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Gravitational perturbations and metric reconstruction: Method of extended

homogeneous solutions applied to eccentric orbits on a Schwarzschild black hole

Seth Hopper∗ and Charles R. Evans†

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599

We calculate the gravitational perturbations produced by a small mass in eccentric orbit about
a much more massive Schwarzschild black hole and use the numerically computed perturbations
to solve for the metric. The calculations are initially made in the frequency domain and pro-
vide Fourier-harmonic modes for the gauge-invariant master functions that satisfy inhomogeneous
versions of the Regge-Wheeler and Zerilli equations. These gravitational master equations have
specific singular sources containing both delta function and derivative-of-delta function terms. We
demonstrate in this paper successful application of the method of extended homogeneous solutions,
developed recently by Barack, Ori, and Sago, to handle source terms of this type. The method
allows transformation back to the time domain, with exponential convergence of the partial mode
sums that represent the field. This rapid convergence holds even in the region of r traversed by the
point mass and includes the time-dependent location of the point mass itself. We present numerical
results of mode calculations for certain orbital parameters, including highly accurate energy and
angular momentum fluxes at infinity and at the black hole event horizon. We then address the issue
of reconstructing the metric perturbation amplitudes from the master functions, the latter being
weak solutions of a particular form to the wave equations. The spherical harmonic amplitudes that
represent the metric in Regge-Wheeler gauge can themselves be viewed as weak solutions. They are
in general a combination of (1) two differentiable solutions that adjoin at the instantaneous location
of the point mass (a result that has order of continuity C−1 typically) and (2) (in some cases) a
delta function distribution term with a computable time-dependent amplitude.

PACS numbers: 04.25.dg, 04.30.-w, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Considerable research on the two-body problem in general relativity has been fostered over the past decade by the
prospects of detecting gravitational radiation from extreme-mass-ratio binaries. The general relativistic two-body
problem is notoriously difficult, as it involves dynamics of the motion of the bodies and of the gravitational field
itself. Gravitational wave emission carries away energy and angular momentum from the orbit, leading to inspiral and
eventual merger. The future joint NASA-ESA LISA mission [1] is expected to detect between tens and thousands of
such extreme-mass-ratio inspirals (EMRIs)–binaries composed of a compact object (µ ∼ 1− 50M⊙) in orbit about a
supermassive Kerr black hole (M ∼ 105 − 107M⊙) out to cosmological distances (z ∼ 1) [2]. The small mass ratio
10−7 . µ/M . 10−3 of expected astrophysical sources [3] implies a gradual change in orbital parameters, with & 105

wave periods as the binary evolves through the LISA passband (10−4−10−2 Hz). Detailed theoretical calculations will
aid in both detection of EMRI gravitational wave signals and in determination of the source’s physical parameters.
Quite apart from the prospects of astrophysical observation, this problem is one of intrinsic interest in theoretical

physics. Of the various possibilities, the physically simplest compact binary is one composed of two black holes.
Such a system eliminates the complications of stellar microphysics and reduces the problem to a minimum parameter
set. In approaching the problem mathematically, the extreme mass-ratio and gradual orbital evolution is of benefit
theoretically, allowing black hole perturbation theory to be used. Furthermore, the small mass ratio allows even the
black hole structure of the small mass to be ignored (at lowest order), restoring a point-like (particle) behavior [4] on
length scales that are large compared to µ and thereby simplifying the perturbation problem.
The perturbation problem proceeds in stages. At the outset the motion of the particle is taken as a geodesic

(µ/M → 0, or zeroth order) on the background spacetime. The first-order (in µ/M) gravitational field perturbation
is then computed, yielding a new metric gµν = gµν + pµν that corrects the background metric gµν . The gravitational
waves in the perturbation pµν carry energy and angular momentum to infinity and down the black hole event horizon,
giving rise to a back reaction or local self-force (SF) on the particle that has both conservative and dissipative terms.
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Formally, the SF depends on gradients of pµν and acts locally on the particle to accelerate it off its background geodesic.
Once the first-order correction to the motion is successfully computed, the calculation may proceed to second order
in the field perturbation (see Pound [5] for a recent background discussion and an alternative formulation).
Yet having idealized the small body as a point particle, the metric perturbation and SF are found to diverge at

the location of the particle, and the formal perturbation to the equation of motion is meaningless without careful
regularization. This problem is similar to the classic SF problem of an accelerating, radiating charge in electromagnetic
theory in flat spacetime [6]. Two pivotal papers, by Mino, Sasaki, and Tanaka [7] and Quinn and Wald [8], showed
how the metric perturbation may be separated into a divergent, direct part pdirµν and a finite tail term ptailµν , with the
latter providing the regularized field that makes the SF finite. As an alternative, Detweiler and Whiting [9] proposed
decomposing the metric perturbation into regular pRµν and singular pSµν parts. Under this interpretation, pRµν is a

solution to the vacuum field equations, but gives rise to the same SF as ptailµν .
Since then, SF calculations have been made in certain special cases [10–14]. See the review by Barack [2]. Ul-

timately, the theory aims to provide self-consistent SF calculations of arbitrary orbits about Kerr black holes. In
this paper, we concern ourselves with a more modest goal: demonstrating a complete computation of the radiative
gravitational perturbations produced by a mass in eccentric orbit on a Schwarzschild black hole and reconstruction
of the corresponding parts of the perturbed metric in Regge-Wheeler gauge. While we leave for another occasion
computation of both the nonradiative perturbations and the SF, the accurate reconstruction of the radiative parts of
the metric, at all locations up to and including the point mass, should serve as a starting point for a further gauge
transformation or alternative regularization technique.
We note in passing that most work to date computing EMRI evolution has not made use of local SF calculation.

Sufficiently adiabatic changes in an orbit on Schwarzschild spacetime allow a balance calculation approach [15], where
orbital energy and angular momentum are “evolved” (acausally) to match corresponding gravitational wave fluxes
through bounding surfaces at large radius and near the horizon. Much effort is ongoing to extend the reach of
adiabatic calculations [16–18]. Unfortunately, the approach only approximates dissipative SF terms and cannot
account for conservative SF effects. In any event, the more self-consistent SF approach should serve to confirm the
validity of these or other approximations.
Perturbation theory for Schwarzschild black holes has a traditional formalism pioneered by Regge and Wheeler [19],

Zerilli [20], and Vishveshwara [21] that uses spherical harmonics and the Regge-Wheeler gauge to simplify algebraically
the form of the metric perturbation. At each spherical harmonic order there are just two master functions, Ψeven

ℓm (t, r)
and Ψodd

ℓm (t, r), one for each parity or gravitational degree of freedom, which satisfy linear inhomogeneous wave
equations in t and r. The formalism was improved by Moncrief [22] and colleagues [23, 24], making use instead of
gauge-invariant master functions that satisfy similar wave equations. Recently Martel and Poisson [25] have placed
the theory in both a gauge-invariant and covariant form.
For perturbations of Kerr black holes, Teukolsky [26] developed a formalism based on Newman-Penrose curvature

scalars and spin-weighted spheroidal harmonics. In the frequency domain the radial part is a single (complex) master
equation [27], which can, of course, be applied to a Schwarzschild hole as well [15, 28].
An alternative to the Regge-Wheeler-Zerilli (RWZ) approach has recently been advanced by Barack and Lousto [29].

They propose directly evolving the ten spherical harmonic amplitudes that describe the metric perturbation in Lorenz
(or harmonic) gauge. In this direct metric perturbation approach, the equations separate into even- and odd-parity
sectors, yet still involve systems of seven and three coupled equations, respectively. Barack and Sago [11, 14] have
used the formalism to compute the time evolution of metric perturbations generated by circular and eccentric orbits
on Schwarzschild, along with the resulting SF components.
The RWZ and direct metric perturbation approaches each have advantages and disadvantages. The direct metric

perturbation formalism yields directly what one wants as an input to a SF calculation, namely the metric itself in
Lorenz gauge. In a time domain calculation, as so far employed, it has the disadvantage of requiring simultaneous
solution of a large set of coupled partial differential equations (PDE’s). Anticipating the subtraction involved in the
SF regularization, Barack, Lousto, and Sago have built a fourth-order convergent finite difference code to compute
the modes to sufficient accuracy. In contrast, the RWZ approach has the advantage that only a single uncoupled
wave equation need be solved for each mode and parity. Unfortunately, an added step is required to reconstruct the
metric from the mode solutions. Moreover, the reconstruction involves terms that are singular at the particle location
and the simplest reconstruction yields the metric perturbation in Regge-Wheeler gauge [30, 31]. Finally, the RWZ
approach provides only the radiative (ℓ ≥ 2) parts of the perturbation and the nonradiative modes (ℓ = 0, 1) must be
derived by separate means.
In this paper we opt for using the gauge-invariant RWZ approach detailed by Martel and Poisson [25], and adopt

the Zerilli-Moncrief ΨZM
ℓm = Ψeven

ℓm and Cunningham-Price-Moncrief ΨCPM
ℓm = Ψodd

ℓm master functions for even and
odd-parity, respectively. Our use of this relatively standard method is augmented, though, by a new technique that
enables accurate reconstruction of the corresponding parts of the metric in Regge-Wheeler gauge. We leave for a
later occasion our own consideration of the monopole and dipole terms (which are essential to a SF calculation) and
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instead direct attention to discussion by Detweiler and Poisson [32] and recent successful numerical implementation
by Barack and Sago [14].
The master functions can be obtained directly by numerical evolution (solution of PDE’s) in the time domain (TD)

(see e.g., [10, 11, 13, 14, 30, 33–35]) or by numerical integration of ordinary differential equations (ODE’s) for the
Fourier modes in the frequency domain (FD) (see e.g., [15, 36–38]). Each method has strengths and weaknesses. TD
calculations require solving just one equation for each ℓ,m mode and time dependence of the subsequently recon-
structed metric and SF is of direct interest. Disadvantages of TD calculations include (1) modeling the discontinuous
source movement through the finite difference grid [14, 29]; (2) numerical stability of PDE evolution; (3) difficulty
devising numerical schemes of adequately small truncation error; and (4) challenges in posing outgoing wave boundary
conditions at finite radius. In contrast, in FD calculations (1) the numerical errors tend to be much smaller (i.e., by
solving ODE’s); (2) outgoing wave boundary conditions are handled mode-by-mode and extrapolated to infinity and
to the black hole event horizon; and (3) the discontinuous source presents few difficulties in computing (at least) the
Fourier mode functions Rℓmn(r). However, FD methods require, for eccentric orbits, computing and summing over
numerous harmonics n of the radial libration frequency Ωr for each ℓ,m and transformation to the TD is nontrivial
given the singular source terms.
Barack, Ori, and Sago (BOS) [38] highlighted the latter difficulty. They used the model problem of a scalar field

Φ(t, r, θ, ϕ) generated by a scalar point charge in eccentric orbit on Schwarzschild. The spherical harmonic modes
φℓm(t, r) = rΦℓm(t, r) satisfy a wave equation with a singular source, Sscalar

ℓm (t, r) = Cℓm(t, r) δ[r − rp(t)]. Here
Cℓm(t, r) is some smooth function and r = rp(t) describes the radial libration of the particle’s worldline between two
turning points. In the FD, ODE’s are solved for the Fourier-harmonic modes Rℓmn(r). These mode functions are,
at each point r, Fourier series coefficients. The resulting Fourier series converges for the piecewise continuous (C0)
φℓm(t, r) but the singular nature of the source S makes φℓm(t, r) converge slowly in the region traversed by the point
charge. The radial derivative ∂rφℓm is however discontinuous at r = rp(t) and its Fourier series only converges, in the
usual sense [39], almost everywhere. The attempt to assemble the radial derivative from the Fourier series is plagued
by the Gibbs phenomenon; the series converges to the mean value at the discontinuity and the series “overshoots”
and fails to converge properly in the limit as both n → ∞ and r → rp(t)

