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Abstract

At
√
s = 7 TeV, the standard model needs at least 10 (fb)−1 integrated luminosity at LHC

to make a definitive discovery of the Higgs boson. Using binary tetrahedral (T
′

) discrete flavor

symmetry, we discuss how the decay of the lightest T ′ Higgs into γ γ can be effectively enhanced and

dominate over its decay into b b̄. Since the two-photon final state allows for a clean reconstruction, a

decisive Higgs discovery may be possible at 7 TeV with the integrated luminosity only of ∼ 1 (fb)−1.
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I. INTRODUCTION

The standard model (SM) of particle physics is a well-tested theory which successfully

predicts the strong and electroweak interactions of elementary particles. While its predictive

power is impressive, it has limitations. First, in its minimal form, neutrinos have been

introduced as massless particles. However, a wealth of experimental data have confirmed that

neutrinos are massive and that flavors can mix. Undoubtedly, neutrino mixing is the first

indisputable physics beyond the minimal standard model. Moreover, in order to specify the

standard model and make predictions, we need approximately 28 free parameters, including

the gauge couplings, quark and lepton masses, mixing angles and possible CP-violating

phases, etc.

Grand unification theories (GUT), with or without supersymmetry (SUSY), have been

invoked to explain the origin of these free parameters or the relationship between them [1–3].

These models usually focus on reducing the number of parameters in the gauge sector and

either the quark or lepton sector, but not both.

A notable alternative to GUTs are models constructed with discrete flavor symmetry.

Here we will focus on the binary tetrahedral group T ′, which provides calculability to both

quark and lepton sectors [4–6]. This model relates quarks and leptons through the T ′

symmetry whose irreducible representations are three singlets, three doublets and a triplet.

Since different quark families are assigned to T ′ singlets and doublets, mass hierarchies in

the quark sector appear naturally in the quark sector. Also, the fact that all the SUL(2)

lepton doublets are assigned to a T ′ triplet is to some extent a unification of the lepton

sector. The renormalizable T ′ model has led to successful predictions of the tribimaximal

neutrino mixing matrix as well as the Cabibbo angle [5, 6]. Recently, it has been shown that

the discrepancy between the SM prediction and experimental value of muon g−2 factor can

be easily accommodated in this model [7]. More details about the T ′ model, its variants and

other related models can be found in the literature [8]. The success of the renormalizable

T ′ model inspires us to ask if it can be tested at the LHC. In this article, we study Higgs

production and decay in the T ′ model at the LHC.

Standard model Higgs production and decays have been studied in considerable detail [9].

For instance, due to the high gluon luminosity, gluon-gluon fusion g g → h is the dominant

Higgs production mechanism at the LHC for Higgs masses up to Mh ∼ 1 TeV. This is about
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an order of magnitude larger than the next most important production process q q̄′ → hW±.

The gluon coupling to Higgs is mediated by the triangular quark loops, and the process is

dominated by the top and bottom loops. For Mh . 160 GeV, the branching ratio for the

decay process h → b b̄ dominates over all other decay processes such as h → g g, h → W W ∗,

h → Z Z∗ and h → γ γ. In this Higgs mass regime, the production of all other fermion pairs

are relatively suppressed compared to b b̄ because they are either produced by a relatively

lower branching ratio through Higgs decay or by mixing. For Mh > 160GeV, the branching

ratio for the decay process h → WW will take over and dominate.

Given the current limited luminosity of LHC at
√
s = 7 TeV, the more relevant mass

range for the SM Higgs would be Mh . 160 GeV. Due to the large QCD background, it is

difficult to confirm the processes h → b b̄ and h → g g. While h → W W ∗ and h → Z Z∗ have

relatively higher rates, the analysis is complicated by escaping neutrinos. As a consequence,

in the regime Mh . 160 GeV, the cleanest signal would be h → γ γ despite its tiny rate.

In this article, we focus on the decays of the lightest T ′ Higgs with mass less than 160

GeV. We compare the decay rates of T ′ Higgses with those of the SM. In particular, we will

show that in the fermiophobic limit, the decay of the lightest T ′ Higgs into γ γ is effectively

enhanced and dominates over its decay into b b̄. Since the high pT two-photon final state

allows a clean reconstruction, a decisive Higgs discovery may be possible in this limit, even

at
√
s = 7 TeV with the integrated luminosity of only ∼ 1(fb)−1. As a bonus, the lightest

T ′ Higgs can be unambiguously distinguished from the SM Higgs.

