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INTRODUCTION
Insects and other flapping-wing animals are able to perform
elaborate flight manoeuvres and rapidly stabilize their body posture
following perturbations by controlling their wing kinematics. These
flight manoeuvres and their associated wing kinematics have
recently been the subject of several studies that used high-speed
stereo videography to record free-flying animals (Fry et al., 2003;
Hedrick and Biewener, 2007; Hedrick et al., 2009; Bergou et al.,
2010; Hedrick and Robinson, 2010). These observed flight
behaviours are a result of ‘closed-loop’ flight dynamics, i.e. the
combination of the passive ‘open-loop’ dynamics, sensory systems
and feedback control responses.

The open-loop or passive flight dynamics of hovering, which
describe the body motions produced in response to small
disturbances in the absence of feedback control, were recently
studied by several groups (Sun and Xiong, 2005; Deng et al., 2006;
Gao et al., 2009; Faruque and Sean Humbert, 2010; Cheng and Deng,
2011). These authors measured the aerodynamic forces and torques
from dynamically scaled robotic wing experiments (e.g. Dickinson
et al., 1999; Cheng et al., 2009; Dickson et al., 2010), or calculated
them using computational fluid dynamics (e.g. Wu and Sun, 2004;
Ramamurti and Sandberg, 2007; Gao et al., 2009). The forces and
torques were then used to predict the flight dynamic response to
small perturbations, revealing that the passive open-loop flapping
flight dynamics of animals in hover are unstable (e.g. Sun and Xiong,

2005; Cheng and Deng, 2011) or have weak stability (Gao et al.,
2009). Thus, active control of wing kinematics based on sensory
feedback is critical not only for manoeuvres but also for flight
stability.

Insects are equipped with various types of sensors for flight
control to enable closed-loop control, which relies on the fast
synthesis of these different sensory inputs and encompasses both
low-level sensory-motor reflexes and central nervous system
processing (Dudley, 2000; Dickinson, 2005; Bender and Dickinson,
2006). How these various types of sensory information are combined
and used to generate flight control inputs is an active area of research
and much remains unknown (Taylor et al., 2007).

Although the free flight behaviour of animals emerges from their
open-loop dynamics, sensory systems and sensory-motor responses,
these systems and responses are often studied individually despite
their interconnections. Simultaneous examination of several of these
research areas may now lead to rapid progress in understanding how
flying animals control and stabilize their movements. The goal of
this study was to combine recordings of the closed-loop free-flight
behaviour of hawkmoths (Manduca sexta) with an analysis of their
open-loop dynamics to reveal how these animals produce and control
flight manoeuvres.

Specifically, the manoeuvres studied here were triggered by
providing a sudden looming stimulus to a hovering moth, causing
it to pitch up, fly backwards a short distance, and then pitch back
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SUMMARY
Insects produce a variety of exquisitely controlled manoeuvres during natural flight behaviour. Here we show how hawkmoths
produce and control one such manoeuvre, an avoidance response consisting of rapid pitching up, rearward flight, pitching down
(often past the original pitch angle), and then pitching up slowly to equilibrium. We triggered these manoeuvres via a sudden
visual stimulus in front of free-flying hawkmoths (Manduca sexta) while recording the animalsʼ body and wing movements via
high-speed stereo videography. We then recreated the wing motions in a dynamically scaled model to: (1) associate wing
kinematic changes with pitch torque production and (2) extract the open-loop dynamics of an uncontrolled moth. Next, we
characterized the closed-loop manoeuvring dynamics from the observed flight behaviour assuming that hawkmoths use feedback
control based on translational velocity, pitch angle and angular velocity, and then compared these with the open-loop dynamics
to identify the control strategy used by the moth. Our analysis revealed that hawkmoths produce active pitch torque via changes
in mean wing spanwise rotation angle. Additionally, body translations produce passive translational damping and pitch torque,
both of which are linearly dependent on the translational velocity. Body rotations produce similar passive forces and torques, but
of substantially smaller magnitudes. Our comparison of closed-loop and open-loop dynamics showed that hawkmoths rely largely
on passive damping to reduce the body translation but use feedback control based on pitch angle and angular velocity to control
their orientation. The resulting feedback control system remains stable with sensory delays of more than two wingbeats.
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down towards its initial orientation (Fig.1). These actions were
recorded via high-speed videography and used to: (1) identify the
wing kinematics used to perform the manoeuvre and (2) measure
the closed-loop dynamics of the animal through the manoeuvre. We
then replicated the flapping kinematics of the manoeuvring moth
in a dynamically scaled mechanical flapper to: (3) measure forces
and torques and (4) characterize the open-loop dynamics of the moth.
Finally, we compared the open- and closed-loop dynamics to reveal
the moths’ control strategy and likely sensory inputs. Hawkmoths
are known to use their antennae as mechanosensor-based biological
gyroscopes, providing low latency sensing of angular velocity; moths
without antennae are reported to fly poorly (Sane et al., 2007).
Sensing of angular orientation is likely visual, and thus subject to
latencies of one to three wingbeats (Sprayberry, 2009).

Given these earlier studies of the open-loop dynamics of flying
insects and the sensory characteristics of moths, we developed
the following hypotheses to be examined: (1) the open-loop
hovering flight of hawkmoths is unstable, (2) the closed-loop
dynamic responses with a controller based on sensing of pitch
angle and velocity will closely match the hawkmoth kinematics,
(3) the closed-loop dynamics will be stable to small perturbations
and (4) the closed-loop dynamics will be stable given sensory
delays of less than three wingbeats in pitch and <0.5 wingbeats
in pitch velocity.

MATERIALS AND METHODS
Experiment design and videography

We recorded flight manoeuvres from four male hawkmoths
[Manduca sexta (Linnaeus 1763)] from the domestic colony
maintained at the University of North Carolina at Chapel Hill;
morphological characteristics and basic flapping kinematics for the
animals are given in Table1. The moths were maintained on a

22h:2h light:dark cycle to minimize accumulation of wing damage
during caged activity. Beginning on the third day post eclosure, the
moths were trained to feed from an artificial flower containing a
4:1 water:honey solution. We recorded manoeuvres on the third to
fifth day post eclosure.

Manoeuvres were elicited by waiting for the moth to approach
the artificial flower, and then providing a visual looming stimulus
coming from just above the artificial flower towards the moth,
moving in the horizontal plane, applied just before the moth began
to feed. The stimulus was provided by the researcher’s hand, thrust
from a distance of ~30cm to a distance of ~5cm from the moth in
~0.2s. Over time, the moths became accustomed to the stimulus
and ceased responding to it, allowing only a limited number of
manoeuvring trials per moth. Following recording, we selected a
single trial from each individual for further analysis. These were
selected based on the rapidity of the manoeuvre and the degree to
which it was confined to a single plane and lacked a yaw rotation
component.