±.
BOS circumvented the difficulty with a new method of extended homogeneous solutions. In brief, they use FD

analysis to find Fourier-harmonic mode solutions to the homogeneous equation, valid outside and on either side of the
source libration region. The associated Fourier series converge exponentially fast to homogeneous solutions of the TD
wave equation. They then analytically extend both homogeneous TD solutions into the source libration region up to
the instantaneous position of the point charge. Summed to adequately high order, the two homogeneous solutions
match in value at rp(t), as expected. With the field represented in this way, the left and right derivatives can be
accurately determined. BOS argued that the method should work for other problems with similar wave equations,
including the Teukolsky equation.
We show in this paper that the method can indeed be extended to the case of gravitational perturbations computed in

the RWZ formalism, and apply the method to a large set of Fourier-harmonic modes stemming from a mass in eccentric
orbit on Schwarzschild. (Note that Barack and Sago [14] previously implemented this method in the gravitational
case but only for the ℓ = 0, 1 modes in Lorenz gauge.) An important distinction arises: in the gravitational case the
source distribution in the Regge-Wheeler gauge contains both delta function and derivative-of-delta function terms,

Sℓm(t, r) = Gℓm(t, r) δ[r − rp(t)] + Fℓm(t, r) δ′[r − rp(t)], (1.1)

with Gℓm(t, r) and Fℓm(t, r) being smooth functions. As a consequence the master functions have a jump discontinuity
at r = rp(t) (referred to sometimes as a C−1 function). The resulting extension of the homogeneous solutions, Ψ+

ℓm

and Ψ−
ℓm, written as

Ψℓm(t, r) = Ψ+
ℓm(t, r) θ[r − rp(t)] + Ψ−

ℓm(t, r) θ[rp(t)− r], (1.2)

where θ[r− rp(t)] is the Heaviside function, is a type of weak solution to the inhomogeneous master equation. Thus in
the gravitational case in RWZ gauge the difficulty with local convergence occurs with the master function itself. We
show that the use of distributions, or generalized functions [40], makes possible separate analytic calculation of the
expected jumps in value and slope of Ψℓm. We further demonstrate that the metric perturbation can be accurately
numerically computed, including the time dependent magnitudes of delta function terms that appear in some of the
metric amplitudes in Regge-Wheeler gauge.
This paper is organized as follows. In Sec. II we briefly outline the general mathematical problem of using FD

techniques to solve for perturbations in the RWZ formalism. We also review the standard parameterization of eccentric
orbits. Sec. III concerns the method of extended homogeneous solutions. We first review BOS’s solution for the scalar
field case. We show then our treatment of more general source terms and extension of the method to gravitational
perturbations. Sec. IV provides numerical results on the computed Fourier-harmonic mode functions, including
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convergence tests and calculation of radiated gravitational wave energy and angular momentum. In particular, the
energy and angular momentum fluxes are shown to agree with past published values. More importantly, the method
is shown to provide a solution to the field and its derivatives that is convergent exponentially fast everywhere. Then
in Sec. V, we show that the equations which allow the metric to be obtained from the master functions, along with
an understanding of the form of the weak solutions for Ψeven

ℓm and Ψodd
ℓm , can be used to determine both the smooth

and distributional parts of the metric. App. A discusses fully evaluated forms of distributional source terms. App. B
gives the details of such source terms for our case of eccentric orbits on Schwarzschild. In App. C we concisely
summarize the metric perturbation formalism in the Regge-Wheeler gauge. We show the construction of gauge-
invariant master functions of each parity, and provide the spherical harmonic decomposition of the Einstein equations
and Bianchi identities. App. D concludes this paper with a brief discussion of asymptotic expansions used to set
boundary conditions on the mode functions at large r.
Throughout this paper we use the sign conventions and notation of Misner, Thorne, and Wheeler [41] and use units

in which c = G = 1. We use Schwarzschild coordinates xµ = (t, r, θ, ϕ) except as otherwise indicated.

II. BACKGROUND ON THE STANDARD RWZ APPROACH TO GRAVITATIONAL

PERTURBATIONS IN THE FREQUENCY DOMAIN

In this section we briefly summarize both the standard notation for parameterizing bound orbits on Schwarzschild
and the usual approach to computing gravitational perturbations using the Regge-Wheeler-Zerilli (RWZ) formalism
in the frequency domain (FD). The description of the geodesic motion on the background, in terms of various curve
functions, is used throughout the rest of the paper. The standard FD analysis provides the notation for describing
the Fourier-harmonic modes, and their normalization, and sets the stage for discussion in Sec. III of how gravitational
perturbations can be returned successfully to the time domain (TD). Here, and throughout this paper, we use a
subscript p to indicate evaluation along the worldline of the particle.

A. Bound orbits on a Schwarzschild black hole

Consider bound timelike geodesic motion around a Schwarzschild black hole (i.e., µ → 0). We may for the nonce
use proper time τ to parameterize the geodesic, xµ

p (τ) = [tp(τ), rp(τ), θp(τ), ϕp(τ)], with the associated four-velocity
uµ = dxµ

p/dτ . On Schwarzschild we take θp(τ) = π/2 without loss of generality. The geodesic equations yield
immediate first integrals and allow the trajectory to be described by the conserved energy E and angular momentum
L per unit mass. Alternatively, we can choose the (dimensionless) semi-latus rectum p and the eccentricity e as orbital
parameters (c.f., [14, 15]). A third choice would be use of the periapsis and apapsis, rmin and rmax. We will find all
of these useful in what follows. The latter two parameter pairs are related to each other by

p ≡ 2rmaxrmin

M(rmax + rmin)
, e ≡ rmax − rmin

rmax + rmin
, (2.1)

or inversely

rmax =
pM

1− e
, rmin =

pM

1 + e
. (2.2)

The specific energy and angular momentum are related to p and e by [15]

E2 =
(p− 2− 2e)(p− 2 + 2e)

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
. (2.3)

The geodesic equations provide the following differential equations for the orbital motion and for the time dependence
of the four-velocity,

dtp
dτ

= ut =
E
fp

,
dϕp

dτ
= uϕ =

L
r2p

,

(

drp
dτ

)2

= (ur)
2
= E2 − U2

p , (2.4)

where

f(r) ≡ 1− 2M

r
, U2(r,L2) ≡ f

(

1 +
L2

r2

)

. (2.5)
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For purposes of numerical integration there is another curve parameter, originally devised by Darwin [42], that
proves useful. Here one introduces a phase angle χ that is related to the radial position on the orbit by the Keplerian-
appearing form

rp (χ) =
pM

1 + e cosχ
. (2.6)

Of course, in the relativistic case χ differs from the true anomaly ϕ. The orbit goes through one radial libration for
each change ∆χ = 2π. The use of χ eliminates singularities in the differential equations at the turning points [15].
Note that at χ = 0, rp = rmin and at χ = π, rp = rmax. (Also note that in this section we are content with making
a slight abuse of notation in jumping from rp(τ) to rp(χ), before ultimately settling on rp(t).) In terms of χ the
equations are

dtp
dχ

=
p2M

(p− 2− 2e cosχ)(1 + e cosχ)2

[

(p− 2)2 − 4e2

p− 6− 2e cosχ

]1/2

, (2.7)

dϕp

dχ
=

[

p

p− 6− 2e cosχ

]1/2

, (2.8)

and

dτp
dχ

=
Mp3/2

(1 + e cosχ)2

[

p− 3− e2

p− 6− 2e cosχ

]1/2

. (2.9)

We use Eq. (2.7) to derive the fundamental frequency and period of radial motion,

Ωr ≡
2π

Tr
, Tr ≡

∫ 2π

0

(

dtp
dχ

)

dχ. (2.10)

It is also of importance to have the average rate at which the azimuthal angle advances, found by averaging the
angular frequency dϕp/dt over a radial libration via

Ωϕ ≡ 1

Tr

∫ Tr

0

(

dϕp

dt

)

dt. (2.11)

While Tr represents the lapse of coordinate time in a radial libration, the time Tϕ = 2π/Ωϕ has no particular physical
significance [43]. Finally, because wave equation source functions contain terms like δ[r − rp(t)] and δ′[r − rp(t)], we
have need of derivatives of rp(t),

ṙ2p(t) = f2
p −

f2
p

E2
U2
p , r̈p(t) =

2Mfp
r2p

−
f2
p

E2r2p

[

3M − L2

rp
+

5ML2

r2p

]

, (2.12)

where we let a dot signify differentiation with respect to coordinate time.

B. The Regge-Wheeler-Zerilli formalism in the frequency domain

As discussed in the Introduction, we use the RWZ approach to gravitational perturbations and use specifically the
even-parity Zerilli-Moncrief function Ψeven

ℓm [22] and the odd-parity Cunningham-Price-Moncrief function Ψodd
ℓm [24].

See Martel and Poisson [25] for recent discussion and references therein. Both of these functions satisfy wave equations
of the form

[

− ∂2

∂t2
+

∂2

∂r2∗
− Vℓ(r)

]

Ψℓm(t, r) = Sℓm(t, r), (2.13)

where r∗ = r+2M ln(r/2M − 1) is the usual tortoise coordinate. The potential used in Eq. (2.13) is either the Zerilli
or Regge-Wheeler potential depending on whether the parity is even or odd, respectively.
The source terms also depend upon parity but further depend on which specific master functions are chosen. Martel

and Poisson gave the covariant form of Seven
ℓm and Sodd

ℓm (see App. C for these in Schwarzschild coordinates) that are
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associated with the Zerilli-Moncrief and Cunningham-Price-Moncrief functions. Martel [30] derived the detailed form
of Seven

ℓm for a point mass in eccentric orbit. Sopuerta and Laguna [35] derived the detailed form of Sodd
ℓm for eccentric

orbits (see also Field et al. [44]). We give in App. B detailed expressions for these sources in a form that is useful for
both mode integrations and metric reconstruction.
In each case the source term has the following general form

Sℓm(t, r) = G̃ℓm(t) δ[r − rp(t)] + F̃ℓm(t) δ′[r − rp(t)], (2.14)

where G̃ℓm(t) and F̃ℓm(t) are smooth (differentiable) functions. Note that the source, as written here, differs from
notation originally used by Martel [30] (who retained smooth functions of r and t, as in Eq. (1.1)). Our expression
uses the delta function, and parts integration, to yield a fully evaluated form along the worldline of the particle (see

App. A), making G̃ℓm(t) and F̃ℓm(t) unique functions of time only.
Eq. (2.13) can be solved directly in the TD–an approach that has received much attention lately. In this paper we

are interested instead in extending the reach of FD analysis, and the balance of this section provides a brief review of
the standard FD solution. We note in passing that a hybrid approach is possible–using FD analysis for low ℓ and m
modes while using TD calculation for high order modes [45].
On Schwarzschild, eccentric orbits are typically not closed and therefore the motion is not simply periodic as seen

by an asymptotic static observer. The radial libration is periodic (but not typically sinusoidal) with fundamental

frequency Ωr. The smooth functions G̃ℓm(t) and F̃ℓm(t), which depend upon the particle’s radial and angular mo-
tion, have terms that are periodic with fundamental frequency Ωr, but also involve a term that is proportional to
exp[−imϕp(t)]. This latter term comes from restricting the spherical harmonics Y ∗

