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Abstract

We present an extended 331 model with T ′ discrete flavor symmetry that simultaneously explains

the need to have exactly three generations and provides acceptable quark and lepton masses and

mixings. New fermionic states and gauge bosons are predicted within the reach of the LHC. We

discuss the relevance to the 126 GeV scalar discovered at the LHC.
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I. INTRODUCTION

The particle at 126 GeV has now been established at the LHC to be consistent with the

standard model (SM) Higgs [1, 2], with the correct coupling strengths to fermions [3], CP

property [4], and spin [5]. What remains is a definitive extension of the standard model to

eliminate our lack of understanding of fermion masses and mixing angles. In addition, while

chiral anomaly cancellation restricts the combination of complex irreducible representations

(irreps) that fermions can inhabit, but allow SM generations plus right-handed singlet

neutrinos, the number of generations is not constrained by anomaly cancellation. Unitarity

of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [6] and Cabibbo-Kobayashi-Maskawa

(CKM) [7] matrices would tell us that the first three generations can be sufficient unto

themselves (or at least decoupled from additional fermions if they exist), while lack of

unitarity would imply more fermions, either in extensions of the first three generations or

in additional generations.

A number of models with discrete symmetries have been proposed to explain the fermion

masses and mixings. For recent reviews, see [8] and [9]. One model where many of the

masses and mixings are calculable is the T ′ model [10] which has been explored in detail in

[11–19], where T ′ is the binary tetrahedral group which is economical in the sense that it

has only 24 elements yet still has sufficient irreps (11, 12, 13, 21, 22, 23, and 3) to arrange

masses and mixings in agreement with the experimental data. The top quark is naturally

split off from the light quarks by the choice of embedding in T ′, the Cabibbo angle is directly

calculable, etc. We tabulate the Kronecker products for the irreducible representations of

T ′ [12] in Table I.

The standard model is insufficient for explaining why we have three generations of

fermions. Asymptotic freedom does restrict the number, but does not fix it. A simple

extended model that does require three generations is the 331 model [20, 21], where the

third generation is assigned to the SU(3)C × SU(3)L × U(1)X gauge group differently from

the first two, and it takes all three generations to cancel the chiral anomalies. (This idea can

be extended to a class of models with the gauge group SU(3)C × SU(N)L × U(1)X where

for all N ≥ 3, anomaly cancellation requires three generations [22].) This again, as in the T ′

model, allows for a heavy top quark, plus now there are additional quarks and leptons in the
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11 12 13 21 22 23 3

11 11 12 13 21 22 23 3

12 12 13 11 22 23 21 3

13 13 11 12 23 21 22 3

21 21 22 23 11 + 3 12 + 3 13 + 3 21 + 22 + 23

22 22 23 21 12 + 3 13 + 3 11 + 3 21 + 22 + 23

23 23 21 22 13 + 3 11 + 3 12 + 3 21 + 22 + 23

3 3 3 3 21 + 22 + 23 21 + 22 + 23 21 + 22 + 23 11 + 12 + 13 + 3 + 3

TABLE I: Kronecker products for the irreducible representations of T ′.

extended generations in addition to the leptoquark gauge bosons due to the extended gauge

symmetry. While explaining why there are three generations, the 331 model has limited

predictability of the fermion masses and mixings.

We will argue that the extension of the standard model with T ′ discrete flavor symmetry

to a 331× T ′ model avoids some of the short comings of both the T ′ and the 331 models.1

Our 331 × T ′ model retains all the predictions of the original SM × T ′ model for fermion

masses and mixings, while three generations are still dictated by anomaly cancellation as in

the 331 model.

In the original 331 model, we need three SU(3)L triplet scalars and one sextet scalar

in order to accommodate all the spontaneous symmetry breaking. However, as we will

show, the Higgs sector of the SM × T ′ model together with only two additional SU(3)L

triplet scalars are sufficient for the extension to the 331 × T ′ model. Thus, only a minimal

extension of the Higgs sector is required when the SM×T ′ model is extended to the 331×T ′

model and the complicated sextet scalar can be avoided. In general, it is non-trivial that the

resulting model is still consistent when two distinct models are merged together; and even

if it can be made so, many nontrivial extensions of the spectrum may be required. On the

contrary, the extension from SM × T ′ to 331 × T ′ retains all the merits of each of 331 and

SM × T ′, while at the same time, maintaining consistency and simplicity. Besides, many

1 Ref. [23], which has a similar motivation as the current paper, considers 331 × S3. While S3 is slightly

simpler than T ′, it accounts only for quark masses and mixing. However, T ′ accounts for both of quark

and lepton masses and mixing.
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more predictions of the new model than of either the 331 model or the SM × T ′ model are

within reach of the LHC. In this sense, the new 331× T ′ model is more than the sum of its

parts and can justifiably be called a “heterotic” model.

Before describing our model, we note that SUSY and fourth-generation models are be-

coming disfavored by the data, which makes the exploration of alternative extensions of the

SM more attractive. (We note that a SUSY SU(5)× T ′ model has been studied [24] as has

a SUSY extended 331× T ′ [25].)