The manoeuvres were performed in a 0.7�0.7�0.7m glass-
walled flight chamber dimly lit in the visible spectrum and brightly
illuminated in the near-infrared (760nm), below the moth’s visual
threshold, by eight infrared LEDs (Roithner LaserTechnik GmBH,
Vienna, Austria). The manoeuvres were recorded at 1000framess–1

using three high-speed cameras (two Phantom 7.1 and one Phantom
5.1, Vision Research, Wayne, NJ, USA). These cameras were
calibrated using a direct linear transformation for three-dimensional
kinematic reconstruction (Hedrick, 2008).

Kinematics extraction and parameterization
We extracted the moth’s flight kinematics by tracking eight points
on the body and wings (Fig.2A) for all manoeuvring sequences using
DLTdv5 (Hedrick, 2008). We analyzed these kinematics by first
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Fig.1. (A)An example hawkmoth pitch and reversing manoeuvre drawn from video and (B) the associated pitch angle time series. In Phase 1, the moth is
hovering and maintaining position and orientation. During Phase 2, the moth rapidly pitches up and moves backward. In Phase 3, the moth pitches
downwards, overshooting its original orientation in Phase 1, which is then recovered in Phase 4.

Table 1. Morphological and hovering kinematic characteristics of the hawkmoths studied here

Moth M (g) R (mm) c (mm) Iyy (gmm2) n (Hz)  (deg) � (deg) r2(S) l1/R

1 1.41 49.7 20.0 287.0 28 98 116 0.50 0.26
2 1.51 53.1 20.1 308.6 29 81 95 0.50 0.27
3 1.29 51.6 19.8 222.4 31 77 98 0.52 0.26
4 1.47 50.8 17.9 248.6 27 103 122 0.50 0.28
Mean ± s.d. 1.42±0.08 51.3±1.2 19.5±0.9 266.7±33.4 29±1.5 90±11 108±11.5 0.51±0.01 0.27±0.01

 and � are stroke amplitudes calculated in the horizontal plane and the body x–y plane, respectively; l1 is the distance between the wing base and centre of
mass. See List of symbols for definitions of other variables.
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placing the body coordinate frame at the centre of mass (COM),
then defining the wing base and body axes as follows. The body
frame places the xb axis parallel to the vector connecting the head
to the tip of the abdomen and the yb axis parallel to the vector
connecting the left to right wing bases (Fig.2). The zb axis is then
the cross product of xb and yb. Body roll, pitch and yaw angles were
calculated based on the rotation matrix from the global frame to the
body frame. The angular velocities about each principal axis were
calculated based on the derivative of the matrix (Murray et al., 1994).
Body kinematics were then low-pass filtered with a cut-off frequency
of 10Hz. Wing kinematics were quantified by representing the wing
as a two-dimensional plate with position and orientation determined
by three points located at the base, leading and trailing edges of the
forewings (Fig.2A). Wing kinematics are specified by stroke
position , stroke deviation  and wing rotation  (Fig.2B), Euler
angles corresponding to the rotation from the yb–zb plane to the wing
plane. The recorded Euler angles were parameterized using a third-
order Fourier series prior to further analysis:

where t is dimensionless time (from 0 to 1 during a single wing
stroke), and 0, si, si, etc. are coefficients for the harmonics, which
were selected to yield the best least-squares fits to the measured
wing angles (Table2).

As is shown below, angular velocity during manoeuvres was
strongly related to changes in wing rotation. These were important
to both initiation and stabilization of the manoeuvre; variation in
wing rotation was parameterized as follows:

φ φ φ π φ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (1),

θ θ θ π θ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (2),

ψ ψ ψ π ψ π(ˆ) sin( ˆ) cos( ˆ)t it iti si ci= + +=∑0 1
3 2 2 (3),

where *(t) is the wing rotation angle with variation, H(t) is the
Heaviside function, add1 corresponds to a variation of  during
(both ventral and dorsal) stroke reversals, add2 corresponds to a
variation during upstrokes, and add is a measure of the magnitude
of variation. A positive value for add generally corresponds to an
increase of rotation angle during upstroke and a decrease during
downstroke; a negative value produces the opposite effect. The
functions in Eqns 4–6 were selected to best replicate the observed
biological changes of wing rotation angle; typical values of add

ranged from –12 to 8deg during the recorded manoeuvres.
We also used the high-speed video images to quantify the location

of the COM and pitch moment of inertia (Iyy) of the moths. We
used the three calibrated camera views to construct a set of uniform
size voxels encompassing the head, abdomen and thorax of the moth.
We then assumed a uniform voxel density based on the total voxel
volume and the moth’s mass, and used mean voxel location to
calculate the COM and the voxel distribution to calculate Iyy about
that point.

Dynamically scaled robotic wing experiments
Dynamically scaled robotic wing experiments were used to estimate
the force and torque associated with the wing kinematics during
hovering and pitching manoeuvres (Fig.3). The robotic flapper
design, motion control and data acquisition system are documented
in detail in Zhao et al. (Zhao et al., 2009) and Cheng et al. (Cheng
et al., 2009). The instantaneous force and torque acting on the wing

ψψ ψ ψ*(ˆ) (ˆ) (ˆ) (ˆ)t t t t= + +add add (4)1 2 ,

ψ ψ ψadd add add (5)1 4(ˆ) cos( ˆ) +t t= ,π

ψ ψ π ψadd add add2 4

3 8

(ˆ) sin (ˆ – ˆ)

[ (ˆ – /

t t t

H t

= ( ) +⎡⎣ ⎤⎦Δ

–– ˆ) (ˆ – / – ˆ)]Δ Δt H t t7 8
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Fig.2. Hawkmoth body and wing coordinate systems. (A)Marked points (1–8) and body coordinate frame (xb, yb, zb). Axes xb and yb are determined by
connecting points 1 and 2 and points 6 and 3, respectively. The body frame has its origin at the centre of mass (COM; red dot). Wing base (blue dot) is at
the centre of points 3 and 6. The distance between the COM and the wing base is l1. The wing planes are determined by points 3, 4 and 5 (right wing) and
points 6, 7 and 8 (left wing). (B)Wing kinematic parameters: wing stroke position is defined as the angular position of the wing in the xb–yb plane of the body
frame; wing deviation is defined as the angle between the wing base-to-tip line and the x–y plane; wing rotation is defined as the angle rotated about the
wing base-to-tip axis.