ℓm(θ, ϕ) with δ[ϕ − ϕp(t)]. The
function ϕp(t) advances with an average rate Ωϕ, but is modulated (in an eccentric orbit) by a function ∆ϕ(t) that
is periodic with fundamental frequency Ωr. Hence, the source Sℓm(t, r), and therefore the field Ψℓm(t, r), can be rep-
resented by a Fourier series with fundamental frequency Ωr, but multiplied by a phase factor that advances linearly
with rate Ωϕ. These fields would appear simply periodic to an observer whose frame rotates at rate Ωϕ [15]. To a
static observer, a given mode ℓ and m will have a spectrum of harmonics offset by mΩϕ; taken together the full field
will have a two-fold countably infinite frequency spectrum,

ω = ωmn ≡ mΩϕ + nΩr, m, n ∈ Z. (2.15)

Accordingly, the wave equation (2.13) Fourier transforms into a set of ODE’s,
[

d2

dr2∗
− Vℓ(r) + ω2

mn

]

Rℓmn(r) = Zℓmn(r), (2.16)

where Rℓmn(r) and Zℓmn(r) are Fourier harmonic amplitudes

Rℓmn(r) ≡
1

Tr

∫ Tr

0

dt Ψℓm(t, r) eiωmnt, Zℓmn(r) ≡
1

Tr

∫ Tr

0

dt Sℓm(t, r) eiωmnt. (2.17)

The series representations of Ψℓm(t, r) and Sℓm(t, r) are

Ψℓm(t, r) =
∞
∑

n=−∞

Rℓmn(r) e
−iωmnt, Sℓm(t, r) =

∞
∑

n=−∞

Zℓmn(r) e
−iωmnt, (2.18)

and are subject to the usual provisos of Fourier theory regarding for what r Eqs. (2.18) converge to the original
functions.
In order to find the solution to Eq. (2.16), we start by solving the homogeneous version of that equation, obtaining

two independent solutions. Using the terminology of Galt’sov [46] (see also [47] for a clear presentation of basis
modes), the R−

ℓmn(r) solution is computed by setting a unit normalized “in” wave boundary condition of

R̂−
ℓmn(r∗ → −∞) = e−iωmnr∗ , (2.19)

near the horizon. Similarly, the R+
ℓmn(r) solution arises from setting a unit normalized “up” boundary condition of

R̂+
ℓmn(r∗ → +∞) = eiωmnr∗ , (2.20)

at large r∗. Formally, these homogeneous solutions are both valid in the entire range 2M < r < ∞. The standard
method of integrating the Green function and source (the method of variation of parameters) gives the solution to
the inhomogeneous equation (2.16),

Rℓmn(r) = c+ℓmn(r)R̂
+
ℓmn(r) + c−ℓmn(r)R̂

−
ℓmn(r), (2.21)
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where

c+ℓmn(r) ≡
1

Wℓmn

∫ r

rmin

dr′
R̂−

ℓmn(r
′)Zℓmn(r

′)

f(r′)
, c−ℓmn(r) ≡

1

Wℓmn

∫ rmax

r

dr′
R̂+

ℓmn(r
′)Zℓmn(r

′)

f(r′)
, (2.22)

and

Wℓmn ≡ R̂−
ℓmn

dR̂+
ℓmn

dr∗
− R̂+

ℓmn

dR̂−
ℓmn

dr∗
, (2.23)

is the Wronskian. Outside the source libration region, Eq. (2.21) reduces to the normalized homogeneous solutions
that are properly connected through the source region,

R+
ℓmn(r) = C+

ℓmnR̂
+
ℓmn(r), r ≥ rmax,

R−
ℓmn(r) = C−

ℓmnR̂
−
ℓmn(r), r ≤ rmin,

(2.24)

where C±
ℓmn are the values of c±ℓmn(r) evaluated at the ends of the range of the source,

C+
ℓmn ≡ c+ℓmn (rmax) , C−

ℓmn ≡ c−ℓmn (rmin) . (2.25)

III. THE METHOD OF EXTENDED HOMOGENEOUS SOLUTIONS IN THE GRAVITATIONAL CASE

A. Brief review of Barack, Ori, and Sago’s method of extended homogeneous solutions

As a model problem, Barack, Ori, and Sago (BOS) considered the scalar field Φ produced by a scalar point charge
in an eccentric orbit on a Schwarzschild background. The spherical harmonic amplitudes φℓm(t, r) = rΦℓm(t, r) of the
scalar field satisfy RWZ-like equations fully analogous to Eq. (2.13) but with source functions that only depend upon
a Dirac delta function,

Sscalar
ℓm = Cℓm(t, r) δ[r − rp(t)]. (3.1)

Here Cℓm(t, r) is a smooth function that is derived from the particle’s point-like charge density ρ.
With a delta function source the amplitudes φℓm(t, r) are left piecewise continuous (C0) at the instantaneous

particle location rp(t) but lose all differentiability there. BOS argued that this behavior, while surmountable in TD
calculations, would cause difficulties for Fourier synthesis in FD calculations. As they convincingly demonstrated
with their first two figures, while φℓm(t, r) converges exponentially fast outside the radial libration region, the Gibbs
phenomenon is responsible for a very slow convergence of φℓm(t, r) between rmin and rmax. Furthermore, the radial
derivative ∂rφℓm is discontinuous at rp(t) and suffers the full effects of the Gibbs phenomenon–the Fourier series
converges to the mean value at the discontinuity and partial sums (−N ≤ n ≤ N) overshoot in the limit as both
N → ∞ and r → rp(t)

±. This behavior is a serious obstacle to straightforward use of FD calculations in SF
regularization.
As a solution to this problem, BOS developed the method of extended homogeneous solutions (EHS). Their method

involves using the Fourier-harmonic modes of the homogeneous equation in the FD to synthesize homogeneous solu-
tions φ−

ℓm(t, r) and φ+
ℓm(t, r) to the TD wave equation. The Fourier convergence of these homogeneous solutions is

exponentially rapid. While these solutions exist in the entire radial domain (2M < r < ∞), ordinarily φ−
ℓm(t, r) and

φ+
ℓm(t, r) would be viewed as meaningful in their respective source-free regions, r < rmin and r > rmax. The heart of

the BOS method lies in extending both of these solutions into the region of radial libration up to the instantaneous
position of the particle.
BOS demonstrated the method numerically using the monopole term of Φ. A key condition for success of the

method is that, as N → ∞ in the partial sums, one finds

lim
r→rp(t)

φ−
ℓm(t, r) = lim

r→rp(t)
φ+
ℓm(t, r), (3.2)

as expected analytically. This was observed numerically and the method as a whole converges rapidly since the FD
solution of the inhomogeneous equation is never summed. BOS went on to argue that the method could be extended
to any ℓ and m for scalar, electromagnetic, or gravitational fields.
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B. Application to gravitational perturbations

In this section we detail our application of the method to the gravitational case in RWZ gauge. It is worth first
observing the magnitude of the problem to be circumvented. Given the gravitational source (2.14), and the solution
to Eq. (2.16) afforded by Eq. (2.21), the standard approach would represent the inhomogeneous solution to the master
equation (2.13) by

Ψℓm(t, r) ∼ Ψstd
ℓm(t, r) =

+N
∑

n=−N

Rℓmn(r) e
−iωmnt, N → ∞, (3.3)

where we use the ∼ to indicate that the equality between the actual solution Ψℓm and Ψstd
ℓm holds almost everywhere

for N → ∞.
Looking ahead somewhat, we use our numerical code to obtain a particular spherical harmonic amplitude, Ψ22(t, r)

(ℓ = 2, m = 2), and its radial derivative, ∂rΨ22(t, r). We can also use the code to assemble the standard partial
Fourier sums (see FIGs. 1 and 2). We find that the Gibbs problem with the standard approach is significantly worse in
the gravitational case (in Regge-Wheeler gauge) than it is for the scalar field. In the present case the field itself has a
discontinuity and the radial derivative is both discontinuous as r → rp(t) and also has a delta function singularity at
rp(t). The left panels of FIGs. 1 and 2 are familiar; the partial sums have difficulty representing the jump discontinuity
and overshoot the exact solution (solid curve). In the right panels, the singularity at rp(t) wreaks havoc on the ability
of the Fourier synthesis to represent the exact solution.
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FIG. 1: The standard FD approach to reconstructing the TD master function and its r derivative. The left panel shows Ψstd
22

and the right shows ∂rΨ
std
22 at t = 51.78M for a particle orbiting with p = 7.50478 and e = 0.188917. This figure is analogous

to FIG. 1 of BOS [38]. Partial sums are computed with Eq. (3.3) and shown for different N . For contrast we plot the converged
solution from the new method with a solid curve (see FIG. 3). The arrow in the right panel gives a notional representation of
the delta function singularity present in ∂rΨ22; the amplitude of this singular term is related to the jump in Ψ22 seen in the
left panel.

On a bright note, outside the range of the source, the standard solution converges exponentially fast. Nevertheless,
in the source region between rmin and rmax the convergence will be algebraic in general and disastrous at the location
of the particle. A discontinuous (or worse, singular) function cannot be accurately represented by a sum of smooth
functions.
We now generalize the EHS method to the gravitational case. We start by recognizing that R±

ℓmn from Eq. (2.24)
are valid solutions to the homogeneous version of Eq. (2.16) throughout the entire domain outside the black hole,

R±
ℓmn(r) = C±

ℓmnR̂
±
ℓmn(r), r > 2M. (3.4)

Next, we use these to define the time-domain extended homogeneous solutions,

Ψ±
ℓm(t, r) ≡

∑

n

R±
ℓmn(r) e

−iωmnt, r > 2M, (3.5)
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FIG. 2: An alternate view of the behavior presented in FIG. 1. A change in the scale in the left panel emphasizes the Gibbs
overshoots in Ψ22. On the right, a zoom-out of the vertical scale more clearly indicates the attempt of the Fourier synthesis to
capture the delta function at rp(t).

which result from inserting R±
ℓmn into Eq. (2.18). The central claim is then that for any t and r the actual solution

to the inhomogeneous wave equation (2.13) is given by

Ψℓm(t, r) = ΨEHS
ℓm (t, r) ≡ Ψ+

ℓm(t, r) θ [r − rp(t)] + Ψ−
ℓm(t, r) θ [rp(t)− r] . (3.6)

The argument made by BOS can be extended to the gravitational case and goes as follows:

• We denote the desired true solution of the inhomogeneous wave equation as Ψℓm. Outside the domain of the
source (r < rmin, rmax < r) Ψℓm = Ψstd

ℓm = ΨEHS
ℓm because there Rℓmn = R±

ℓmn.

• It is assumed that Ψℓm(t, r) is analytic in the entirety of the two regions 2M < r < rp(t) and rp(t) < r (excluding
only a neighborhood of rp(t)).

• Because the homogeneous solutions Ψ±
ℓm are expected to be analytic everywhere, ΨEHS

ℓm (t, r) will be analytic in
the two regions discussed above (excluding only a neighborhood of rp(t)). (See the extended discussion BOS
have about this.)

• Because Ψℓm and ΨEHS
ℓm are identical outside the region of libration, and they are both analytic everywhere up

to the location of the source, they must be equal over that entire domain.

