with ρ= 50, σ = 0.14. Notice that there is quite a lot of uncer-
tainty in the estimation of ρ.

Figure 3 shows the results of the modified procedure. We find that the
proportion of p values less than, for example, 0.05, is substantially smaller
than the proportion obtained with the original spatial scan statistic, showing
that the modified procedure is effective in reducing the number of false
positives. The proportion is still larger than the nominal level. We believe
this is due to the high uncertainty in our estimates of ρ, as the number of
false positives found by the original spatial scan statistic depends strongly
on ρ (Figure 1).
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Fig. 2. Histograms showing the posterior distributions of ρ and σ obtained from fitting
Model II to one realization of the data with ρ= 50, σ = 0.14 (left column). The histograms
on the right are similar posterior distributions using a dataset with 32 additional randomly
placed locations and an incidence rate that is five times higher.

We constructed reference distributions using the true parameter values
and computed the modified p values using these reference distributions. The
results found here can be used as a guide for the performance of the modified
spatial scan statistic algorithm in situations where we can obtain good pa-
rameter estimates. Figure 4 suggests that, with good parameter estimates,
the proportion of small p values does become very close to the expected level.
The amount of variability in the curves in the figure provides an indication
of the amount of uncertainty in the distribution of the spatial scan statistic,
which is estimated by simulation.

The uncertainty in the estimation of ρ would be reduced if there were
more locations in the dataset and/or if the incidence rate were higher. As
an example, we added an additional 32 locations randomly and generated
a realization using ρ = 50 and σ = 0.14 with an incidence rate that is five
times higher. The posterior distributions of ρ and σ obtained from fitting
Model II are shown in Figure 2 (right column). Notice that the variability is
much reduced. For example, the standard deviation for ρ drops by 40%. For
a given dataset, the high uncertainty in estimating ρ may also be reduced by
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Fig. 3. Plots of the proportion of p values equal to 0.01, 0.05 or 0.1 (left to right) or
less, using the modified procedure, with the p values obtained by comparing the spatial
scan statistic to a reference distribution generated with parameters estimated from a fitted
generalized linear mixed model. The different line types refer to different values of σ like
in Figure 1.

Fig. 4. Plots of the proportion of p values equal to 0.01, 0.05 or 0.1 (left to right) or
less, using the modified procedure, with the p values obtained by comparing the spatial scan
statistic to a reference distribution generated with the true parameter values. The line types
represent different values of σ like in Figure 1.
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using more robust MCMC methods for fitting the spatial generalized linear
mixed model [Christensen, Roberts and Sköld (2006)]. We did not explore
this possibility in this paper. Our study shows that even in situations when
conditions for estimating the parameters are not ideal, the modified spatial
scan statistic procedure is nevertheless able to reduce the number of false
alarms.

The priors we use for the parameters in this section and in Section 4 are
the default in the geoRglm package: flat priors for β and σ and a uniform
discrete prior on (1,U) for ρ. When there is high uncertainty in the estima-
tion of ρ, the choice of the upper bound U may be important. In practice,
for a large enough observation region, an upper bound roughly equal to the
length of the region would usually be sufficient. The posterior draws of ρ
should also be examined, with a high proportion of values near the upper
bound providing an indication that the upper bound is not large enough.

4. Data examples.

4.1. New Mexico brain cancer data. Here, we consider the analysis of
a simple dataset to illustrate the performance of the modified spatial scan
statistic. Kulldorff et al. (1998a) applied the scan statistic to a New Mex-
ico brain cancer dataset that contains population and brain cancer inci-
dence data for counties in New Mexico from 1973 to 1991. There were a
total of 1175 cases. For each case, information is known about the county
of residence, year of diagnosis, age, race and sex. The raw data can be ob-
tained from the National Cancer Institute or from the SatScan software web-
site http://www.satscan.org. The coordinates recorded for the 32 coun-
ties range from 8 to 162 for both the East–West and North–South direc-
tions. This dataset is of interest partly because there was concern in the
Los Alamos community in 1991 about an apparent increase in brain tumor
deaths. Kulldorff et al. (1998a) found a nonsignificant cluster with a p value
of 0.07, adjusting for age, sex and race.