Table 2. Fourier coefficients for the fitted wing kinematics at hover

 0 s1 c1 s2 c2 s3 c3

11.0 3.0 38.0 –3.4 0.7 0.9 3.6
 0 s1 c1 s2 c2 s3 c3

15.9 12.7 34.3 3.9 3.0 –0.2 0.7
 0 s1 c1 s2 c2 s3 c3

–35.4 –55.2 29.6 2.1 8.8 0.7 9.2

Dimensions are in deg.
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were measured using a six-component force-torque sensor (ATI
NANO-17, Apex, NC, USA) attached to the wing holder. The model
wing used is similar to that described in Zhao and Deng (Zhao and
Deng, 2009). The forewing and hindwing were both made from
polymer materials and were designed to have a shape and aeroelastic
flexural response similar to that of the hawkmoth wing. The
forewing was composed of four segments of different thicknesses
of material (1.52, 0.76, 0.51 and 0.38mm) to achieve exponentially
decaying flexural stiffness. The flexural stiffness (EI) for each
section can be approximated as:

EI  Ectw3 / 12, (7)

where E is Young’s modulus, tw is wing thickness and c is local
wing chord length. The E of the polymer (PETG, polyethylene
terephthalate) used to construct the wing is close to 3GPa. Thus,
the EI from wing base to wing tip section, calculated at the section
midpoint, is (70.2, 12.6, 4.0, 1.5)�10–3Nm2. This distribution of
EI decays according to:

where r1 and r2 are non-dimensional wingspan locations. Therefore,
the ratio of EI at the root to EI at the tip was 10–3, which is close
to that previously measured from male M. sexta (Combes and Daniel,
2003). The hindwing was attached to the forewing and had a
thickness of 0.13mm. Note that although we used the same
exponential decay of EI, it does not guarantee the same aeroelastic
flexural response. Conservation of additional dimensionless numbers
(e.g. the density ratio between the air and the wing) (Ishihara et al.,
2009) and wing inertia properties (i.e. wing deformation due to wing
inertia force) are required to replicate the fluid–structure interaction,
which is impossible to achieve in dynamically scaled robotic-wing
experiments while also matching Reynolds number (Re).
Nevertheless, the flexible wing used here underwent deformation
comparable to that observed in the real flight during most of the
stroke cycles expect during stroke reversals (especially ventral stroke
reversals, where substantial deformation occurred in moth flight).
Because the aerodynamic forces and torques are generally small
during stroke reversals (see ‘Results’), we considered the flexibility
to have negligible effect on the average forces and torques, and
therefore a negligible effect on the analyses in the present study.
Finally, the net upward force generated by the mechanical model
(14mN, scaled to the moth) was almost equal to the average body
weight of the animals used in the study.

The wing and the gearbox were immersed in a tank
(61�61�305cm width�height�length) filled with mineral oil

EI r
EI r

r r( )
( )

– ( – )1

2

310 1 2=  , (8)

(kinematic viscosity�3.4cSt at 20°C, density�850kgm3) and they
were able to move along the tank on a linear stage (Fig.3),
controlled by a stepper motor system (Applied Motion Products,
Watsonville, CA, USA). Re in this study was calculated using:

where AR is aspect ratio, n and  are wingbeat frequency and
amplitude, respectively, R is wing length and  is the kinematic
viscosity of the fluid. The flapping frequency (0.3Hz) and wing
length (24cm) in the dynamically scaled model were selected to
yield a Re close to that calculated for the moths used in the study,
approximately 5500. The force (Frobot) and torque (robot) measured
using the robotic wing were then scaled back to those of an actual
hawkmoth (Fmoth, moth) using:

where  is fluid/air density, S is wing area and r2(S) is the non-
dimensional radius of the second moment of wing area.

In the first set of dynamically scaled wing experiments, we
investigated the aerodynamic effect of changing wing rotation angle
on force and torque production. Specifically, we re-played the
hovering wing kinematics (Eqns 1–3, Table2) with modified wing
rotation angle (Eqns 4–6, with stroke position and deviation angles
unchanged) and recorded the results. Wing rotation deviations add

were –12, –8, –4, 0, 4, 8 and 12deg, which includes the range of
those observed from the flight data.

After characterizing the effects of wing rotation on torque
production, we produced an open-loop flight dynamics model
appropriate for the measured manoeuvres. As described above, these
were characterized by a fast body rotation around the pitch axis
with simultaneous rapid backward body translations (Fig.4). As
body movement substantially changes the aerodynamic force and
torque produced by flapping wings (e.g. Zhang and Sun, 2009;
Cheng and Deng, 2011), we incorporated the effects of these two
specific types of body motion in the open-loop model.

In a second set of robotic wing experiments, we measured open-
loop aerodynamic derivatives relating to body translation by re-
playing the hovering wing kinematics in the robotic flapper while
it moved forwards or backwards along the linear stage. Because the
moths moved backwards with varying pitch angles, we performed
the experiment using pitch angles set at 15, 30, 45 and 60deg (Fig.3).

Re
( )

= 4 2ΦR n
ARυ

 , (9)

F F
S r S

moth robot
air moth moth moth mot= ⋅ ⋅ ⋅ ⋅ρ 2 2

2
2ˆ ( ) hh

oil robot robot robot robot
 ,

ρ ⋅ ⋅ ⋅ ⋅n R S r S2 2
2
2ˆ ( )

(10)
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 flapper

Side view

Tank

Fig.3. Schematics of dynamically scaled robotic-wing
experiments simulating hawkmoth body translations
and rotations. The wing is attached to the robotic
flapper, which can be driven by a linear stage
controlled by a stepper motor. Wing kinematics are
played to realize: (1) body translations at different
body pitch angles (from 15 to 60deg) and different
translational velocities, and (2) pitch rotations at
different angular velocities. Also shown is a moth
body at 30deg pitch angle (not present in the
experiment), wing base (blue dot) and COM (red dot).
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The translational velocity is described by a dimensionless parameter,
the advance ratio:

where vb is body translational velocity and vw is mean wing
flapping velocity (calculated as 2nR). The advance ratios in this
experiment are –0.3, –0.2, –0.1, 0, 0.1, 0.2 and 0.3. The largest
magnitude advance ratio observed in the moths was approximately
–0.15.

In the third set of dynamically scaled flapper experiments, we
measured the open-loop effects of pitch rotation by re-playing the
hovering wing kinematics while rotating the stroke plane about the
wing base (Fig.3). The angular velocities used were –30, –20, –10,
0, 10, 20 and 30degstroke–1 (–15 to 30degstroke–1 were observed
in the manoeuvres).

In all dynamically scaled flapper experiments, only steady-state
data after five wing strokes were used in the analyses to exclude
the transient effects of a developing wake. Wing inertial and
gravitational force and torque were measured by playing the wing
kinematics in air, and subtracting the results from the force and
torque measured in the oil, thereby extracting the fluid dynamic
components.

In this paper, we non-dimensionalize some of our results for
comparison with previous studies. The non-dimensionalization
factors are: length by mean chord length (c), time by a stroke period
(1/n), translational velocity by wing velocity at the radius of the
second moment of wing area (2nRr2), angular velocity by flapping
frequency (n), and force and torque by U2Rc and U2Rc2,
respectively. The dimensionless quantities are denoted by a
superscript ‘+’.

J = v
v

b

w
 , (12)

Flight stabilization and control model
Here we develop a dynamic model with feedback control from the
observed body motions. All the pitch manoeuvres investigated in
the present study show similar body motions in the four stages of
sequences (Figs1, 4, 5), which suggests that these dynamic responses
resulted from similar flight control strategies among the four
individuals. We will focus in particular on the stabilization phases
of the manoeuvre (Phases 3 and 4), assuming that the controller is
acting to bring the disturbed body posture back to the hovering
orientation. Control of the initial phase of the manoeuvre, which
depends on the visual looming startle response, was not modelled
in this study.