Here we provide an additional justification for the assumed form of the solution given in Eq. (3.6). The source
term of the wave equation is a distribution, or generalized function [40]. Accordingly, any solution of Eq. (2.13)
will be a weak solution–a generalized function itself–with loss of (classic) differentiability at the singular point rp(t).
To determine the suitability of Eq. (3.6) as a solution of Eq. (2.13), we generalize the concept of differentiation to
encompass distributions. Thus, for example, dθ(z)/dz = δ(z). We can then take Eq. (3.6) as an ansatz, substitute in
Eq. (2.13), and determine what conditions are required that it be a (weak) solution. For clarity, in the rest of this
section we suppress the ℓ and m indices.
Rather than use the RWZ equation as it stands, we introduce a coordinate transformation to fix the position of the

singularity. Defining z ≡ r − rp(t), t̄ ≡ t, the derivatives transform as ∂r∗ = f(r)∂z and ∂t = ∂t̄ − ṙp∂z, and the wave
equation (2.13) becomes

L(Ψ) = −∂2
t̄Ψ+

(

f2 − ṙ2p
)

∂2
zΨ+ 2ṙp∂t̄∂zΨ+

(

r̈p + (f∂zf)
)

∂zΨ− VΨ = G̃ δ(z) + F̃ δ′(z). (3.7)

Now we assume that Ψ has the form given in Eq. (3.6) and substitute it into Eq. (3.7). The functions Ψ+ and Ψ−

are differentiable and satisfy the homogeneous equation, L(Ψ±) = 0. A term of the form L(Ψ+) θ(z) + L(Ψ−) θ(−z)
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FIG. 3: The EHS approach to reconstructing the TD master function and its radial derivative. As in FIG. 1, we give ΨEHS
22

and ∂rΨ
EHS
22 at t = 51.78M for a particle orbiting with p = 7.50478 and e = 0.188917. Partial sums of ΨEHS

22 are computed from
Eq. (3.5), with a range of −N ≤ n ≤ N . The full ΨEHS

22 and its r derivative result from N = 10, which gives agreement in the
jumps in ΨEHS

22 and ∂rΨ
EHS
22 to a relative error of 10−10. On the right, the presence of a delta function singularity is notionally

depicted with an arrow. The time dependent amplitude of this singularity is separately computable from the jump in Ψ22.

appears in (3.7) and drops out. Other singular terms remain, created by derivatives of the Heaviside function, and
we are left with

(

f2 − ṙ2p
)

(

J∂rΨKp δ(z) + JΨKp δ′(z)
)

+ 2ṙp∂t̄

(

JΨKp δ(z)
)

+
(

r̈p + (f∂zf)
)

JΨKp δ(z) = G̃ δ(z) + F̃ δ′(z). (3.8)

where

JΨKp(t) ≡ Ψ+ (t, rp(t))−Ψ− (t, rp(t)) , J∂rΨKp(t) ≡ ∂rΨ
+ (t, rp(t)) − ∂rΨ

− (t, rp(t)) (3.9)

are the jumps in Ψ and ∂rΨ at z = 0. Näıvely, we might expect that we can simply equate the coefficients of δ on
the two sides of Eq. 3.8, while doing the same with the δ′ coefficients. However, the δ′ term on the left hand side
must first be fully evaluated (as a function of time) at the location of the particle. To do this, we use the identities
in Eqs. (A1) and (A5), which leaves

(

f2
p − ṙ2p

)

J∂rΨKp δ(z) +
(

f2
p − ṙ2p

)

JΨKp δ′(z)− 2 (fp∂zfp) JΨKp δ(z) + 2ṙp∂t̄

(

JΨKp
)

δ(z)

+
(

r̈p + (fp∂zfp)
)

JΨKp δ(z) = G̃ δ(z) + F̃ δ′(z), (3.10)

where fp ≡ f(rp(t)). Note that there is no comparable expansion on the right side from the F̃ δ′(z) term because

F̃ is already fully evaluated at r = rp(t), by design. From here, we read off the jumps in Ψ and its r derivative at
rp(t) from the coefficients of δ′ and δ, respectively. Returning to Schwarzschild coordinates and using Eqs. (2.12) to
remove r̈p and ṙ2p terms, we find

JΨKp(t) =
E2

f2
pU

2
p

F̃ (t), J∂rΨKp(t) =
E2

f2
pU

2
p

[

G̃(t) +
1

U2
p r

2
p

(

3M − L2

rp
+

5ML2

r2p

)

F̃ (t)− 2ṙp
d

dt

(

JΨKp
)

]

. (3.11)

From the standpoint of the original coordinates, the partial time derivative ∂t̄ becomes the convective, or total, time
derivative along the particle worldline.
These jump conditions amount to internal boundary conditions that are necessary conditions on a solution to the

inhomogeneous wave equation in the TD. They were discussed by Sopuerta and Laguna [35] and also later, with
corrections, by Field et al. [44]. In our FD-based calculations, they provide a powerful check on our transformation
of the solutions back to the TD. Given the indirect way in which the Fourier transform of the source Sℓm determines
the Fourier coefficients of the extended homogeneous solutions, considerable credence is lent to the method in seeing
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the partial sums of ΨEHS
ℓm converge toward satisfying these jump conditions. Secondarily, the jump conditions provide

useful stopping criteria in the numerical method (see Sec. IVC).
While not a focus of this paper, we consider briefly TD simulations. There, to find a unique solution the internal

boundary conditions must be augmented with initial data on a Cauchy surface and, potentially, outer boundary
conditions. Care must be exercised to switch on the source smoothly in the (near) future of the initial value surface
[44] (also Lau, private communication). Additionally, imposed initial data will not typically match long term periodic
behavior induced by the source, and transients will sweep through the system for several dynamical times. In contrast,
in the FD approach, the proper outgoing and downgoing behavior at the outer boundaries is built in from the outset
and only the steady state, periodic behavior is obtained.

C. Computing normalization coefficients in the gravitational case

Finally, we provide some details on how the singular source is integrated to provide the matching normalization
coefficients C+

ℓmn and C−
ℓmn that are used in Eq. (3.4). BOS detail the calculation of normalization coefficients for the

scalar monopole in their App. C. The gravitational case follows the same general idea, but involves some technical
differences and challenges. We start by combining Eqs. (2.25) and (2.22), giving

C±
ℓmn =

1

Wℓmn

∫ rmax

rmin

dr
R̂∓

ℓmn(r)Zℓmn(r)

f(r)
. (3.12)

The FD source term Zℓmn(r) comes from plugging Eq. (2.14) into Eq. (2.17), yielding

Zℓmn(r) =
1

Tr

∫ Tr

0

dt
(

G̃ℓm(t) δ[r − rp(t)] + F̃ℓm(t) δ′[r − rp(t)]
)

eiωmnt. (3.13)

The equivalent integral BOS present for the scalar monopole is their Eq. (C2), which they evaluate immediately by
changing the integration variable from t to rp. Here, with a derivative-of-the-delta function present (in RWZ gauge),
the immediate evaluation of this integral produces terms that are singular at the turning points (ṙp = 0). These terms
are no problem analytically, but they are troublesome when performing the final numerical integration. We therefore
find it is advantageous to delay this integration. Plugging our expression for Zℓmn in above, we have

C±
ℓmn =

1

WℓmnTr

∫ rmax

rmin

dr
R̂∓

ℓmn(r)

f(r)

∫ Tr

0

dt
(

G̃ℓm(t) δ[r − rp(t)] + F̃ℓm(t) δ′[r − rp(t)]
)

eiωmnt. (3.14)

In order to avoid the singularity at the turning points, we switch the order of integration. The integration of the
delta function itself is then straightforward. The derivative of δ term requires an integration by parts. Because of the
compact support of the source term, we can extend the range of integration and no surface terms appear. We are left
with

C±
ℓmn =

1

WℓmnTr

∫ Tr

0

[

1

fp
R̂∓

ℓmn(rp)G̃ℓm(t) +

(

2M

r2pf
2
p

R̂∓
ℓmn(rp)−

1

fp

dR̂∓
ℓmn(rp)

dr

)

F̃ℓm(t)

]

eiωmnt dt, (3.15)

where we use a p subscript to indicate evaluation of a quantity at r = rp(t). Our final integral is analogous to Eq. (C7)
in BOS.
Here is a summary of key details of the application of the method in the gravitational case:

• The EHS method, applied to the gravitational case, gives exponentially converging solutions to Eq. (2.13)
everywhere, including the location of the particle. (See FIG. 4.)

• Working in Regge-Wheeler gauge, the gravitational TD source term contains a delta function and a derivative-
of-the-delta function, which cause Ψℓm to exhibit a jump and ∂rΨℓm to exhibit both a jump and a delta function
singularity at the particle’s location. (See FIG. 3.) In the scalar case, the field is piecewise continuous at the
particle, with a jump in the r derivative. (See FIG. 3 in BOS.)

• Eq. (3.15) is valid for all radiative multipoles (ℓ ≥ 2). The ℓ = 0, 1, modes must be handled separately.

• Martel’s [30] Gℓm(t, r) and Fℓm(t, r) from Eq. (1.1) are not in fully evaluated form. As discussed in App. A, for

a given multipole, unique functions of time F̃ℓm(t) ≡ Fℓm (t, rp(t)) and G̃ℓm(t) ≡ Gℓm (t, rp(t))− ∂rFℓm (t, rp(t))
emerge after fully applying the delta function constraint. We use the tilde to distinguish fully evaluated coeffi-
cients.
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• In practice, we take advantage of the fact that some of the functions in the integrand of Eq. (3.15) are even
over the period of radial libration, while others are odd. Then, rather than integrating over t from 0 → Tr, we
can limit the range of integration to 0 → Tr/2. Further, we change variables to χ, as shown in Sec. II A and
integrate from 0 → π.

• For Ψeven
ℓm we use the Zerilli-Moncrief master function, and for Ψodd

ℓm we use the Cunningham-Price-Moncrief
master function. This formulation works for any master function that obeys a Regge-Wheeler-like equation and
has a source term that can be written in the form of Eq. (2.14).

IV. NUMERICAL METHOD AND RESULTS FROM MODE INTEGRATIONS

A. Algorithmic roadmap

Here, we explain the specific steps our code takes to solve the inhomogeneous wave equation (2.13). There are
several stages to the process, and at each step we compute at least one more order of magnitude accuracy than is
needed at the subsequent step. The code is written in C, and we use the Numerical Recipes adaptive step size fourth
order Runge-Kutta integrator [48].

1. Specify an orbit through a choice of the semi-latus rectum p and eccentricity e.

2. Numerically integrate Eqs. (2.10) and (2.11) to get the fundamental frequencies of the system, Ωr and Ωϕ, and
hence ωmn = mΩϕ + nΩr.

3. Choose a specific ℓ and m. If ℓ +m is even (odd), use even (odd) parity potential and source terms. Choose
starting n. (See Sec. IVC.)

4. Solve the homogeneous version of Eq. (2.16) to get unit normalized radial mode functions, R̂±
ℓmn, in the source-

free region:

• Use the asymptotic expansion (see App. D) to set an “up” plane wave boundary condition at r∗ → +∞, as

in Eq. (2.20). Numerically integrate up to the region of the source at rmax
∗ to get R̂+

ℓmn. (We let r
min/max
∗

be the r∗ value corresponding to rmin/max.)

• Use a convergent Taylor expansion to set an “in” plane wave boundary condition (Eq. (2.19)) at modestly

negative r∗. Numerically integrate up to the region of the source at rmin
∗ to get R̂−

ℓmn.