Here, we consider the brain cancer data as an illustrative example of how
our method can adjust for spatial correlation. Covariates can capture some
of the spatial correlation in the data, partially taking the place of Z in (3). If
covariates are not included, we found that the spatial scan statistic detects a
highly significant cluster with a p value of 0.009. This cluster consists of seven
counties: Bernallillo, San Miguel, Sandoval, Sante Fe, Socorro, Torrance and
Valencia.

To show the performance of the modified spatial scan statistic, we choose
to ignore the covariates in the procedure, so that there is spatial correlation
in the data that is unaccounted for. We first fit Model II to the yearly data
and examine the trend, if any, of the various parameter estimates. Plots of
the estimates (mean of the posterior distribution) and their 50% posterior

http://www.satscan.org
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Fig. 5. Plots of parameter estimates and their 50% posterior credible region of the gen-
eralized linear mixed model fit to the yearly New Mexico brain cancer data.

credible regions are given in Figure 5. Most of the estimates are very similar
from year to year, with overlapping 50% posterior credible regions. Note
that the estimator of ρ for the year 1987 is higher than the rest, though
the difference is not significant. This year is within the nonsignificant but
most likely space–time cluster of 1985 to 1989 found from the analysis of
Kulldorff et al. (1998a), and the excess incidence is in Los Alamos from 1986
through 1989.

Based on the results of Kulldorff et al. (1998a) and our analysis on the
yearly data, we split the data into two sets, one from 1973 to 1982, and the
other from 1983 to 1991, and consider the total occurrences in the counties
during these two time periods. Thus, we roughly treat 10 years as one time
unit. We use data from 1973–1982 as normal data for estimating the param-
eters of Model II, and data from 1983–1991 as test data. We fit Model II
to the 1973–1982 data, with the Matérn model (5) for Cθ, flat priors for β
and σ, and a uniform discrete prior on (1,70) for ρ. We take the posterior
means β =−0.834, σ = 0.176, and ρ= 20.94 as our estimates.

We used the above parameter estimates in the Monte Carlo procedure
to account for any spatial correlation in the data. (Recall that the origi-
nal procedure computed the p value by assuming that Z≡ 0 in Model II.)
Specifically, using the fitted model, we simulate 999 new incidence datasets
and compute the scan statistic for each of them. These spatial scan statis-
tic values are then compared with the value obtained from the real data to
obtain a p value. Using this method, we find that the p value for 1983–1991
data becomes 0.25. Thus, by using the modified spatial scan statistic, we
find that the cluster is actually not significant.

In this illustrative example, we showed how modifying the spatial scan
statistic by using Model II instead of Model I can help capture the spatial
correlation due to unmeasured covariates. Of course, in a real application,
any measured covariates should be included in the analysis. However, it is
common for important covariates to be unmeasured and the modified scan
statistic is a general procedure that can account for that.
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4.2. France chickenpox incidence data. The incidence rates of 15 dif-
ferent diseases (e.g., influenza symptoms, chickenpox and diarrhoea) are
recorded on a weekly basis for the 22 administrative regions of France.
These regions span roughly 800 km for both the East–West and North–
South directions. For some of the diseases, the data date back to as far
as 1985 and data for most of these diseases are still being collected. The
data collection is part of a comprehensive system set up to monitor the in-
cidence of these diseases and to facilitate the detection of outbreaks. The
data is collected from submissions by doctors participating in the network,
and can be accessed at http://www.b3e.jussieu.fr/sentiweb. More de-
tails about this surveillance network can be found in Boussard et al. (1996).
Deguen, Chau and Flahault (1998) indicated that some other covariates such
as age and gender are also recorded. However, this additional data do not
appear to be available from the above website.