We initially developed the model assuming that a moth has
the following sensory inputs acquired at negligible time delay
with respect to the stroke cycle: body forward and backward
velocity, pitch angle and pitch velocity. We later investigated the
effect of different sensory delays on the form and stability of the
controller.

The stabilization of the pitch manoeuvre was hypothesized to
result from proportional-plus-derivative (PD) feedback control,
which has also been used to explain locomotion activities
including cockroach walking and rapid turning in the fruit fly
(Cowan et al., 2006; Ristroph et al., 2010). Specifically, based
on the sensory system described above, we proposed a
proportional feedback of pitch angle and derivative feedbacks of
fore/aft and pitch velocities. This assumption implies that
achieving a certain pitch angle with zero velocity (i.e. hovering)
is the desired output in the stabilization phase, regardless of the
body location in space. However, during the experiments, the
moth was attracted to an artificial flower and therefore was
controlling its body location, so the above assumption is only
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Fig.4. Time series of hawkmoth body and
wing kinematics during a pitch manoeuvre.
(A)Body positions and path velocities in
fore/aft (black), lateral (blue) and vertical
(red) directions. (B)Roll (black), pitch (blue)
and yaw (red) angles of the body, and pitch
velocity. (C)Wing stroke position (blue),
deviation (green) and rotation angle (red).
The whole sequence is divided into four
phases: hover, pitch up, pitch down and
return to hover, as indicated by the dashed
lines and schematics of body orientation
shown at the top. Body kinematics are low-
pass filtered with a cut-off frequency of
10Hz; wing kinematics are not filtered.
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valid during the fast stabilization phase when recovering from
the drastic and unstable body motion associated with the
manoeuvre is the primary control task.

Next, we derived simplified equations of motion describing the
pitching and backward motions during stabilization. Two
assumptions were made in the derivation. First, we assumed that
the changes of lift force magnitude and direction in the body frame
are negligible (i.e. the lift force vector is unchanged relative to the
body frame), and the magnitude of the average lift is equal to the
body weight (mbg, where mb is body mass and g is gravitational
acceleration). Second, because pitching and backward motions
dominate the flight dynamics in these recordings, other components
of body velocities were considered to be negligible. Therefore,
starting from the complete equations of motion of a rigid body (e.g.
Etkin and Reid, 1996), one can show that the equations of motion
can be simplified to:

mbx  X + mbgsin(b – b
h), (13)

Iyy�b  M, (14)

where x is the body position along the global x-axis (Fig.2), b is
the body pitch angle, b

h is the pitch angle at hover equilibrium,
mbgsin(b–b

h) represents the components of lift force along the

positive x (backward) direction, X is the total force along the x
direction and M is total pitch torque. X is approximated by:

where Xxx represents the passive damping due to body translation
(XxX/x is also known as a stability derivative), and –Kx

ax
represents the force due to derivative (velocity) feedback control of
body translation, i.e. the result of active changes (indicated by the
superscript ‘a’) of wing kinematics. The passive and active terms
are lumped together as –Kxx; the negative sign indicates that the
total force acts against the direction of translation. M is approximated
by:

where M��b represents the passive damping due to pitch rotation
(again, M�M/� is a stability derivative), –K(b–b

h) represents
the torque due to proportional feedback control of pitch orientation
from active changes of wing kinematics, –K�

a�b represents the torque
due to derivative (velocity) feedback of pitch rotation and –Kx

�x
represents the pitch torque created by body translation, which has
been shown in previous studies (Sun and Xiong, 2005; Cheng and
Deng, 2011) to be non-negligible. Again, velocity coefficients M�

and K�
a are lumped together as K�. Finally, incorporating the force

and torque approximations into Eqns. 12 and 13, the equations of
motion are written as:

We then used the nlinfit function in MATLAB (MathWorks,
Natick, MA, USA) to find the coefficients Kx, K� and K that yielded
the best fits to the measured x and �b for the averaged and individual
body kinematics of the four trials (Fig.5). The MATLAB function
nlparci was used to find 95% confidence intervals for the
coefficients.

Importantly, although we fit this model to the observed closed-
loop flight behaviour, it includes several open-loop or completely
passive terms. For instance, Kx

 does not involve any component
related to active changes of wing kinematics. Therefore, it can be
measured directly from robotic-wing experiments. Similarly, other
passive terms Xx and M�, which are included in Kx and K�, can also
be measured. Then, by comparing the difference between the passive
open-loop (e.g. Xx) and the total closed-loop (e.g. Kx) coefficients,
we can determine the amount of force and torque due to active
control by the moth. Note that M� is estimated from the robotic-
wing experiment that rotated the stroke plane around wing base;
because the wing base and COM are located at different positions
(Fig.2A), pitch rotation about the COM further causes a translation
of the stroke plane. The drag (or FCF) caused by this translation
creates a torque against the pitch rotation, which can be estimated
by:

where L is the ratio of body to wing length and l1 is the ratio of
COM-to-wing-base-distance to wing length.

Equations 17 and 18 represent closed-loop dynamics with active
feedback terms Kx

a, K�
a (included in Kx and K�) and K, allowing

easy investigation of flight stability using linearization around hover
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Fig.5. Individual and averaged body kinematics for four different hawkmoth
pitch manoeuvres. (A)Pitch angle, (B) pitch velocity, (C) backward velocity.
The shaded area indicates ±1 s.d. (N4). The time series of different pitch
manoeuvres are aligned at maximum pitch velocity, as indicated by the
dashed line in B.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



4098

equilibrium. By applying small-disturbance theory (e.g. Taylor and
Thomas, 2003), one can show that:

where  denotes a small disturbance. Eqn 20 represents a linear
system approximating the closed-loop dynamics at hover; its
stability and modes of motion can be analyzed by examination of
the eigenvalues and the corresponding eigenvectors in the system
matrix A.

The model described above assumes zero latency of sensory
feedbacks. However, because real sensory systems exhibit delays
and these may be particularly large in the visual systems of
crepuscular insects (Kelber et al., 2006), they might change the flight
dynamics; therefore, a zero latency assumption may not be
appropriate for this study of M. sexta. To investigate this possibility,
we applied delays to the active feedback components in the model.
Here we consider the delay in pitch angle and velocity feedback,
termed  and �, respectively. The modified equations of motion
given these delays are written as:
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We used values of  ranging from 0 to 2 wingbeats and � ranging
from 0 to 0.5 wingbeats, assuming low latencies in the
mechanosensor-based angular velocity sensing (Sane et al., 2007)
and the larger latencies of typical of visual sensing (Sprayberry,
2009) for pitch angle detection. Similar to the no-delay case, Kx,
K�

a and K can be obtained from fits to measured x(t) and �b(t) with
b and �b offset by the specified delays. Open-loop or passive
coefficients are not affected by sensory delay were not re-estimated.