5. Solve the homogeneous version of Eq. (2.16) to continue the unit normalized radial mode functions, R̂±
ℓmn, into

the source region, while also computing the normalization coefficients C±
ℓmn:

• Simultaneously integrate Eqs. (2.16) and (3.15) from χ = 0 → π (equivalently t = 0 → Tr/2 and r =

rmin → rmax). This gives R̂
−
ℓmn in the region of the source and C+

ℓmn.

• Simultaneously integrate Eqs. (2.16) and (3.15) from χ = −π → 0 (equivalently t = −Tr/2 → 0 and

r = rmax → rmin). This gives R̂
−
ℓmn in the region of the source and C−

ℓmn.

As discussed in Sec. III C, the integrand in Eq. (3.15) contains parts which are even and parts which are odd
over the radial period. By keeping the correct terms, we can get away with efficiently integrating over only half
the period.

6. Use the coefficients to normalize the homogeneous solutions outside and inside the range of the source, as in
Eq. (3.4).

7. Assess whether there is convergence of the partial sum over n. (Again, see Sec. IVC.)

• If yes, we are finished with this ℓ,m mode.

• If no, return to Step 4 with the next n.
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B. Energy and angular momentum fluxes at r∗ = ±∞

To evaluate the energy and angular momentum fluxes at r∗ = ±∞ we use the Isaacson stress-energy tensor. The
energy and angular momentum fluxes, for each ℓ,m mode, can be written as [49]

Ė±
ℓm =

1

64π

(ℓ+ 2)!

(ℓ− 2)!

∣

∣

∣
Ψ̇±

ℓm(t, r)
∣

∣

∣

2

, L̇±
ℓm =

im

64π

(ℓ + 2)!

(ℓ − 2)!
Ψ̇±

ℓm(t, r)Ψ±∗
ℓm (t, r). (4.1)

Here, an asterisk signifies complex conjugation. (We use Ψeven
ℓm when ℓ +m is even and Ψodd

ℓm when ℓ+m is odd. In
general there would be contributions from both Ψeven

ℓm and Ψodd
ℓm for each mode, but our choice of θp = π/2 leads to

one of these functions vanishing for each ℓ and m combination.) In terms of FD amplitudes the expressions become

Ė±
ℓm =

1

64π

(ℓ+ 2)!

(ℓ− 2)!

∑

n,n′

ωmnωmn′R±
ℓmnR

±∗
ℓmn′e

−i(ωmn−ω
mn′)t,

L̇±
ℓm =

m

64π

(ℓ+ 2)!

(ℓ− 2)!

∑

n,n′

ωmnR
±
ℓmnR

±∗
ℓmn′e

−i(ωmn−ω
mn′)t.

(4.2)

As is well known, the fluxes must be suitably averaged over time or space to obtain meaningful, invariant results. We
average these quantities in time over one radial oscillation, which yields

〈

Ė±
ℓm

〉

=
1

64π

(ℓ + 2)!

(ℓ − 2)!

∑

n

ω2
mn

∣

∣

∣
C±

ℓmnR̂
±
ℓmn

∣

∣

∣

2

,
〈

L̇±
ℓm

〉

=
m

64π

(ℓ+ 2)!

(ℓ− 2)!

∑

n

ωmn

∣

∣

∣
C±

ℓmnR̂
±
ℓmn

∣

∣

∣

2

. (4.3)

Here, we have also introduced R±
ℓmn = C±

ℓmnR̂
±
ℓmn. As discussed in App. D, we can write the radial function as

R̂±
ℓmn(r) = J±

ℓmn(r)e
±iωmnr∗ , where J±

ℓmn(r) → 1 as r∗ → ±∞. Therefore, if we set J±
ℓmn = 1, we can evaluate the

fluxes at r∗ = ±∞, leaving

〈

Ė±∞
ℓm

〉

=
1

64π

(ℓ+ 2)!

(ℓ− 2)!

∑

n

ω2
mn

∣

∣C±
ℓmn

∣

∣

2
,

〈

L̇±∞
ℓm

〉

=
m

64π

(ℓ+ 2)!

(ℓ− 2)!

∑

n

ωmn

∣

∣C±
ℓmn

∣

∣

2
. (4.4)

C. Code validation

To compute the total energy and angular momentum fluxes, we must sum Eqs. (4.4) over ℓ and m. The resulting

expressions are formally over the ranges 2 ≤ ℓ ≤ ∞, −ℓ ≤ m ≤ ℓ, −∞ ≤ n ≤ ∞. When computing Ė and L̇
numerically, we put limits on each of these sums. To begin with, the low ℓ modes matter more than the high ones.
But, the more eccentric an orbit, the more ℓ’s must be computed to achieve the same precision in our final values.
For the orbits we considered in Table I, in order to achieve a relative precision of 10−12 in our final flux values, the
highest ℓ necessary was ℓ = 29. (See Sec. IVD.)
Because of the symmetry of the spherical harmonics, the fluxes from any given −m mode are equal to those from the

corresponding +m mode. Therefore, we fold the negative m modes over onto the positive ones, and simply multiply
each positive m mode by two. Additionally, as ℓ gets larger, it is no longer necessary to compute all m values. As can

be seen in Table III, for a given ℓ, the largest Ė
∞/H
ℓm and L̇

∞/H
ℓm contributions come from the m = ℓ mode. We start

at m = ℓ and decrement m until the fluxes are no longer significant. For low ℓ values we still wind up computing all
0 ≤ m ≤ ℓ, but as ℓ increases, we need progressively fewer m modes.
Determining the necessary n’s is a bit more involved. For a given ℓ and m, there is a range, nmin to nmax, over

which we sum in order to achieve our desired precision. Looking at Table III, it is evident that when m = 0, the range
of n is essentially centered on 0. For these modes, we start with n = 0, and compute fluxes for all positive modes.
When we have seen no change to any of the flux values (at a pre-specified level of precision) for several consecutive
modes, we stop and repeat the process for the negative n’s. As m increases, this range of n’s shifts more and more
into the positive. For any ℓ, the m = ℓ mode has far more positive n modes than negative. Eventually, ℓ becomes so
large that nmin > 0 for the m = ℓ mode. For modes where we suspect that nmin > 0, we find it advantageous to start
with a rough sweep of a large range of possible n values. We calculate Ė∞

ℓmn (the energy flux at r = +∞ from one
n mode) to low precision for a small number of n, spaced out over this range. The n for which we find the largest

Ėℓmn will be near the center of the nmin to nmax range. We then perform our high precision mode integrations for all
significant n values above and below this n.
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If we are interested in a local calculation (as one would perform for a SF evaluation), we have a different method for
determining which n’s are significant. We still use the energy fluxes to find the approximate center of the significant
n range, but for the “breaking condition” we compute n’s until the jumps in Ψℓm and ∂rΨℓm converge properly, as
follows:

• Use Eq. (3.5) to compute a partial mode sum approximation of both Ψ±
ℓm(t, rp) and ∂rΨ

±
ℓm(t, rp) for a large

number of times tk throughout the orbit.

• Numerically evaluate the jumps in those partial sums

q
ΨN

ℓm

y
p
≡ Ψ+

ℓm (t, rp)−Ψ−
ℓm (t, rp) ,

q
∂rΨ

N
ℓm

y
p
≡ ∂rΨ

+
ℓm (t, rp)− ∂rΨ

−
ℓm (t, rp) , (4.5)

for those times tk.

• Compute the analytical values of
q
ΨA

ℓm

y
p
and

q
∂rΨ

A
ℓm

y
p
derived in Sec. III B for those times tk.

• If
q
ΨN

ℓm

y
p
=

q
ΨA

ℓm

y
p
and

q
∂rΨ

N
ℓm

y
p
=

q
∂rΨ

A
ℓm

y
p
at all times tk, to a chosen precision, we have computed

enough n modes.

• Otherwise more n modes are needed. As in the flux computation case above, we perform the mode calculations
for the n values above our starting n, and once that partial sum has converged to our desired precision, we solve
for the n’s below our starting n until the jump values agree.

D. Results

One of our most important results is the exponential convergence of ΨEHS
ℓm and its r derivative at the location of

the particle. FIG. 3 shows a partial sum of these two quantities converging after only a few modes. Compare this to
FIGs. 1 and 2, which shows the standard FD approach. In particular, note in those figures the failure of the standard
approach to accurately represent ∂rΨℓm, even after a large number of modes. This function is particularly badly
behaved in the standard approach as smooth functions attempt to capture a delta function.
Also of note is FIG. 4, which shows that the convergence from the method of extended homogeneous solutions is

indeed exponential, all the way up to the location of the particle. Fast and accurate computation of Ψℓm and ∂rΨℓm

at rp(t) will eventually be critical for reliable local SF calculations.
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FIG. 4: A plot of the convergence of the master function using the two methods. For a particle orbiting with p = 7.50478 and
e = 0.188917 at t = 51.78M we compute the master function Ψ22(nmax) by summing over modes ranging from −nmax ≤ n ≤

nmax for nmax = 15. We plot the log of the difference between Ψ22(nmax) and the partial sum Ψ22(N), for different N < nmax.
For the standard approach (left), we see exponential convergence in the homogeneous region, but only algebraic convergence
in the region of the source. The method of extended homogeneous solutions (right) yields exponentially converging results
at all points outside and inside the region of the source. The method of extended homogeneous solutions gives exponential
convergence for ∂rΨ

EHS

ℓm as well.
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Ė∞
ℓm

(

M2/µ2
)

ĖH
ℓm

(

M2/µ2
)

L̇∞
ℓm

(

M/µ2
)

L̇H
ℓm

(

M/µ2
)

p = 7.50478, e = 0.188917

This Paper, ℓmax = 23 3.16899989185 ×10−4 5.23247295625 ×10−7 5.96755215609 ×10−3 8.71943028067 ×10−6

Fujita et al. 3.16899989184 ×10−4 N/A 5.96755215608 ×10−3 N/A

p = 8.75455, e = 0.764124

This Paper, ℓmax = 29 2.12360313360 ×10−4 2.27177440621 ×10−6 2.77735939025 ×10−3 2.22781961809 ×10−5

Fujita et al. 2.12360313326 ×10−4 N/A 2.77735938996 ×10−3 N/A

TABLE I: Total energy and angular momentum fluxes for eccentric orbits, compared with those from Fujita et al., published
in [14].

Ė∞
ℓm

(

M2/µ2
)

ĖH
ℓm

(

M2/µ2
)

L̇∞
ℓm

(

M/µ2
)

L̇H
ℓm

(

M/µ2
)

p = 10, e = 0.1

This Paper 6.31752474718 ×10−5 1.53365819446 ×10−8 1.95274165241 ×10−3 4.48832141611 ×10−7

Fujita et al. 6.31752474720 ×10−5 1.53365819445 ×10−8 N/A N/A

p = 10, e = 0.5

This Paper 9.27335011599 ×10−5 1.41298859263 ×10−7 1.97465149446 ×10−3 2.15617302381 ×10−6

Fujita et al. 9.27335011503 ×10−5 1.41298859260 ×10−7 N/A N/A

p = 10, e = 0.7

This Paper 9.46979134556 ×10−5 3.55415030147 ×10−7 1.63064691133 ×10−3 4.20771917244 ×10−6

Fujita et al. 9.46979134409 ×10−5 3.55415030114 ×10−7 N/A N/A

p = 10, e = 0.9

This Paper 4.194264692 ×10−5 3.652142848 ×10−7 5.982866119 ×10−3 3.518978461 ×10−6

Fujita et al. 4.19426469206 ×10−5 3.65214284306 ×10−7 N/A N/A

TABLE II: Energy and angular momentum fluxes for eccentric orbits, compared with those from Fujita et al. [51]. Partial
sums for all four orbits are truncated at ℓmax = 20 for both papers. Fujita et al. obtained their numbers from integrating the
Teukolsky equation. We include this table to show the agreement of our horizon energy flux values.