Sampling bias could be an issue—since submission of data is voluntary,
there might be undercoverage in areas where fewer doctors are in the net-
work. In any region, the number of doctors and the actual doctors par-
ticipating may change over time. No information about this appears to be
recorded, other than a map showing participating doctors. However, the sys-
tem computes an incidence rate from the data it receives. We assume that
this calculation already takes into account the undercoverage problem and
will ignore these issues in our analysis.

In this section we will perform our analysis on both the yearly and 4-
weekly totals of the incidence of chickenpox (variella) for the period between
1996 to 2005. Chickenpox is contagious and we expect some degree of spatial
correlation between the incidence rates of neighboring regions. The position
of the administrative center of each region is used as the position for all cases
occurring in that region. Deguen, Chau and Flahault (1998) looked at the
epidemiology of chickenpox in France, finding summary statistics for the na-
tional time series of chickenpox incidence data. Deguen, Thomas and Chau
(2004) built a SEIR model to estimate the contact rate of chickenpox. For
influenza cases, Costagliola et al. (1991) and Viboud et al. (2004) built re-
gression models based on nonepidemic data with the aim of using these
models to identify future incidences of epidemics. In each of these cases, the
spatial information of the data is not considered. We focus our analysis on
the use of scan statistics to identify hotspots in both space and time. In
particular, for chickenpox, we find that higher incidence rates may occur
at different times for different locations. To our knowledge, this is the first
attempt to identify both spatial and temporal outbreaks of chickenpox. In
a retrospective study, these identified spatial–temporal outbreaks combined
with other covariates can be used to study the socio-demographic factors
that may contribute to the outbreaks and evaluate the effectiveness of cer-
tain intervention procedures such as mass immunization.

http://www.b3e.jussieu.fr/sentiweb
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We first compute the regular scan statistic for the data over this period.
In particular, the SatScan program can perform a prospective analysis using
data from prior time periods to detect clusters in the current period. Thus,
we use data in time period 1 as a baseline to detect clusters in time period
2, data in time periods 1–2 to detect clusters in time period 3, etc.

For yearly total incidence data, we find that with the regular spatial
scan statistic, clusters with p values of 0.001 were found for all the years
from 1997 to 2005, an indication that the independent Poisson model is not
appropriate. For the 4-weekly data from 1997 to 2005, the regular spatial
scan statistic identified 113 primary clusters out of 117 4-week periods, 109
of which have p values 0.05 or less and 108 have p values 0.001 or less.
For this data, the regular spatial scan statistic identified such an excessive
number of outbreaks that it is not practically useful.

We next fit the spatial generalized linear mixed Model II to the chickenpox
incidence rate for an initial period and then use the fitted model to do a
Monte Carlo adjustment to the scan statistic as described in Section 3 for
subsequent time periods. With the 1996 data, we obtained posterior mean
estimates of 6.6, 572 and 0.4 for β, ρ and σ for Model II using the Matérn
model for the covariance function with ν = 0.5, and with flat priors for β
and σ and a uniform discrete prior on (1,700) for ρ. Plots of the posterior
draws of β, ρ and σ are shown in Figure 6. Note that in the posterior sample
of σ, more than 95% of the draws are greater than 0.10, suggesting that
Model I, with Z ≡ 0, is not appropriate. Formal testing may be done, for
example, with Bayes factors [Kass and Raftery (1995)].

We then computed the spatial scan statistic for each year from 1997 to
2005 and compared each of these statistics with the spatial scan statistics
computed from simulated realizations using the estimates of β, ρ and σ.
With this procedure, the modified p values look more reasonable, and in
particular, only 1999 and 2004 have p values less than 0.05. Figure 7 shows

Fig. 6. Plots of the posterior draws of β, ρ and σ, obtained from fitting Model II to the
1996 chickenpox data.
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Fig. 7. Maps of incidence rates of chickenpox for 1997 to 2005 in the 22 administrative
regions of France. The primary and first secondary clusters found by the spatial scan
statistic are indicated (solid and dashed lines, resp.).

maps of the incidence counts per 10 million. The primary (solid line) and first
secondary (dashed line) clusters identified by the spatial scan statistic are
also indicated. Note that although relatively high values occur somewhere in
each year, the most significant ones are clearly those corresponding to 1999
and 2004.