Using the fitted coefficients, the dynamic model (Eqns 21 and
22) was simulated using the dde23 function in MATLAB, which
solves differential equations with delays. The responses of the system
[i.e. b(t), �b(t) and x(t)] were obtained from the simulation and
compared with those measured.

Finally, we investigated the stability of the closed-loop dynamics
in the presence of sensory delays. The dynamic model was simulated
using dde23 with different combinations of  and �. Three sets of
Kx, K�

a and K were used, corresponding to fitted coefficients
assuming (, �) equal to (0, 0), (1, 0.25) and (2, 0.5), respectively.
We considered the system unstable if the pitch angle exceeded 90deg
in the simulated response. The degree of stability was evaluated by
the root mean square (RMS) error of pitch angle �b(t) relative to �b

h

at hover equilibrium:

where T is the simulation time (70 wingbeats).

RESULTS
Body and wing kinematics

To better interpret the characteristics of body and wing kinematics,
we divided the manoeuvres into four phases according to the pitching
velocity (Fig.1). Fig.4 shows the time series of body and wing
kinematics for one of the manoeuvres analyzed. The moth was first
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Fig.6. Measured and fitted hawkmoth wing kinematics. (A)Stroke position, (B) stroke deviation and (C) wing rotation for hovering wing kinematics. (D)Wing
rotations during hover (add0deg, blue), pitch-up (add8deg, red) and pitch-down (add–12deg, green) body rotations. Measured data points are shown
as dots and fitted results are shown as solid lines. (E)Schematic representation of the hovering wing kinematics. The black line denotes the wing chord, with
a dot marking the leading edge. The dashed line shows the body x-axis. (F)Schematics of the stroke plane (top view) and the area swept by the wing.
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at hovering (phase 1). After being startled, it began to pitch up and
to accelerate backwards simultaneously (phase 2); the backward
velocity was close to maximum when the moth reached the largest
pitch angle. Next, the moth began to pitch down while it was still
moving backwards (phase 3), and typically over-pitched down to
approximately 15deg below the initial hovering pitch angle. Lastly,
the moth began to pitch up again but at a slower rate (phase 4).
Recordings from all individuals demonstrate these four stages, as
shown in Fig.5 (phase 1 not shown). This similarity suggests that
the body motions result from similar underlying open-loop dynamics
and closed-loop control strategy.

Fig.5 shows the averaged kinematics among different
manoeuvres, each from a different moth (N4). Stroke-by-stroke
hovering wing kinematics were fitted and plotted in Fig.6A–C. In
general, the stroke plane was tilted forwards relative to the horizontal
plane (Fig.6E) and the average wing position was dorsal and caudal
to the wing root (Fig.6E,F).

Two kinematic changes were consistently observed during the
pitch manoeuvres. The most prominent of these were changes in
the mean wing rotation angle �. Fig.6D shows the rotation angle
at different phases of a manoeuvre. According to the definition,
an increase in � corresponds to a decrease in the geometric angle
of attack (AOA) during upstroke and an increase in AOA during
downstroke, reflecting an asymmetry between upstrokes and
downstrokes. We found that the observed � has a strong
correlation with the pitching velocity (Fig.7). When pitching up,
� was increased (compared with hovering) and when pitching
down, it was decreased. Eqns 4–6 were then used to generate
functions that best fit the observed rotation angles, where the
results for add8 and –12deg (t1/16) were plotted for
comparison (Fig.6D).

The wingbeat frequency also changed substantially during the
manoeuvres, as indicated by the duration of upstrokes and
downstrokes (Fig.4C, Fig.7). The moths increased their flapping
frequency during the initial pitch up following the stimulus.
However, the moths reduced their flapping frequency when pitching
down, especially at small pitch angles. The reason for these changes
was not clear and may relate to the moth’s initial urgency in
responding to the stimulus followed by a slow return to feeding.

The overall wing kinematic patterns, as described by wing tip
trajectories (Fig.8), changed during different phases of manoeuvre.
However, compared with the changes in �, other aspects of wing
kinematics varied more widely among moths and among left and
right wings. As can be seen in Fig.8, wing deviations during ventral
reversals were generally higher during pitching up than during
pitching down; during dorsal reversals, they were lower during
pitching up than during pitching down. Collectively, the stroke plane
was slightly tilted backward when pitching down and forward when
pitching up. There was no clear indication of changes in mean wing
stroke position, which were observed previously in the pitching
manoeuvres of some species (Taylor, 2001).
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Fig.8. Measured wing tip trajectories for a pitch manoeuvre from each of
the four hawkmoths: (A) moth 1, (B) moth 2, (C) moth 3 and (D) moth 4.
The trajectories during hover, pitch up and pitch down are shown in blue,
red and green, respectively. The wing base (blue dot) and COM (red dot)
are also shown. Left and right wing trajectories were plotted together
without distinction.
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Note that in addition to the body frame wing kinematic changes
described above, the wing kinematics relative to the global frame
were significantly altered by body translational and pitch
velocities.

Aerodynamic force and torque
Instantaneous pitch torque and fore/aft and lift forces for each set
of the experiments are shown in Fig.9. The results using hovering
wing kinematics are shown in blue. We find that during the second
half of downstroke and the first half of upstroke, pitching up torques
are created and the pitching down torque are mostly created during
the first half of downstroke and second half of upstroke. The
downstrokes are responsible for most of the lift generation, as
expected (Willmott and Ellington, 1997).

In the first set of robotic wing experiments, the magnitude of
variation in mean rotation angle (add) was varied from –12 to
12deg; the instantaneous and stroke-averaged results are shown in
Fig.9A and Fig.10A, respectively. For positive add, the AOA is
increased during downstroke and decreased during upstroke. The
force measurements are consistent with the changes in AOA in that
both lift and forward force are enhanced during downstroke and
reduced during upstroke. The pitch torque is greatly enhanced during
the second half of the upstroke and reduced during the second half
of downstroke, resulting in a net pitch-up torque. Similarly, negative
add results in a net pitch down torque, as expected. Fig.10Ai shows
that the stroke-averaged pitch torque increases linearly with add

except for add greater than 8deg, where further increases in add

do not result in increases in pitch torque. This saturation point
(add8deg) is also the best fit to the observed wing motion in the
moths’ pitching up phase (Fig.6D). Additionally, the net force in

B. Cheng, X. Deng and T. L. Hedrick

fore/aft direction varies with add because of asymmetry in drag
between upstrokes and downstrokes (Fig.10Aii). For example,
positive add results in a backward force as well as a pitch-up torque.
This is consistent with the observed coupling between pitching up
and backward motion during the initial phases of the manoeuvre.

We can estimate how much acceleration is produced by the
observed variation of wing rotation using the results above. For
instance, the mean acceleration for moth 1 during pitching up is
approximately 8�10–3degms–2. Assuming that add ranges from 4
to 8deg during pitching up and wingbeat frequency increased by
10% (compared with that in hover), we estimated that the
acceleration produced ranges from 3.5 to 6.1�10–3degms–2, which
is lower than the observed acceleration, but can provide more than
50% of the total. Therefore, this suggests that moths may rely on
some other kinematic changes to produce the additional pitch torque
(see ‘Discussion’).