II. THE T
′

MODEL AND LIGHTEST HIGGS BOSON

We start with a brief review of the simplified model proposed in [6] based on the global

symmetry (T
′×Z2). In particular, we will ignore the lepton sector which will not be relevant

to our study in this article. Interested readers can refer to [4–6] for more details.

In the T ′ model, left-handed quark doublets (t, b)L, (c, d)L, (u, d)L are assigned under this
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global symmetry as




t

b





L

QL (11,+1)





c

s





L



u

d





L































QL (21,+1),

(1)

and the six right-handed quarks as

tR (11,+1)

bR (12,−1)

cR

uR







CR (23,−1)

sR

dR







SR (22,+1).

(2)

The quark-Yukawa sector in the model is thus given as [6]

Lq
Y = Yt({QL}11

{tR}11
H11

) + Yb({QL}11
{bR}12

H13
)

+YC({QL}21
{CR}23

H
′

3
) + YS({QL}21

{SR}22
H3)

+h.c.. (3)

A. T ′-Higgs couplings

We focus on flavor-diagonal interactions and fermion couplings to a set of neutral T ′-

Higgs bosons, {H(i)
r }, where r = (11, 13, 3, 3

′) denotes the T ′-irreducible representation and i

denotes components in the T ′-multiplet1. Let the Higgs vacuum expectation values (VEVs)

1 As was studied in the model building of Ref.[8], if we go beyond the mininal T ′ model to incorporate

mixing with the third generation of quarks, we may encounter flavor changing neutral current (FCNC)

problems because the Higgs bosons can have off-diagonal flavor couplings, unlike the standard model Higgs.

Then, the size of T ′ Yukawa couplings to the mass-eigenstate Higgs bosons, namely Y 2

f (a
f
n)

2/M2

Hn

∝
(afn/Rf )

2(gSMhff)
2M2

Hn

, would be constrained by the FCNC issue, which may give further constraints on

the parameters afn and Rf . More on this issue is beyond scope of the present article and is to be pursued

in detail in the future.
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be 〈H(i)
r 〉 = v

(i)
r /

√
2. Expanding fields in terms of the Clebsch-Gordan coefficients [6], we

have

Lq
Y

∣

∣

∣

∣

∣

neutral

flavor−diagonal

= Ytt̄t
(H11 + v11)√

2
+ Ybb̄b

(H13 + v13)√
2

− YC√
6
c̄c
(H

(1)
3′ + v

(1)
3′ )√

2
+

YS√
3
s̄s

(H
(1)
3 + v

(1)
3 )√

2

+
YS√
6
d̄d

(H
(1)
3 + v

(1)
3 )√

2
+

√

2

3
YCūu

(H
(2)
3′ + v

(2)
3′ )√

2
. (4)

The relevant Yukawa couplings and fermion masses are thus read off:

gH11 tt
= Yt , mt =

Yt√
2
v11 , (5)

gH13bb
= Yb , mb =

Yb√
2
v13 , (6)

g
H

(1)

3′
cc

=
YC√
6
, mc =

YC

2
√
3
v
(1)
3′ , (7)

g
H

(1)
3 ss

=
YS√
3
, ms =

YS√
6
v
(1)
3 , (8)

g
H

(1)
3 dd

=
YS√
6
, md =

YS

2
√
3
v
(1)
3 , (9)

g
H

(2)

3′
uu

=

√

2

3
YC , mu =

YC√
3
v
(2)
3′ . (10)

Fixing fermion masses to be the same as those in the standard model, namely mf =
gSM
hff√
2
vEW,

we may express the T ′-Yukawa couplings comparing those in the standard model to get

gH11 tt
=

(

vEW
v11

)

gSMhtt , (11)

gH13bb
=

(

vEW
v13

)

gSMhbb , (12)

g
H

(1)

3′
cc

=

(

vEW

v
(1)
3′

)

gSMhcc , (13)

g
H

(1)
3 ss

=

(

vEW

v
(1)
3

)

gSMhss , (14)

g
H

(1)
3 dd

=

(

vEW

v
(1)
3

)

gSMhdd , (15)

g
H

(2)

3′
uu

=

(

vEW

v
(2)
3′

)

gSMhuu . (16)
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We next turn to the gauge-Higgs sector, LGH =
∑

r,i |DµH
(i)
r |2, where all the T ′-Higgs

fields couple to the electroweak gauge bosons. TheW and Z boson masses are thus expressed

in terms of the T ′-Higgs VEVs as follows:

M2
W =

g2W
4

∑

r,i

(v(i)r )2 , M2
Z =

M2
W

c2W
, (17)

where gW is the SU(2)W gauge coupling and cW = gW√
g2
W

+g2
Y

with gY being U(1)Y gauge

coupling 2. We fix the W and Z boson masses to be those in the standard model. This can

be achieved by identifying the electroweak scale vEW as

v2EW =
∑

r,i

(v(i)r )2 , (18)

so that we have M2
W = g2Wv2EW/4.