We repeat the same procedure for the 4-week data, fitting a spatial GLM
to each 4-week period of 1996, using the same priors as above for β,σ and
ρ. We then used the overall mean of the estimates to simulate realizations
according to Model II. These were found to be 3.8, 390 and 1.05, respectively
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Fig. 8. Maps of incidence rates of chickenpox in the 22 administrative regions of France
for the 3 most significant 4-week periods found in the 1997–2005 data, periods 33, 94 and
115. Also shown are maps for the periods just before and after these significant periods.
The primary and first secondary clusters found by the spatial scan statistic are indicated
(solid and dashed lines, resp.).

for β, ρ and σ. The estimate of σ is larger here, reflecting the increased
variability in this data compared to the yearly data. From Figure 1, we
expect the modified p values to be much larger. Indeed, we find that this is
the case. Out of 117 4-weekly periods, only 6 have p values 0.1 or less. Of
these, only 2 have p values 0.05 or less.

Figure 8 shows incidence maps (counts per 1 million) for the three most
significant 4-week periods, periods 33, 94 and 115 with p values 0.06, 0.04



20 J. M. LOH AND Z. ZHU

Fig. 9. Time series of chickenpox cases (counts per million; plus signs) at the two loca-
tions that correspond to the significant clusters found at periods 33 and 94 by the modified
spatial scan statistic procedure. Also shown are the average counts over all the regions.

and 0.04, respectively. Also shown are the 4-week periods just before and
after the significant periods. The two main clusters are identified as before.
Comparison among the three consecutive periods shows that the significant
clusters found by our modified procedure appear to be hotspots in both
space and time.

The maps in Figure 8 suggest occurrence of an outbreak that rises to a
peak and then dies off. Figure 9 shows time series of chickenpox cases (counts
per million, indicated by the plus signs) at the two locations that yielded the
significant clusters at periods 33 and 94. The circles in the plots show the
average counts over all the regions. Our method appears to identify when
the peak occurs, but we did not extensively test this.

The above analysis does not take into account multiple comparisons in
time. Thus, there may be significant clusters detected even if there are no
real clusters due to testing in multiple time periods. A way to deal with this
is to apply FDR techniques [Benjamini and Hochberg (1995)]. Here, we use
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Fig. 10. Histogram of the transformed p values, together with the fitted density (solid
line) and density of the empirical null (dashed line).

the local FDR version employed in Efron (2004), using the empirical null to
compute the FDR.

Specifically, we take the 129 p values obtained after applying the modified
spatial scan statistic and transform them to z values, that is,

zi =Φ−1(pi), i= 1, . . . ,129,

where Φ is the standard normal cumulative distribution function. A his-
togram of these z values is shown in Figure 10. Negative values of z indicate
possible clusters.

The empirical density f(·) is obtained by fitting a natural cubic spline
to the z values. Assuming that the empirical null f0(·) is normal, we find
that its mean and standard deviation are, respectively, δ0 =−0.07 and σ0 =
0.55. The reader is asked to refer to Efron (2004) for details on the fitting
procedure. Figure 10 also shows plots of f and f0 (solid and dashed lines,
resp.). The value of the FDR is then taken to be

fdr (z) = f0(z)/f(z).

This is an upper bound of the probability P (Uninteresting|z) = p0f0(z)/f(z),
where p0 is the proportion of uninteresting cases. Here, we assume that p0
is large, say, p0 > 0.9.
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The histogram of Figure 10 suggests the possibility that the null is a
mixture of two distributions. This may be due to the seasonality present in
the data. However, there appears to be spatial variation in seasonality, with
peaks occurring at different times at different locations, making it difficult
to estimate the two components of the mixture distribution. Assuming that
the null distribution is normal, we find that the FDR for periods 33, 94
and 115 are respectively 0.26, 0.12 and 0.17. Using 0.1 as the cut-off for the
FDR, none of the three detected clusters are significant, although period
94 is close to the cut-off. We note that if the null distribution is indeed a
mixture of two distributions, the true FDR would be smaller, likely making
some of the detected clusters significant.