In the second set of robotic-wing experiments, we investigated
the effect of body translation on aerodynamic forces and torques.
The instantaneous and stroke-averaged results are summarized in
Fig.9B and Fig.10B, respectively. We found that translational
velocity alters force and torque production in a manner similar to
that resulting from changes to wing rotation angle, but with greater
magnitude. For example, backward translation reduces the forces
during downstroke and enhances those during upstroke, whereas the
pitching up torques in the second half of downstrokes and upstrokes
are greatly reduced and enhanced, respectively. Therefore, backward
translation creates a large pitch down torque, which prevents further
pitching up motion during phase II and adds to the pitching down
motion during phase III. The stroke-averaged torque increases
linearly with the translational velocity over the range investigated
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Fig.9. Instantaneous aerodynamic forces
and torques (single wing), measured
from the robotic flapper. Pitch torque (Ai,
Bi and Ci), fore/aft force (Aii, Bii and Cii)
and lift force (Aiii, Biii and Ciii) are each
plotted for three different experimental
cases: (A) changing wing rotation, where
add equals –8 (green), 0 (blue) and
8deg (red); (B) fore/aft translation (at
60deg pitch angle), where advance ratio
equals –0.2 (green), 0 (blue) and 0.2
(red); and (C) pitch rotation, where
angular velocity equals –30 (red), 0
(blue) and 30degstroke–1 (green). The
fore/aft and lift forces for all the cases
are calculated assuming 35deg pitch
angle at hover.
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(Fig.10B). Notably, this is independent of the stroke plane
orientations, all of which produce similar results. This property is
critical in the assumption that Kx

 (the slope of the line in Fig.10Bi)
is constant for all pitch angles, because during the manoeuvres, the
pitch angle (thus, the stroke plane orientation) varies continuously.
Finally, Kx

 was found to be 69.0mNms; this value was used in the
dynamic model. Note that in other studies (e.g. Taylor and Thomas,
2003; Sun and Xiong, 2005), Kx

 is often referred to as the stability
derivative Mu, the dimensionless value of which is 1.3 based on the
above measurement of Kx

. Body translation also causes significant
counter-force in the opposite direction of translation, termed flapping
counter-force (FCF) (Cheng and Deng, 2011). It results from the
asymmetric drag or thrust production between upstrokes and
downstrokes, depends linearly on the translational velocity and helps
to slow down the rapid backward body movement of the moth. This
counter-force (described by Xx) can be estimated based on the slope
of the line in Fig.10Bii, which is equal to 5.3mNmsmm–1; the
dimensionless value is 1.9.

Finally, in the third set of robotic-wing experiments, the effect
of pitch rotation about the wing base was investigated (Fig.9C,
Fig.10C). Notably, because pitch rotations at the rates observed in
the manoeuvres change force and torque production much less than
do the observed body translations, the counter-torque in the pitch
direction, M�, is very small. The additional portion of pitch torque
M�

+, which is caused by translation of the stroke plane due to
different positions of wing base and COM, can be estimated using
Eqn 19. Using an Mx

+ value of 1.3, M�
+ is calculated to be 0.22, and

the dimensional value is 983mmmNmsrad–1. The pitch counter-
torque calculated above is still small compared with those in the
yaw and roll directions (Zhang and Sun, 2009; Cheng and Deng,
2011), and therefore may have a limited effect on the overall flight
dynamics.

Flight stabilization
Body motions during pitch manoeuvres were quite similar among
these four sequences analyzed (Fig.5). The averaged body
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kinematics (N4) predicted by the dynamic model using fitted
coefficients are shown in Fig.11. In general, the dynamic model
output closely fit the experimental recordings at an approximate Kx,
K� and K of 7.2mNmsmm–1, 7490.4 mmmNmsrad–1 and
113.4mmmNrad–1, respectively; the dimensionless values (Kx

+, K�
+

and K
+) are 2.5, 1.7 and 0.9, respectively. The fitted coefficients

for individuals are listed in Table3, revealing some among-
individual variation but close fits between the data and the model
in each case.

We then compared these values from the closed-loop PD
controller analysis to the open-loop coefficients recovered from the
dynamically scaled flapper. For example, the open-loop Xx

+ was 1.9
whereas the equivalent closed-loop term, Kx

+, was 2.5, indicating
that the moths relied largely on the passive FCF to slow down their

B. Cheng, X. Deng and T. L. Hedrick

body translation. However, the closed-loop K�
+ (1.7) was much larger

than the open-loop M�
+, which was almost negligible; therefore, K�

is approximately equal to K�
a. This suggests that active modulation

of wing kinematics to reduce the pitching velocity is critical in flight
stabilization.

Next, we examined the moths’ closed-loop flight stability by
calculating the eigenvalues and the corresponding eigenvectors of
the linear system (Eqn 20) (Table4). We found that the closed-loop
moth has three modes of motion. Mode 1 is marginally stable with
respective to the position x. This is expected because we did not
assume any control of the x position. Mode 2 is exponentially stable,
and it is characterized by an in-phase coupling of x and �b.
Therefore, in this mode, the moth moves backwards when it is
pitching up and forwards while pitching down. As has been shown,
a backward motion creates a pitch-down torque, which acts to slow
down the existing pitch-up velocity while a forward motion creates
a pitch-up torque; this leads to a stable subsident motion. This mode
also has an out-of-phase coupling of �b and b, which means that
the angular velocity is always in the correct direction to return the
pitch angle to its hover equilibrium. This is also mostly true for
Mode 3, which has a near out-of-phase coupling of �b and b.
However, Mode 3 is oscillatory and less stable than Mode 2. Also,
Mode 3 has a near (but not completely) out-of-phase coupling of
x and �b; therefore, the translational velocity mostly acts to
increase the existing pitching velocity.

The passive (open-loop) dynamics, i.e. dynamics with Kx
a, K�

a and
K equal to zero, were similar to those derived earlier (Sun and
Xiong, 2005; Cheng and Deng, 2011). Without active control, Mode
2 is still exponentially stable, but Mode 3, which is stable and
oscillatory in closed-loop dynamics, becomes unstable and
oscillatory where the phase difference between �b and b is smaller
than 90deg. This indicates that during most of the oscillation cycle,
pitching velocity tends to pull the pitch angle away from its hover
equilibrium.

To better demonstrate the effect of PD feedback control, we
calculated the eigenvalues of the system for different combinations
of K�

+ and K
+, and generated stability contours (Fig.12). These show

that Mode 2 is always stable, and its stability is greatly enhanced
by increasing pitching velocity feedback (derivative feedback, K�

+;
Fig.12A). Interestingly, the unstable oscillatory Mode 3 can be made
stable without any proportional feedback (K

+) by providing velocity
feedback (K�

+) >1.5 (Fig.12B). However, stability is weak in this
case, even with very large K�

+. The addition of pitch angle feedback
allows Mode 3 to have relatively strong stability in the presence of
velocity feedback. In addition, maximum stability is achieved for
K�

+ at approximately 2.5; further increases in K�
+ will reduce

stability.