The T ′-Higgs couplings to WW and ZZ read

L
H

(i)
r V V

= g
H

(i)
r WW

H(i)
r W+

µ W µ− +
1

2
g
H

(i)
r ZZ

H(i)
r ZµZ

µ , (19)

where

g
H

(i)
r WW

= g2Wv(i)r =

(

v
(i)
r

vEW

)

gSMhWW , (20)

g
H

(i)
r ZZ

=
g2W
c2W

v(i)r =

(

v
(i)
r

vEW

)

gSMhZZ , (21)

with gSMhV V (V = W,Z) being the corresponding coupling to the Higgs boson in the standard

model,

gSMhV V = 4
M2

V

vEW
. (22)

B. The lightest Higgs boson and its couplings

Electroweak interactions mix T ′-Higgs doublets. Given an explicit form of Higgs potential,

we can solve such a mixing to get a set of mass-eigenstates {Hn} with their eigenfunctions,

arn. Without knowing the explicit expression of Higgs potential, in general, we may write

H(i)
r =

∑

n

a(r,i)n Hn , (23)

2 Note that we have ρ = 1 at tree level as in the standard model. This is because T ′-symmetry commutes

with the electroweak symmetry as well as the custodial symmetry.
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where the expansion coefficients a
(r,i)
n form an orthonormal complete set,

∑

r,i

a(r,i)n a(r,i)m = δnm , (24)

which followed from the normalization condition of the kinetic terms of {Hn}.
Assuming a mass hierarchy for the Higgs bosons, MH0 < MH1 < · · · , we can identify

the lightest Higgs boson as H0 with mass, say, . mt ≃ 172 GeV. Hereafter we shall confine

ourselves to the phenomenology of this H0.

It is convenient to introduce a ratio,

R(i)
r =

v
(i)
r

vEW
, (25)

which satisfies
∑

r,i

(R(i)
r )2 = 1. (26)

From Eqs.(11)-(16) and (20)-(21), we then obtain the H0 couplings to fermions,

gH0tt =

(

a110
R11

)

gSMhtt , (27)

gH0bb =

(

a130
R13

)

gSMhbb , (28)

gH0cc =

(

a
(3′,1)
0

R
(1)
3′

)

gSMhcc , (29)

gH0ss =

(

a
(3,1)
0

R
(1)
3

)

gSMhss , (30)

gH0dd =

(

a
(3,1)
0

R
(1)
3

)

gSMhdd , (31)

gH0uu =

(

a
(3′,2)
0

R
(2)
3′

)

gSMhuu , (32)

and gauge bosons

gH0V V =
∑

r,i

(

a
(r,i)
0 R(i)

r

)

gSMhV V , (33)

where V = W,Z.
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III. LHC HIGGS DECAY AND PRODUCTION

In this section, we study the decay modes of a light Higgs boson with mass in the range

109 GeV . MH0 . (2MW ≃)160 GeV 3. In this mass range, h → bb̄ and h → gg are

dominant modes in the standard model, where the top and bottom loops give the significant

effect on the h → gg mode. Here we shall focus on the top and bottom contributions to

decay modes of the T ′-Higgs boson H0. The relevant formulas for its partial decay widths

of H0 are given in Appendix A.

From Eqs.(27)-(32) and Eq.(33), we see that the difference between the standard model

and the T ′ model is handled by two kinds of parameters, a
(r,i)
0 and R

(i)
r . Since we are

interested in the top and bottom contributions, we may take a
(r,i)
0 = 0 except a110 and a130

in Eqs.(27)-(32) and keep only R11 and R13 nonzero in Eq.(33), so that all the Yukawa

couplings other than those of top and bottom vanish and the H0-V -V coupling is saturated

by only H11 and H13 in the sum. Note that Eqs.(24) and (26) then constrain the remaining

parameters:

(a110 )2 + (a130 )2 = 1 , 0 ≤ a110 ≤ 1 , 0 ≤ a130 ≤ 1 ,

(R11)
2 + (R13)

2 = 1 , 0 ≤ R11 ≤ 1 , 0 ≤ R13 ≤ 1 . (34)

From Eqs.(27), (28), (33) and Eq.(34), one can see that the standard model limit is given

by

a130 → R13 → 0 , (35)

in such a way that gH0tt → gSMhtt , gH0bb → gSMhbb and gH0V V → gSMhV V . On the other hand, a

fermiophobic limit can be taken as

a130 → 0 , (36)

in a sense that the bottom Yukawa coupling goes to zero and H0 → bb̄ mode gets highly

suppressed to be zero, while the top Yukawa coupling remains nonzero.