As a validation analysis, we fit time series models to the data at each in-
dividual location, and then apply outlier detection methods [Tsay (1986)] to
identify hotspots in time. Specifically, we fit ARMA models to the logarithm
of the data. A value of 0.5 was added to zeros in the data before taking logs.
For most of the locations, seasonality was detected at lag 13, corresponding
to yearly seasonal effects. A total of 12 hotspots at individual locations were
found, at time periods 12, 23, 41, 51, 75, 77, 89, 92, 98, 99, 113 and 115.

Of these 12 hotspots, the last one, at time period 115, corresponds to the
hotspot identified by the modified scan statistic. Since the outlier detection
method does not include any spatial multiple comparison adjustment, it
finds more hotspots. Even so, it did not find the hotspots at time periods
33 and 94 in Figure 8 because the method does not incorporate any spatial
information.

We note that three of the 12 hotspots agreed exactly with those found
by the regular spatial scan statistic. In four other cases, the regular spatial
scan statistic found clusters containing multiple locations, which the time
series method obviously cannot detect. Of these, two of the clusters found
by the regular spatial scan statistic contained the location identified by
the outlier detection method. Of the remaining 5 temporal hotspots, there
were higher rates at other locations that the spatial scan statistic identified
instead. Thus, including spatial information provides additional flexibility
in the detection of hotspots. However, the regular spatial scan statistic,
which does not take into account spatial correlation, finds a hotspot at
almost every time period, too many to be useful. The modified scan statistic,
by accounting for spatial correlation, substantially reduces the number of
identified hotspots. In addition, by applying FDR techniques, we can also
account for multiple comparisons in time. The modified spatial scan statistic
and the time series outlier detection method can be used as complementary
methods to study the spatial and temporal aspects of a dataset.

Note that in our analysis we used actual physical distances between ad-
ministrative centers. Two physically distant regions might be closely cor-
related if they have extensive transportation services. We did not consider
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this in our analysis since it is not clear how distances should be re-defined
in this case.

Finally, the definition of hotspots is dependent on the model assump-
tion of the process without hotspots. Information about the region sizes,
population densities and population distribution in each region, as well as
other covariates, might be useful in building a more structured model. More
hotspots may be identified if a more structured model that incorporates
these other factors is fit to the data. This information, however, was not
available to us.

5. Conclusion. The spatial scan statistic introduced by Kulldorff (1997)
can be used to detect hotspots in the incidence of disease and has been
widely used in epidemiological studies. The null model of the spatial scan
statistic is Poisson counts at each location, with spatially independent rates.
The Poisson assumption makes strong statements about the variability of the
data which may not hold in practical applications. Overdispersion can occur
through unrecorded covariates that are related to the disease or through er-
rors in covariate measurement. Furthermore, there is often reason to believe
that there is spatial correlation between subregions beyond that measured
by covariates.

We showed in our simulation study that the spatial scan statistic can
report a high proportion of small p values when overdispersion or spatial
correlation exists in the data. This results in many false alarms in disease
detection. We showed how one can easily account for this by means of a
simple procedure, specifically, by obtaining the distribution of the spatial
scan statistic from simulating a generalized spatial linear model (Model II)
instead of the independent Poisson model (Model I). This new procedure
is only slightly more computationally intensive than the original procedure,
but can greatly reduce the number of false alarms. Kulldorff (1997) also
considered the binomial model. In this paper we focus on the Poisson model,
but we expect the findings to be similar for the binomial model.

There may be slight loss of power in this modified procedure—we will
investigate this in a future work. However, from our data analyses in Sec-
tion 4, we find that the most significant clusters are still detected with our
procedure. Also, with fewer clusters identified, it will be easier to further
investigate the identified clusters. With the classical spatial scan statistic, a
lot of resources could be spent weeding out the false alarms.

APPENDIX

Proof of Proposition 2. Letting Ui =
√
nZi ∼ N(0, σ2), it follows

from the Taylor expansion that
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