Effect of sensory latencies
Here we investigate the effect of sensory feedback delays on flight.
The passive pitch damping M�

+ is assumed to be 0.3 (dimensional
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Fig.11. Comparison between measured (averaged kinematics, N4) and
predicted body kinematics. The fitted coefficients (Kx

+, K�
+ and K

+) are (2.5,
1.7, 0.9) for the zero delay case; (4.3, 2.2, 1.0) for 1 and �0.25; and
(4.9, 3.7, 1.6) for 2 and �0.5. Kx

+1.3, which is calculated from the
measured torques in the experiments (Fig.9Bi) with b

h35deg.

Table 3. Fitted coefficients in the dynamic model using individual and averaged (N4) body kinematics

Moth K�
+ K

+ Kx
+

1 1.00 (0.98, 1.03) 0.89 (0.87, 0.91) 2.89 (2.64, 3.14)
2 1.55 (1.51, 1.60) 0.84 (0.82, 0.87) 2.98 (2.82, 3.14)
3 1.18 (1.16, 1.21) 0.79 (0.78, 0.81) 2.67 (2.05, 3.30)
4 3.42 (3.31, 3.53) 1.35 (1.29, 1.4) 2.11 (1.81, 2.41)
Mean kinematics 1.69 (1.67, 1.71) 0.89 (0.88, 0.90) 2.53 (2.26, 2.81)

95% confidence intervals are presented in parentheses.
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value at 1329mmmNmsrad–1). The results are shown in Fig.13.
In particular, the predictions by the dynamic model using fitted
coefficients for (, �) of (1, 0.25) and (2, 0.5) are plotted in Fig.11
together with the results for no sensory delays. From Fig.13A,B,
we can see that, in general, increasing pitch angle delay causes both
pitch angle and velocity feedback to be stronger, as indicated by
increasing K

+ and K�
+; however, increasing pitch velocity delay

reduces both angle and velocity feedbacks. In general, for pitch angle
sensory delays of less than one wingbeat, the fitted coefficients were
similar to those from the no-delay case.

Finally, we investigated system stability given sensory delays by
using the coefficients obtained from the no-delay, medium-delay
and large-delay cases. The RMS error of pitch angle was calculated
for each case (Fig.14). We found that, in general, the system can
tolerate more sensory delay in pitch angle than in pitch velocity.
This is especially apparent in coefficients obtained from the
medium-delay and large-delay cases (Fig.14B,C), where tolerance
to angle delay is substantially increased but tolerance to velocity
delay is reduced. The stability is generally greater with shorter
delays. However, interestingly, a small amount of velocity delay
can enhance the stability (e.g. when <2 and �<0.6; Fig.14B).

DISCUSSION
In this study we combined measurement of free-flight recordings
of startled hawkmoths (i.e. closed-loop, actively controlled flight
behaviour) with open-loop or passive control coefficients measured
in a dynamically scaled flapper to reveal how these animals produce
and control a flight manoeuvre.

Source of manoeuvring pitch torque
We found that the hawkmoths produced pitch torques via bilateral
changes to the mean spanwise rotation angle of the wing, a
mechanism similar to the unilateral changes to the mean wing angle
of attack reported for fruit flies performing yaw turns (Bergou et
al., 2010). This is a somewhat unexpected mechanism, as changes

to the mean wing position with respect to the COM have previously
been implicated in the pitch manoeuvres of insects (e.g. Ellington,
1984). One possible explanation is that, as discussed in Taylor
(Taylor, 2001), while creating pitch torque, this method may shift
the total force vector in the opposite direction of pitching (e.g. pitch-
up torque coupled with a forward tilt of force). In contrast, bilateral
changes to the mean rotation angle shift of force to the same direction
of pitching (e.g. pitch-up torque coupled with a backward tilt of
force; Figs9, 10). In the current flight scenario, in which the moths
were executing a rearward evasion manoeuvre, a pitch-up torque
and backward tilt of force is more effective than a pitch-up torque
and forward tilt of force on producing such manoeuvres.

As indicated earlier, the variation in mean rotation angle alone
was not enough to produce the pitch torque required to manoeuvre.
The additional torque was likely provided by a mix of additional
mechanisms. For instance, moths also changed the wing
stroke/deviation angles at stroke reversals and stroke plane
inclination angles relative to the body. These changes might create
both pitch and linear accelerations. However, those changes were
more varied among moths than those in mean rotation angle and
were sometimes inconsistent between the left and right wings of
the same individual. Therefore, they are difficult to quantify and
analyze systematically. Another possible source of pitch torque is
abdominal flexion, which could result in net torque by changing
the location of the animal’s average COM with respect to the centre
of pressure on the wings (below).

Closed-loop control inputs and stability
We revealed that, in the manoeuvres recorded here, the moths largely
relied on passive damping to control their rearward velocity,
demonstrated by the similarity of the open-loop coefficient Xx

+1.9
and closed-loop coefficient Kx

+2.5. In contrast, similar comparisons
of open- and closed-loop coefficients demonstrated that the moths
actively control their pitch orientation via proportional feedback
based on pitch angle and derivative feedback based on pitch angular

0 1.0 2.0 3.0 4.0

0.5

Kθ
+

1.0

1.5

0

A B

–0.4

–0.8

–1.2

–1.6 –2.0 –2.4 0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

0 1.0 2.0 3.0 4.0

0.5

1.0

1.5

0

Kθ
+

Kθ
+ Kθ

+

Fig.12. Contour plots of dimensionless eigenvalues as
functions of K�

+ and K
+. (A)2

+, eigenvalue in the exponential
stable mode (Mode 2). (B)Re(3

+), real part of the eigenvalue
in the oscillatory mode (Mode 3).

Table 4. Eigenvalues i
+ and eigenvectors i

+ of the linearized closed-loop dynamics

Mode 1 Mode 2 Mode 3

1 1
+ 1

+ 2 2
+ 2

+ 3 3
+ 3

+

0 0 x+ 1 –16.0 –0.57 x+ 3.2 –8.60±14.80i –0.31±0.53i x+ 2.18
x+ 0 x+ 0.39 (180deg) x+ 0.28 (–103deg)
b

+ 0 b
+ 1.00 (0 deg) b

+ 1.00 (0deg)
�b

+ 0 �b
+ 0.57 (180deg) �b

+ 0.61 (120deg)

Eigenvalues i and �b are non-dimensionalized (indicated by superscript ʻ+ʼ) by flapping frequency n; x are non-dimensionalized by mean chord length c; and
x are non-dimensionalized by 2nRr2. The dimensional eigenvalue has the dimension of Hz, i.e. s–1.
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velocity, with derivative feedback predominating. These results
generally match our initial hypotheses developed from previous
studies, which report that hovering insect flight is unstable in open-
loop conditions (e.g. Sun and Xiong, 2005) and that angular
velocity sensors likely operate with lower latency than visual angular
position sensing (e.g. Sane et al., 2007; Sprayberry, 2009).