In Figs. 1-3, we show the branching fraction of the lightest T’ Higgs decay (left pan-

els) and the ratio to that of the standard model Higgs (right panels). As a sample, we

have taken a130 = 2/3, 1/3, 0 with R13 = 0.5 fixed which monitors the interpolation be-

tween the standard model case and the fermiophobic case. Figures 1-3 imply that as

3 The lower bound comes from the exclusion limit of the direct search of h → γγ at the LEP II [10].
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a130 approaches the fermiophobic limit a130 → 0, H0 → γγ becomes dominant in contrast

to the case of the standard model Higgs in which h → bb̄ is dominant. Note that the

fermiophobicity does not affect WW and ZZ decay modes so much (See Fig. 3) since

gH0V V /g
SM
hV V = (

√

1− (a130 )2
√

1− R2
13
+ a130 R13) →

√

1− R2
13

when a130 → 0.

In Figs. 4-6, we show contour plots of Br(H0 → bb̄), Br(H0 → γγ) and Br(H0 → gg) for

MH = 120 GeV in the entire region of the parameter space (a130 , R13) comparing with those

of the standard model Higgs. It is interesting to note from Figs. 4- 6 that H0 → bb̄ mode is

necessarily suppressed when H0 → γγ mode is enhanced, while H0 → gg mode is enhanced

at the same time which is due to the remaining sizable top loop contribution: One cannot

make both top and bottom quarks decoupled simultaneously because of the constraint (34).

Finally, let us briefly discuss Higgs production. In particular, in the true fermiophobic

limit, which is realized by taking a130 → 0, we find a110 → 1. This implies that the gluon-

gluon fusion through the top-triangular loop will be the dominant production process for

the fermiophobic T ′-Higgs, which is the same (within a percent) as in the standard model.

Even though the dominant Higgs production process is the same, the fermiophobic T ′-Higgs

can be unambiguously distinguished from the SM Higgs at the LHC because H0 → γ γ

dominates over H0 → b b̄ in the range 109 GeV . MH0 . 160 GeV. Since H0 → γ γ allows

for a clean reconstruction, a decisive Higgs discovery may be possible even at
√
s = 7 TeV

with the integrated luminosity only of ∼ 1 (fb)−1.

IV. DISCUSSION

This article may be taken as a warning to experimentalists that the properties of the lightest

Higgs boson can readily depart very significantly from the predictions of the minimal SM

with only one Higgs doublet, and with its 28 parameters unconstrained by any further

theoretical input.

We have studied a model with a (T
′ × Z2) flavor symmetry which commutes with the SM

gauge group, and which leads to agreement with the mixing matrices for neutrinos and

quarks. It necessarily changes the couplings, of the lightest Higgs to the quarks and leptons,

which are no longer simply proportional to the fermion masses. This aspect of the SM is its

most fragile prediction.
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A similar, but different, illustration of this fragility is provided by the variant axion model

[11] motivated by, instead, solution of the strong CP problem. In both cases, the delimiting

of the SM parameters changes the Yukawa sector.

In the present case, the T
′

flavor symmetry can give rise to optimism that the discovery of

the Higgs may be expedited because the product of the production cross-section and the

decay branching ratio is enhanced. As can be seen from Figs. 3 and 5, the decay H → γγ is

generically larger even for MH = 120 GeV and becomes more so at larger Higgs mass. Even

with
√
s = 7 TeV, and 1 (fb)−1, the LHC could make a Higgs discovery.

Many aspects of the SM have been confirmed to high accuracy. These checks are principally

for the gauge sector which has a significant geometrical underpinning and hence uniqueness.

The Yukawa sector, where most of the 28 free parameters lie, does not have a geometrical

interpretation. The objective of the flavor symmetry is to supply an explanation of some

of the parameters, and it is therefore interesting to explore other predictions for production

and decay of Higgs at LHC.

Acknowledgments

The work of P.H.F. was supported in part by U.S. Department of Energy Grant No.