In order to check our code’s accuracy, we computed energy and angular momentum fluxes for circular and eccentric
orbits. Our circular orbit fluxes agree, mode-by-mode, with published results (e.g. Cutler et al. [50]) to high precision.
For eccentric orbits, we are only aware that total energy and angular momentum fluxes have been published. Our
FD results agree with the fluxes at r → ∞ of Fujita et al., published in [14] to at least 10−9. These are included in
Table I. Fujita et al. have also published horizon energy fluxes [51], which we agree with, to at least 10−9 for a range
of eccentricities. These are given in Table II.
For those wishing to reproduce our results, in Table III we give mode-by-mode fluxes up to ℓ = 5 at r = ∞ and

down the black hole at r = 2M for a particle in orbit with p = 8.75455 and e = 0.764124. Included are the ranges of
n modes summed over to achieve these results.
As expected, our code is more efficient for low eccentricities. The first orbit in Table I (p = 7.50478, e = 0.188917),

runs in under a half hour on a single processor machine, giving the total flux for all 2 ≤ ℓ ≤ 23 (although note the
limits on m and n mentioned in the previous subsection) to a fractional error of 10−12. As e increase, though, run
times increase greatly. The second orbit in that table (p = 8.75455, e = 0.764124) takes six hours to achieve the same
accuracy for all necessary 2 ≤ ℓ ≤ 29. And, when e = 0.9 for 2 ≤ ℓ ≤ 20 in the last row of Table II, we had to raise
our fractional error to 10−10 in order to get a run time of eighteen hours.
Clearly, as e gets close to 1, FD methods will lose out to TD codes, which handle high eccentricities with more

ease. Still for 0 ≤ e . 0.9, our run times are not unreasonable when considering the high accuracy we achieve.

V. RECONSTRUCTION OF THE METRIC PERTURBATION AMPLITUDES

The full benefit of having complete and highly converged solutions for the master functions lies in using them
to reconstruct the metric. Ultimately, one wants to use the information, along with an appropriate regularization
scheme, to compute the self force. A developed approach to doing this is the mode-sum regularization method [52],
which makes use of Lorenz gauge. Here we use the information encoded in the master functions to compute accurately
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ℓ m Ė∞
ℓm

(

M2/µ2
)

ĖH
ℓm

(

M2/µ2
)

L̇∞
ℓm

(

M/µ2
)

L̇H
ℓm

(

M/µ2
)

nmin nmax

2 0 1.27486196317 ×10−8 1.66171571270 ×10−8 0 0 -74 76

1 1.15338054092 ×10−6 3.08063328605 ×10−7 1.44066000650 ×10−5 2.77518962557 ×10−6 -62 78

2 1.55967717209 ×10−4 1.84497995136 ×10−6 2.07778922470 ×10−3 1.85014840343 ×10−5 -47 82

3 0 2.53527063853 ×10−11 1.23159713946 ×10−10 0 0 -84 85

1 9.66848921204 ×10−10 2.47099909183 ×10−9 1.93528074730 ×10−8 2.10622579957 ×10−8 -66 87

2 6.17859627641 ×10−7 1.29412677182 ×10−8 7.54192378736 ×10−6 1.23105502765 ×10−7 -48 93

3 3.71507683858 ×10−5 8.07017762262 ×10−8 4.67102471030 ×10−4 7.99808068724 ×10−7 -34 99

4 0 1.14820411420 ×10−12 1.50591364139 ×10−12 0 0 -80 80

1 4.58377338924 ×10−12 2.04365875527 ×10−11 4.50183584238 ×10−11 1.63314060565 ×10−10 -77 94

2 1.59253324588 ×10−9 1.62313574547 ×10−10 2.40079049220 ×10−8 1.51029853345 ×10−9 -51 93

3 2.44084848389 ×10−7 6.50157912447 ×10−10 2.91633622588 ×10−6 6.23354901544 ×10−9 -34 106

4 1.12530626433 ×10−5 4.66621235553 ×10−9 1.37037638198 ×10−4 4.59633939401 ×10−8 -31 114

5 0 2.93546198223 ×10−15 1.68762144246 ×10−14 0 0 -94 94

1 1.66341467681 ×10−13 2.73842758121 ×10−13 1.99357707469 ×10−12 2.10992243393 ×10−12 -77 92

2 1.72172010497 ×10−12 1.49178217605 ×10−12 2.59625132235 ×10−11 1.34307539131 ×10−11 -63 100

3 1.73935003471 ×10−9 1.01021973779 ×10−11 2.26258058740 ×10−8 9.56603438989 ×10−11 -46 109

4 9.01787571564 ×10−8 3.64807139949 ×10−11 1.06079902733 ×10−6 3.50623060712 ×10−10 -29 121

5 3.74854353561 ×10−6 3.02291684853 ×10−10 4.47051998131 ×10−5 2.96568439531 ×10−9 -19 130

Total 2.10242675876 ×10−4 2.27174892328 ×10−6 2.75262625234 ×10−3 2.22779475534 ×10−5

TABLE III: Energy and angular momentum fluxes for an eccentric orbit with p = 8.75455, e = 0.764124. Note that we have
folded the negative m modes onto the corresponding positive m modes and doubled the flux values in this table for m > 0.

the spherical harmonic amplitudes of the metric perturbation in Regge-Wheeler gauge. The ability to determine the
metric at all locations, including at the particle location, should serve as a useful starting point for computing the
SF, either via a gauge transformation or an alternative regularization technique.
We summarize the metric perturbation (MP) formalism in App. C, where the definitions of the master functions,

Ψeven
ℓm and Ψodd

ℓm , are given in terms of spherical harmonic amplitudes of the metric and their radial derivatives. We re-
serve for this section giving the equations, (5.5) and (5.15), for reconstructing the metric amplitudes in Regge-Wheeler
gauge from the master functions. These equations involve first derivatives, and in some cases second derivatives, of
the master functions. They also involve spherical harmonic projections of the stress-energy tensor. Based on the form
(1.2) anticipated in a master function, both of the abovementioned facts contribute to an expectation that the MP
amplitudes might have point-singular behavior at rp(t) in the form of both δ and δ′ terms. We show that all potential
δ′ terms cancel out. However, in general a MP amplitude might have a functional form

M(t, r) = M+(t, r) θ(z) +M−(t, r) θ(−z) +MS(t) δ(z), z ≡ r − rp(t), (5.1)

where M+ (M−) represents a smooth function in the region r > rp (r < rp), and MS is a smooth function of t alone,
giving the magnitude of the singularity. We examine MS for all six non-zero MP amplitudes in the Regge-Wheeler
gauge, and find three such terms to be nonvanishing. Throughout the rest of this section we again suppress spherical
harmonic labels ℓ and m.
As mentioned the metric reconstruction equations, of each parity, require spherical harmonic projections of the

stress-energy tensor. For a particle of mass µ, traveling on a geodesic of the background spacetime, with four-velocity
uµ, it is

T µν (xα) = µ

∫

dτ√−g
uµ(τ)uν(τ) δ4 [x− xp(τ)] . (5.2)

In Schwarzschild coordinates the determinant of the metric is g = −r4 sin2 θ. After changing the variable of integration
to coordinate time t, we have

T µν (xα) =
µuµ(t)uν(t)

ut(t) rp(t)2
δ[r − rp(t)] δ[ϕ− ϕp(t)] δ[θ − π/2]. (5.3)

Spherical harmonic projections of T µν appear as source terms in the decomposed Einstein equations (App. C) and
these are in turn combined to produce the source terms for the master equations (App. B). In the subsections that
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follow, we evaluate the time dependence of all of the stress-energy tensor projections. We use the definitions

Λ(r) ≡ λ+
3M

r
, λ ≡ (ℓ+ 2) (ℓ− 1)

2
. (5.4)

A. Even parity

The even parity MP amplitudes are expressed in terms of Ψeven and the source terms by (see [30])

K(t, r) = f∂rΨeven +AΨeven −
r2f2

(λ+ 1)Λ
Qtt,

hrr(t, r) =
Λ

f2

[

λ+ 1

r
Ψeven −K

]

+
r

f
∂rK,

htr(t, r) = r∂t∂rΨeven + rB ∂tΨeven −
r2

λ+ 1

[

Qtr +
rf

Λ
∂tQ

tt

]

,

htt(t, r) = f2hrr + fQ♯,

(5.5)

where

A(r) ≡ 1

rΛ

[

λ(λ + 1) +
3M

r

(

λ+
2M

r

)]

, B(r) ≡ 1

rfΛ

[

λ

(

1− 3M

r

)

− 3M2

r2

]

. (5.6)

These equations result from the definition (C6) of Ψeven and its substitution into the even-parity field equations (C3).
The even-parity projections of the stress-energy tensor that appear in the equations above are defined by Eqs. (C4).
By enforcing the delta function constraints, they can be written in fully evaluated form (see App. B), with each having
a time dependent magnitude multiplying the radial delta function

Qab(t, r) ≡ qab(t) δ[r − rp(t)], Qa(t, r) ≡ qa(t) δ[r − rp(t)],

Q♭(t, r) ≡ q♭(t) δ[r − rp(t)], Q♯(t, r) ≡ q♯(t) δ[r − rp(t)],
(5.7)

where we use a lowercase q as the base symbol of the corresponding magnitude. With Eq. (2.4) giving the four-velocity
uµ, the stress-energy tensor and Eqs. (C4) can be used to find

qtt(t) = 8πµ
E

r2pfp
Y ∗, qrr(t) = 8πµ

fp
Er2p

(

E2 − U2
p

)

Y ∗, qtr(t) = 8πµ
ur

r2p
Y ∗,

qt(t) =
16πµ

ℓ(ℓ+ 1)

L
r2p

Y ∗
ϕ , qr(t) =

16πµ

ℓ(ℓ+ 1)

L
E
fp
r2p

urY ∗
ϕ ,

q♭(t) = 8πµ
L2

E
fp
r4p

Y ∗, q♯(t) = 32πµ
(ℓ− 2)!

(ℓ+ 2)!

L2

E
fp
r2p

Y ∗
ϕϕ.