Our stability analysis also revealed that, given sufficient derivative
feedback, the moth could stabilize its pitch without use of
proportional feedback, but that incorporating both modes
substantially increased stability. Thus, although a D-only controller
might be sufficient in this case, the PD controller supported by the
data provides additional stability. PD controllers have also been
described for other animal locomotion tasks, including wall-
following in cockroaches (Cowan et al., 2006). However, P-only
controllers have been identified for some flight tasks, including
Drosophila forward flight speed control (Rohrseitz and Fry, 2011)
and locust pitch control (Taylor and Thomas, 2003). Our analysis
shows that a P-only controller would not be stable without
substantially greater open-loop pitch velocity damping (M��b) than
was found in the dynamically scaled flapper.

B. Cheng, X. Deng and T. L. Hedrick

Effects of latency on control coefficient estimates and
stability

In re-computing the closed-loop flight dynamics coefficients with
different assumed sensory delays, we found that increasing the
sensory delay parameters increased the magnitude of the coefficients
required for the best fit to the observed data (Fig.13). Plausible
sensory delays of one to two wingbeats in sensing pitch angle
increased the estimated linear velocity closed-loop coefficient Xx

+,
pushing it beyond what would be provided by the open-loop
response, potentially changing our conclusion as to the necessity of
active control of linear velocity. However, we also found that
increasing the sensory delays above 1.5 wingbeats reduced the
quality of the fit to the experimental data (Fig.13D), suggesting that
actual sensory delays may be less than this.

The second part of our latency investigation – assessing the
stability of the closed-loop dynamics (using three different sets of
fitted coefficients) in the presence of sensory delay – showed that
the moth PD controller is rather insensitive to sensory delay,
particularly delay in the proportional component. When stronger
feedback control is used (corresponding to the coefficients fitted
with larger delays; Fig.14C), the PD controller becomes less
sensitive to the delay in proportional components but more sensitive
to the delay in derivative components. In this case, sensory delays
of up to 2.7 wingbeats in the proportional control input and 0.65
wingbeats in the derivative input still resulted in stable flight
behaviour, as might be expected for the flight control responses of
an animal that experiences varying visual sensory delays based on
light levels (Theobald, 2004).

The effects of sensory latency are also influenced by the strength
of open-loop damping. Different studies have reported varying
magnitudes for the open-loop pitch velocity damping coefficient
M�

+. Using Eqn 19, we found M�
+ to be equal to –0.22, larger than

the –0.03 reported by Sun and Wang (Sun and Wang, 2007) for
Drosophila but smaller than the –0.62 reported by Gao et al. (Gao
et al., 2009) for hawkmoths. Note that because of the varying non-
dimensionalization schemes, we first re-dimensionalized the values
from these other studies and then non-dimensionalized them in the
scheme used here. The source of these differences in M�

+ is unclear,
but even the larger coefficients are still less than the closed-loop
K�

+ of 1.7 reported here, so the conclusion that the moths employ
active control based on pitch velocity remains unchanged. However,
larger values for M�

+ do further enhance the robustness of the PD
controller to sensory delay.

Abdominal flexion and pitch control
Our analysis treats the moth as a rigid body, but flying insects,
including M. sexta, are widely known to change their body
configuration in flight (e.g. Kammer, 1971). In these experiments,
the hawkmoths were observed to flex their abdomen in the body’s
longitudinal (xb–zb) plane. Specifically, abdominal flexion was
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closely correlated with pitch angle (at a lag of approximately 20ms
or 0.5 wingbeats), with the abdomen flexed upwards when the moth
was pitched upwards and downwards when the moth was pitched
downwards. Thus, it is likely that abdominal flexion plays a role in
producing the K closed-loop response, in conjunction with the
previously discussed changes in wing kinematics. However, the
exact effects of abdominal flexion on flight dynamics are less clear
and likely include both static and dynamic components. Statically,
the flexion may change the location of the COM in the longitudinal
plane; dynamically, the flexion causes relative motion between the
thorax and the abdomen, potentially helping to change the orientation
of the thorax and attached wings. The exact effects of abdominal
flexion and the contribution of static and dynamic effects on flight
control bear further investigation.

Future work
The general approach used here – the combination of open-loop
aerodynamic derivatives derived from mechanical or computational
fluid simulation and closed-loop flight behaviour recorded from
freely flying animals in a single study – will be extended to other,
more complicated manoeuvres and control problems. This may
require the application of non-linear control models to account for
within-wingbeat dynamics and coupling between yaw, pitch and
roll modes. It would also be interesting to examine cases where
animals fail to control their flight. For instance, hawkmoths without
antennae are observed to pitch backwards while hovering and then
fail to pitch forwards again in time to avoid crashing (Sane et al.,
2007). Extracting closed-loop coefficients from these events could
validate the open-loop models by showing that the dynamics of
uncontrolled flyers match those predicted by open-loop coefficients.
Experiments manipulating sensory latencies should also prove
informative by showing whether the moths alter their control
strategy to maintain a similar stability margin in different
circumstances.

LIST OF SYMBOLS AND ABBREVIATIONS
AR wing aspect ratio
c local wing chord length
c mean wing chord length
E Young’s modulus
EI flexural stiffness
F force
g gravitational acceleration
H(t) Heaviside function
Iyy body moment of inertia about the pitch axis
J advance ratio
K coefficient of proportional feedback of pitch angle
K� combined coefficient of passive damping and derivative

feedback of pitch angular velocity
K�

a coefficient of derivative feedback of pitch angular velocity
Kx combined coefficient of passive damping and derivative

feedback of translational velocity
Kx

a coefficient of derivative feedback of translational velocity
Kx

 coefficient of pitching torque resulted from body translation
l1 distance between wing base and centre of mass
M pitch torque
mb body mass
M� damping coefficient (stability derivative) due to pitch angular

velocity
n wing flapping frequency
R wing length
r1 and r2 non-dimensional wingspan locations
r2(s) non-dimensional radius of the second moment of wing area
Re Reynolds number
S wing area
t dimensional time

t dimensionless time
T simulation time
tw wing thickness
vb body translational velocity
vw mean wing flapping velocity
x body position in fore/aft direction
x body velocity in fore/aft direction
x body acceleration in fore/aft direction
X fore/aft force
Xx damping coefficient (stability derivative) due to translational

velocity
 wing stroke deviation
b body pitch angle
�b body pitch velocity
�b body pitch acceleration
b

h body pitch angle at hover
 fluid/air density
 torque
� pitch velocity delay
 pitch angle delay
 kinematic viscosity of the fluid
 wing stroke position
 wing flapping amplitude
 wing rotation angle
add magnitude of variation in mean rotation angle
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