DE-FG02-05ER41418. C.M.H. and T.W.K. were supported by US DOE grant DE-FG05-

85ER40226. S.M. was supported by the Korea Research Foundation Grant funded by the

Korean Government (KRF-2008-341-C00008). P.H.F. and T.W.K. thank the Aspen Center

for Physics for hospitality while this work was in progress.

Appendix A: Formulas for Higgs decay widths

In this appendix we shall present formulas of decay widths relevant to the H0-decay

modes.
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1. H0 → qq̄ mode

In the standard model the h → qq̄ decay width is calculated at the leading order of

perturbation to be

ΓSM[h → qq̄] =
NcMh

16π
(gSMhqq)

2

(

1−
4m2

q

M2
h

)3/2

. (A.1)

To get the corresponding formula for H0 → qq̄, all we need to do is replace the Yukawa

coupling and the Higgs boson mass with the appropriate ones. Thus we have

ΓT ′

[H0 → qq̄] =
NcMH0

16π
(gH0qq)

2

(

1−
4m2

q

M2
H0

)3/2

. (A.2)

2. H0 → gg mode

In the standard model we compute the h → gg decay width at the leading order of

perturbation to get

ΓSM[h → gg] =
N2

c α
2
SM

3
h

576π3

∣

∣

∣

∣

∣

∑

q

gSMhqq
mq

(1 + (1− τq)f(τq)) τq

∣

∣

∣

∣

∣

2

, (A.3)

where τq = 4m2
q/M

2
h and defined [9]

f(τ) =

{

(

sin−1 1√
τ

)2

τ ≥ 1

−1
4

(

log
(

1+
√
1−τ

1−
√
1−τ

− iπ
))2

τ < 1
.

Replacing gSMhqq with gH0qq and Mh with MH0 , we have

ΓT ′

[H0 → gg] =
N2

c α
2
SM

3
H0

576π3

∣

∣

∣

∣

∣

∑

q

gH0qq

mq

(1 + (1− τq)f(τq)) τq

∣

∣

∣

∣

∣

2

, (A.4)

where τq = 4m2
q/M

2
H0
.

3. H0 → γγ mode

In the standard model the leading contribution to the h → γγ decay width is calculated

to be

ΓSM[h → γγ] =
α2M3

h

256π3

∣

∣

∣

∣

∣

Nc

∑

q

gSMhqq√
2mq

Q2
qA

h
q (τq) +

gSMhWW

4M2
W

Ah
W (τW )

∣

∣

∣

∣

∣

2

, (A.5)
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where we neglected contributions from lepton-triangle loops, and defined [9]

Ah
q (τ) = 2τ [1 + (1− τ)f(τ)] , (A.6)

Ah
W (τ) = −[2 + 3τ + 3τ(2− τ)f(τ)] (A.7)

with τi = 4m2
i /M

2
h . Replacing couplings and masses with the appropriate ones, we get

ΓT ′

[H0 → γγ] =
α2M3

H0

256π3

∣

∣

∣

∣

∣

Nc

∑

q

gH0qq√
2mq

Q2
qA

H0
q (τq) +

gH0WW

4M2
W

AH0
W (τW )

∣

∣

∣

∣

∣

2

, (A.8)

where τi = 4m2
i /M

2
H0
.

4. H0 → V V ∗ mode

In the standard model the leading contribution to the h → V V ∗ decay width is calculated

to be

ΓSM[h → V V ∗] = δV ′

3GF (g
SM
hV V )

2Mh

256
√
2π3

R

(

M2
V

M2
h

)

, (A.9)

where GF = 1√
2v2EW

and we defined [9]

δV ′ =

{

1 forW

7
12

− 10
9
s2W + 40

27
s4W forZ

, (A.10)

R(x) =
3(1− 8x+ 20x2)√

4x− 1
cos−1

(

3x− 1

2x3/2

)

− (1− x)(2− 13x+ 47x2)

2x

−3

2
(1− 6x+ 4x2) log x . (A.11)

Replacing gSMhV V and Mh with gH0V V and MH0 , respectively, we obtain

ΓT ′

[H0 → V V ∗] = δV ′

3GF (gH0V V )
2MH0

256
√
2π3

R

(

M2
V

M2
H0

)

. (A.12)
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FIG. 1: Branching fraction of the lightest T ′-Higgs boson with R13
0

= 0.5 and a13
0

= 2/3.
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FIG. 2: Branching fraction of the lightest T ′-Higgs boson with R13
0

= 0.5 and a13
0

= 1/3.
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