(5.8)

Here, Y , Yϕ, and Yϕϕ are shorthand for the even-parity scalar, vector, and tensor spherical harmonics, respectively,
evaluated along the worldline at θ = π/2 and ϕ = ϕp(t).
Now consider the reconstruction of the MP amplitude K, given in Eq. (5.5). Using the expected functional form of

Ψ given in Eq. (1.2), K obviously does fit the general form (5.1) claimed above. In fact, we find

K±(t, r) = f∂rΨ
± +AΨ±, KS(t) = fpJΨKp −

r2pf
2
p

(λ+ 1)Λp
qtt = 0, (5.9)

where the vanishing of KS follows from use of Eq. (3.11) for JΨKp, and qtt from Eq. (5.8). Therefore, we see that the
even-parity metric function K in Regge-Wheeler gauge is (only) a C−1 function at the location of the particle.
Using the same approach to evaluate hrr in Eq. (5.5) we have

h±
rr(t, r) =

Λ

f2

[

λ+ 1

r
Ψ± −K±

]

+
r

f
∂rK

±, hS
rr(t) =

rp
fp

JKKp = rpJ∂rΨKp +
rpAp

fp
JΨKp. (5.10)

Here, we have extended in a natural way the use of the J Kp notation to let JKKp represent the jump in K at z = 0. We
find that the Regge-Wheeler metric function hrr is not only discontinuous across rp(t) but also has a point-singular
term, which is an artifact of Regge-Wheeler gauge.
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The htr function is more subtle than the previous two. Looking at Eq. (5.5), we need the following terms involving
Ψ,

rB ∂tΨ = rB ∂tΨ
+ θ(z) + rB ∂tΨ

− θ(−z)− rpBpṙpJΨKp δ(z),

r∂t∂rΨ = r∂t∂rΨ
+θ(z) + r∂t∂rΨ

−θ(−z) +

[

rp
d

dt

(

JΨKp
)

+ ṙpJΨKp − rpṙpJ∂rΨKp
]

δ(z)− rpṙpJΨKp δ′(z).
(5.11)

On the right side of these equations we have evaluated all the δ and δ′ coefficients at z = 0 with Eqs. (A1) and (A5)
(fully evaluated form). The singular terms that arise in these expressions can be grouped with the similarly singular
contributions from the source terms,

r2

λ+ 1
Qtr =

r2p
λ+ 1

qtrδ(z),

r3f

(λ+ 1)Λ
∂tQ

tt =
1

(λ+ 1)Λp

[

r3pfp
dqtt

dt
+

3λr2p + 12Mrp − 4λMrp − 18M2

Λp
ṙpq

tt

]

δ(z)−
r3pfp

(λ+ 1)Λp
ṙpq

tt δ′(z).

(5.12)

Upon carefully checking the time dependence of qtt and the jump in Ψ, we find that the δ′ terms cancel out. There
are multiple δ terms, but after using the expressions for JΨKp, J∂rΨKp in (3.11) and the relevant q’s in (5.8), most of
the terms cancel and we are left with

h±
tr(t, r) = r∂t∂rΨ

± + rB ∂tΨ
±, hS

tr(t) = E2 ṙp
fpU2

p

q♯. (5.13)

Finally, the htt term is simple. We insert Eq. (5.10) into the field equation for htt and get

h±
tt(t, r) = f2h±

rr, hS
tt(t) = f2

ph
S
rr + fpq

♯. (5.14)

So, we see that in Regge-Wheeler gauge K is C−1 with no singularity along the worldline of the particle, but the
three even-parity MP amplitudes in the “t, r sector” have point-singular artifacts given by Eqs. (5.10), (5.13), (5.14).

B. Odd parity

Once Ψodd has been computed, the odd-parity MP amplitudes can be reconstructed via

ht(t, r) =
f

2
∂r (rΨodd)−

r2f

2λ
P t, hr(t, r) =

r

2f
∂tΨodd +

r2

2λf
P r, (5.15)

(see [31]). These equations follow from the definition (C14) and its substitution into the odd-parity field equations
(C11). Similar to before, we define the lowercase p’s to be the time-dependent magnitudes of the radial delta function
after fully evaluating the odd-parity projections of the stress-energy tensor

P a(t, r) ≡ pa(t) δ[r − rp(t)], P (t, r) ≡ p(t) δ[r − rp(t)]. (5.16)

Also as before, we use the time dependence of the four-velocity and the stress-energy tensor to determine these
magnitudes for eccentric motion on Schwarzschild,

pt(t) =
16πµ

ℓ(ℓ+ 1)

L
r2p

X∗
ϕ, pr(t) =

16πµ

ℓ(ℓ+ 1)

L
E
fp
r2p

urX∗
ϕ, p(t) = 16πµ

(ℓ− 2)!

(ℓ+ 2)!

L2

E
fp
r2p

X∗
ϕϕ. (5.17)

Here, Xϕ and Xϕϕ are shorthand for the odd-parity vector and tensor spherical harmonics evaluated along the
worldline at θ = π/2 and ϕ = ϕp(t).
Now, as in the even-parity case we can analyze the local structure of the MP amplitudes. We again assume Ψ to have

the form Eq. (1.2). Plugging the relevant expressions into Eq. (5.15) for the odd-parity MP amplitude reconstruction,
we find that all the point-singular parts cancel out exactly, leaving

h±
t (t, r) =

f

2
∂r
(

rΨ±
)

, hS
t (t) = 0,

h±
r (t, r) =

r

2f
∂tΨ

±, hS
r (t) = 0.

(5.18)

So, we see that the odd-parity MP functions in Regge-Wheeler gauge are smooth as they approach rp(t) with only a
finite jump at that point.
FIG. 5 summarizes these findings graphically, for both even and odd parity, using several specific spherical harmonic

modes.
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FIG. 5: The EHS approach to reconstructing the TD MP amplitudes. We consider a particle orbiting with p = 7.50478 and
e = 0.188917 at t = 80.62M . The left plot shows the odd-parity MP amplitudes h21

r and h21
t . The right shows the even-parity

h22
tt , h

22
rr, h

22
tr , and K22. Note that the amplitudes h22

tt , h
22
rr, and h22

tr are singular along the particle’s worldline, as indicated by
arrows in the plot on the right. The magnitude of these singularities are given in Eqs. (5.10), (5.13), (5.14). The remaining
three MP amplitudes approach the particle location smoothly, and have only a finite jump at that point.

VI. CONCLUSION

We have achieved two main results with this paper. First, we have shown successful application of the method of
extended homogeneous solutions to gravitational perturbations from a small mass in eccentric orbit about a massive
Schwarzschild black hole. In doing so, we accurately computed the master functions in the Regge-Wheeler-Zerilli
formalism in the frequency domain and transformed these fields back to the time domain. With this method we
achieved exponential convergence of the master functions and their derivatives for all r including the instantaneous
particle location r = rp(t).
Our second important result is the reconstruction of the metric perturbation amplitudes in Regge-Wheeler gauge

for arbitrary radiative modes. In addition to computing the smooth parts of these amplitudes, we have derived the
time dependent magnitudes of point-singular terms that reside at rp(t) in some components of the metric. This full
and accurate knowledge of the spherical harmonic amplitudes of the metric at, and near, rp(t) lays the groundwork
for one or more subsequent approaches to local computation of the self-force.
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Appendix A: The fully evaluated form of distributional source terms

In the RWZ formalism for perturbations generated by an orbiting point mass, the master equations have distri-
butional sources with both delta function and derivative-of-delta function terms. Reduced by spherical harmonic
decomposition, these distributions have support only along a one-dimensional timelike worldline r = rp(t) within a
two dimensional domain. The delta function’s behavior is still elementary,

α(t, r) δ[r − rp(t)] = α (t, rp(t)) δ[r − rp(t)] ≡ α̃(t) δ[r − rp(t)], (A1)
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where α(t, r) is assumed to be a smooth function and we use the notation α̃(t) to indicate the one-dimensional function
that results from restricting (or fully evaluating) α(t, r) with the delta function. At any stage in a calculation a delta
function can be used to fully evaluate all smooth functions that multiply it. Under an integral the result is obvious

∫

α(t, r) δ[r − rp(t)] dr = α̃(t), (A2)

with the resulting function of time being unique. Occasionally, there is need to differentiate such a function. The
total derivative is related to derivatives of the original function by

dα̃

dt
=
[

∂tα(t, r) + ṙp∂rα(t, r)
]

r=rp(t)
, (A3)

where on the right hand side we differentiate first and evaluate second.
Of more interest is the behavior of δ′ [40]. Differentiating Eq. (A1) with respect to r, we obtain

α(t, r) δ′[r − rp(t)] + ∂rα(t, r) δ[r − rp(t)] = α̃(t) δ′[r − rp(t)]. (A4)

Rearranging terms and using the rule of fully evaluating whenever possible, we find

α(t, r) δ′[r − rp(t)] = α̃(t) δ′[r − rp(t)]− β̃(t) δ[r − rp(t)], β̃(t) ≡ ∂rα(t, rp(t)) ≡
[

∂rα(t, r)
]

r=rp(t)
, (A5)

which is the analogous fully evaluated form. Upon integration,

∫

α(t, r) δ′[r − rp(t)] dr = −β̃(t) = −∂rα(t, rp(t)). (A6)

Since the first term on the right of Eq. (A5) disappears upon integration, why retain it? The answer is that we may
multiply Eq. (A5) by another smooth (test) function, γ(t, r). We can then proceed to fully evaluated form by reducing
the smooth function γ(t, r)α(t, r) on the left or use the same reduction on the first term on the right. In either case
the result is

γ(t, r)α(t, r) δ′[r − rp(t)] = γ̃(t) α̃(t) δ′[r − rp(t)] − α̃(t) ∂rγ(t, rp(t)) δ[r − rp(t)]− γ̃(t) ∂rα(t, rp(t)) δ[r − rp(t)]. (A7)

From this it is evident that we can partially evaluate a coefficient of δ′ in a number of different ways.
Martel [30] introduced the notation found in Eq. (1.1) for gravitational master function source terms, with two-

dimensional functions Gℓm(t, r) and Fℓm(t, r) multiplying δ and δ′, respectively. In examining the Zerilli-Moncrief
master function, he left these coefficients partially evaluated. Sopuerta and Laguna [35] started with the same notation
for Gℓm(t, r) and Fℓm(t, r) in the case of the Cunningham-Price-Moncrief master function, and fully evaluated these
coefficients at r = rp(t). A difficulty with the Gℓm(t, r) and Fℓm(t, r) notation is that there is no unique form of these
functions if partially evaluated. Any solution of the RWZ wave equation will require a full evaluation of the source.
The procedure should not matter but we prefer the clarity afforded by using the identities found in Eqs. (A1) and
(A5) to write Eq. (1.1) in fully evaluated form from the outset

Sℓm(t, r) = G̃ℓm(t) δ[r − rp(t)] + F̃ℓm(t) δ′[r − rp(t)], (A8)

where

G̃ℓm(t) ≡
[

Gℓm(t, r) − ∂rFℓm(t, r)
]

r=rp(t)
, F̃ℓm(t) ≡

[

Fℓm(t, r)
]

r=rp(t)
. (A9)

Appendix B: Source terms for eccentric motion on Schwarzschild

Here we give the unambiguous expressions for G̃ℓm and F̃ℓm for the even-parity Zerilli-Moncrief and odd-parity
Cunningham-Price-Moncrief master functions fully evaluated at r = rp(t). We introduce new notation for constituent

parts of G̃ℓm and F̃ℓm based upon the projections of the stress-energy tensor defined in App. C and the fully evaluated
time-dependent magnitudes of δ[r−rp(t)] given by Eqs. (5.8) and (5.17). Note that we use G and F to denote additional
time-dependent factors that multiply the various stress-energy magnitudes. The indices on these G and F factors are
not tensor indices.
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1. Even parity

In the even-parity case, we examine the terms first published by Martel [30], but now fully evaluate them at
r = rp(t). We find,

G̃ℓm(t) = Grr
ℓ qrrℓm + Gtt

ℓ qttℓm + Gr
ℓ q

r
ℓm + G♭

ℓ q
♭
ℓm + G♯

ℓ q
♯
ℓm

F̃ℓm(t) = Frr
ℓ qrrℓm + F tt

ℓ qttℓm,
(B1)

where

Grr
ℓ (t) ≡ 1

(λ+ 1) rpΛ2
p

[

(λ+ 1) (λrp + 6M) rp + 3M2
]

,

Gtt
ℓ (t) ≡ −

f2
p

(λ+ 1)rpΛ2
p

[

λ (λ+ 1) r2p + 6λMrp + 15M2
]

,

Gr
ℓ (t) ≡

2fp
Λp

, G♭
ℓ(t) ≡

rpf
2
p

(λ+ 1)Λp
, G♯

ℓ(t) ≡ −fp
rp

,

Frr
ℓ (t) ≡ −

r2pfp

(λ+ 1)Λp
, F tt

ℓ (t) ≡
r2pf

3
p

(λ+ 1)Λp
,

(B2)

with the q’s given in Eq. (5.8).

2. Odd parity

In the odd-parity case, the fully evaluated source magnitudes are equivalent to those first published by Sopuerta
and Laguna [35] and later with more detail by Field, Hesthaven, and Lau [44]. We find,

G̃ℓm(t) = Gr1
ℓ prℓm + Gr2

ℓ

dprℓm
dt

+ Gt
ℓ p

t
ℓm, F̃ℓm(t) = Fr

ℓ p
r
ℓm + F t

ℓ p
t
ℓm, (B3)

where

Gr1
ℓ (t) ≡ ṙp

λ
, Gr2

ℓ (t) ≡ rp
λ
, Gt

ℓ(t) ≡ −fp
λ
, Fr

ℓ (t) ≡ −rpṙp
λ

, F t
ℓ(t) ≡

rpf
2
p

λ
, (B4)

and the p’s are given by Eq. (5.17).

Appendix C: Metric perturbation formalism in the Regge-Wheeler gauge

Here we briefly summarize the definitions of metric perturbation (MP) amplitudes (on a common tensor spherical
harmonic basis) for both even and odd parities. The field equations and Bianchi identities are given in terms of the
MP amplitudes and spherical harmonic projected source terms. The specific gauge invariant master functions we use
in our simulations are expressed in terms of the MP amplitudes and their associated master equations, potentials,
and source terms are summarized. In what follows, lowercase Latin indices will run over (t, r), while uppercase Latin
indices will run over (θ, ϕ). This section draws heavily from Martel and Poisson [25]. The material here serves as a
basis for discussing in Sec. V how the MP can be numerically reconstructed from the master functions.

1. Even parity

Of the ten MP amplitudes, seven are in the even-parity sector. Using the decomposition of Martel and Poisson
[25], they are

pab (x
µ) =

∑

ℓ,m

hℓm
ab Y

ℓm, paB (xµ) =
∑

ℓ,m

jℓma Y ℓm
B , pAB (xµ) = r2

∑

ℓ,m

(

KℓmΩABY
ℓm +GℓmY ℓm

AB

)

. (C1)
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The tensor ΩAB is the metric on the unit two-sphere,

ds2 = ΩABdx
AdxB = dθ2 + sin2 θ dϕ2. (C2)

The even-parity scalar (Y ℓm), vector (Y ℓm
A ), and tensor (Y ℓm

AB and ΩABY
ℓm) spherical harmonics are defined in [25].

Note that Y ℓm
AB is the trace-free tensor spherical harmonic, which differs from what Regge and Wheeler used in their

original work [19]. For the remainder of this section, we drop ℓ and m indices for the sake of brevity.
In Schwarzschild coordinates, the amplitudes defined here are related to Regge and Wheeler’s original quantities.

In the “t, r sector,” htt = fH0, htr = H1, and hrr = H2/f . For the off-diagonal elements, jt = h0 and jr = h1.
Finally, on the two-sphere Ghere = GRW, while Khere = KRW − ℓ(ℓ+1)G/2. We use the Regge-Wheeler gauge, where
ja = G = 0. In this gauge and in Schwarzschild coordinates, the even-parity field equations are

−∂2
rK − 3r − 5M

r2f
∂rK +

f

r
∂rhrr +

(λ+ 2) r + 2M

r3
hrr +

λ

r2f
K = Qtt,

∂t∂rK +
r − 3M

r2f
∂tK − f

r
∂thrr −

λ+ 1

r2
htr = Qtr,

−∂2
tK +

(r −M)f

r2
∂rK +

2f

r
∂thtr −

f

r
∂rhtt +

(λ+ 1)r + 2M

r3
htt −

f2

r2
hrr −

λf

r2
K = Qrr,

∂thrr − ∂rhtr +
1

f
∂tK − 2M

r2f
htr = Qt,

−∂thtr + ∂rhtt − f∂rK − r −M

r2f
htt +

(r −M)f

r2
hrr = Qr,

−∂2
t hrr + 2∂t∂rhtr − ∂2

rhtt −
1

f
∂2
tK + f∂2

rK +
2(r −M)

r2f
∂thtr −

r − 3M

r2f
∂rhtt −

(r −M)f

r2
∂rhrr

+
2(r −M)

r2
∂rK +

(λ+ 1)r2 − 2(λ+ 2)Mr + 2M2

r4f2
htt −

(λ+ 1)r2 − 2λMr − 2M2

r4
hrr = Q♭,

1

f
htt − fhrr = Q♯,

(C3)

which rely upon the following source terms

Qab(t, r) ≡ 8π

∫

T abY ∗ dΩ, Qa(t, r) ≡ 16πr2

ℓ(ℓ+ 1)

∫

T aBY ∗
B dΩ,

Q♭(t, r) ≡ 8πr2
∫

TABΩABY
∗ dΩ, Q♯(t, r) ≡ 32πr4

(ℓ− 2)!

(ℓ+ 2)!

∫

TABY ∗
AB dΩ.

(C4)

The conservation (Bianchi) identities are

∂tQ
tt + ∂rQ

tr + 2
(r −M)

r2f
Qtr − λ+ 1

r2
Qt = 0,

∂tQ
tr + ∂rQ

rr +
Mf

r2
Qtt +

2r − 5M

r2f
Qrr − λ+ 1

r2
Qr − f

r
Q♭ = 0,

∂tQ
t + ∂rQ

r +
2

r
Qr +Q♭ − λ

r2
Q♯ = 0.

(C5)

We use the gauge invariant Zerilli-Moncrief master function (see [22, 24], modifying the approach of [20]), which is

Ψeven(t, r) ≡
2r

ℓ(ℓ+ 1)

[

K +
1

Λ

(

f2hrr − rf∂rK
)

]

, (C6)

in Schwarzschild coordinates. It satisfies the wave equation
[

− ∂2

∂t2
+

∂2

∂r2∗
− Veven

]

Ψeven = Seven, (C7)

with source term

Seven(t, r) ≡
1

(λ+ 1)Λ

[

r2f
(

f2∂rQ
tt − ∂rQ

rr
)

+ r(Λ − f)Qrr + rf2Q♭

− f2

rΛ

(

λ(λ − 1)r2 + (4λ− 9)Mr + 15M2
)

Qtt

]

+
2f

Λ
Qr − f

r
Q♯, (C8)
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and standard Zerilli potential

Veven(r) ≡
f

r2Λ2

[

2λ2

(

λ+ 1 +
3M

r

)

+
18M2

r2

(

λ+
M

r

)]

. (C9)

2. Odd parity

The remaining three MP amplitudes belong to the odd-parity sector,

pab (x
µ) = 0, paB (xµ) =

∑

ℓ,m

hℓm
a Xℓm

B , pAB (xµ) =
∑

ℓ,m

hℓm
2 Xℓm

AB. (C10)

The vector (Xℓm
B ) and tensor (Xℓm

AB) spherical harmonics are those defined in [25]. Note that the tensor spherical
harmonics differ from those used by Regge and Wheeler by a minus sign. For the remainder of this section, we again
drop ℓ and m indices.
These MP amplitudes are related to Regge and Wheeler’s quantities through ht = h0, hr = h1, and hhere

2 = −hRW
2 .

We use Regge-Wheeler gauge, in which h2 = 0. In this gauge and in Schwarzschild coordinates, the odd-parity field
equations are

−∂t∂rhr + ∂2
rht −

2

r
∂thr −

2(λ+ 1)r − 4M

r3f
ht = P t,

∂2
t hr − ∂t∂rht +

2

r
∂tht +

2λf

r2
hr = P r,

− 1

f
∂tht + f∂rhr +

2M

r2
hr = P,

(C11)

with source terms given by

P a(t, r) ≡ 16πr2

ℓ(ℓ+ 1)

∫

T aBX∗
B dΩ, P (t, r) ≡ 16πr4

(ℓ− 2)!

(ℓ+ 2)!

∫

TABX∗
AB dΩ. (C12)

The conservation (Bianchi) identity is

∂tP
t + ∂rP

r +
2

r
P r − 2λ

r2
P = 0. (C13)

In the odd-parity sector, we use the gauge-invariant Cunningham-Price-Moncrief master function [23], which in
Schwarzschild coordinates is

Ψodd(t, r) ≡
r

λ

[

∂rht − ∂thr −
2

r
ht

]

. (C14)

It satisfies the wave equation

[

− ∂2

∂t2
+

∂2

∂r2∗
− Vodd

]

Ψodd = Sodd, (C15)

with source term

Sodd(t, r) ≡
rf

λ

[

1

f
∂tP

r + f∂rP
t +

2M

r2
P t

]

, (C16)

and standard Regge-Wheeler potential

Vodd(r) ≡
f

r2

[

ℓ (ℓ+ 1)− 6M

r

]

. (C17)
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Appendix D: Asymptotic expansions for Jost functions at r∗ → ∞

We examine here the asymptotic expansions that we use to set boundary conditions far from the black hole. The
unit normalized solution to Eq. (2.16) is factored into the form

R̂+
ℓmn(r) = J+

ℓmn(r)e
iωmnr∗ , (D1)

where J+
ℓmn is the “Jost function” [27], which goes to 1 as r∗ → +∞. (We can similarly define the horizon side Jost

function through R̂−
ℓmn = J−

ℓmne
−iωmnr∗ , which goes to 1 as r∗ → −∞.) Plugging this into the source free version of

Eq. (2.16) and changing to r derivatives, we have

f
d2J+

ℓmn

dr2
+

[

2M

r2
+ 2iωmn

]

dJ+
ℓmn

dr
− Vℓ

f
J+
ℓmn = 0. (D2)

From here we assume an asymptotic series solution of J+
ℓmn of the form

J+
ℓmn(r) =

∞
∑

j=0

aj

(ωmnr)
j

(D3)

Note that contrary to a Taylor expansion which converges for fixed r with increasing j, this series converges for fixed
j with increasing r. When a specific potential is chosen, the method of Frobenius can be used to find the coefficients
aj . Plugging in the even-parity potential from Eq. (C9) a recurrence relation for the aj is

2iλ2j aj = λ
[

λ (j − 1) j − 12iσ (j − 1)− 2λ (λ+ 1)
]

aj−1

+ 2σ
[

λ (3− λ) (j − 2) (j − 1)−
(

λ2 + 9iσ
)

(j − 2)− 3λ2
]

aj−2

+ 3σ2
[

(3− 4λ) (j − 3) (j − 2)− 4λ (j − 3)− 6λ
]

aj−3 − 18σ3 (j − 3)2 aj−4 (D4)

where σ ≡ Mωmn. For the odd-parity expansion, we plug in the potential in Eq. (C17). The resulting recurrence
relation is

2ij aj = −2σ
[

(j + 1) (j − 3)
]

aj−2 −
[

ℓ (ℓ+ 1)− j (j − 1)
]

aj−1. (D5)

In order to use these recurrence relations, the first few terms a0, a1, . . . are needed. The recurrence relations actually
provides them if one assumes that aj = 0 for all negative j.
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