II. PARTICLE ASSIGNMENTS

Let us begin with the particle assignments under the SU(3)C × SU(3)L × U(1)X gauge

group and T ′ × Z2 discrete symmetry of the 331 × T ′ model. The quantum numbers are

written in the following manner:

(SU(3)C , SU(3)L, U(1)X , T
′, Z2 ) . (1)

We embed the left-handed SM leptons in SU(3)L anti-triplets:










E+
e

νe

e−











L









E+
µ

νµ

µ−











L









E+
τ

ντ

τ−











L



























































































LL (1, 3̄, 0, 3, +1)

E+
eR (1, 1, 1, 13, +1)

E+
µR (1, 1, 1, 12, +1)

E+
τR (1, 1, 1, 11, +1) ,

(2)

where there is an additional charged heavy lepton per triplet whose right-handed partners

are in singlets as are the right-handed partners of the SM charged leptons. Three right-

handed neutrinos are included for use in the see-saw mechanism as needed for masses and

mixings:

e−R (1, 1, −1, 13, −1)

µ−
R (1, 1, −1, 12, −1)

τ−R (1, 1, −1, 11, −1)

N
(1)
R (1, 1, 0, 11, +1)

N
(2)
R (1, 1, 0, 12, +1)

N
(3)
R (1, 1, 0, 13, +1) .

(3)
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The 331 charges and irreps are dictated by anomaly cancellation (except for the right-handed

neutrinos). The discrete group assignments are similar to and extend those of the SM× T ′

model.

The SM quarks are also assigned as in the SM × T ′ model with extended generation

quarks included naturally as we increase the SU(2)L gauge symmetry to SU(3)L:










b

t

T











L

QL (3, 3̄, 2
3
, 11, +1)











c

s

S











L









u

d

D











L























































QL (3, 3, −1
3
, 21, +1) .

(4)

Using the convention Tr(λa λb) = 2 δab, two of the generators for SU(3)L are given by

λ3 = diag (1,−1, 0) and λ8 = 1√
3
diag (1, 1,−2). After the symmetry SU(3)L × U(1)X

breaks down to SU(2)L × U(1)Y , the hypercharge Y is [20]:

Y = 2X +
√
3 λ8 , (5)

and the electric charge is given by Q = T3+
Y
2
where T3 =

1
2
λ3. The right-handed SM quarks

are again as in the SM × T ′ model, but the new heavy right-handed quarks are arranged

with TR in a T ′ singlet and SR and DR in a T ′ doublet:

TR (3, 1, 5
3
, 11, +1)

SR

DR







DR (3, 1, −4
3
, 21, +1)

tR (3, 1, 2
3
, 11, +1)

bR (3, 1, −1
3
, 12, −1)

cR

uR







CR (3, 1, 2
3
, 23, −1)

sR

dR







SR (3, 1, −1
3
, 22, +1) .

(6)
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We only need to extend the Higgs sector of the SM × T ′ model by two SU(3)L triplet

scalars in order to accommodate the additional spontaneous symmetry breaking needed in

the 331 sector. Hence, we choose the Higgses H3, H
′
3
, H11

, H13
as in [13] together with the

two extra scalars Φ3 and Φ11
:

H3 (1, 3̄, 0, 3, +1)

H ′
3

(1, 3̄, 1, 3, −1)

H11
(1, 3̄, 0, 11, +1)

H13
(1, 3̄, 1, 13, −1)

Φ3 (1, 3, 1, 3, +1)

Φ11
(1, 3, 1, 11, +1) . (7)

These six scalars can acquire their respective vacuum expectation values (VEVs) through

the Higgs potential shown in Appendix A.

At this point, we can write down the most general Yukawa lagrangian for the lepton

sector

Lleptons
Y =

1

2
M1 N̄

(1)
R N

(1)
R +M23 N̄

(2)
R N

(3)
R

+

{

Y1

(

L̄L N
(1)
R H3

)

+ Y2

(

L̄L N
(2)
R H3

)

+ Y3

(

L̄L N
(3)
R H3

)

+ Ye

(

L̄L eR H ′
3

)

+ Yµ

(

L̄L µR H ′
3

)

+ Yτ

(

L̄L τR H ′
3

)

+ Y ′
e

(

L̄L EeR Φ∗
3

)

+ Y ′
µ

(

L̄L EµR Φ∗
3

)

+ Y ′
τ

(

L̄L EτR Φ∗
3

)

}

+ h.c. . (8)

and for the quark sector

Lquarks
Y = Yt

(

{Q̄L}11
{tR}11

H11

)

+ Yb

(

{Q̄L}11
{bR}12

H13

)

+ YC

(

{Q̄L}21
{CR}23

H
′∗
3

)

+ YS
(

{Q̄L}21
{SR}22

H∗
3

)

+ YT

(

{Q̄L}11
{TR}11

Φ∗
11

)

+ YD
(

{Q̄L}21
{DR}21

Φ11

)

+h.c. . (9)

In this 331× T ′ model, the neutrino sector is unchanged relative to the SM× T ′ model.

So the predictions for the masses and mixings of the neutrino sector in the 331× T ′ model

are exactly those predicted by the SM × T ′ model. The SM quark and charged-lepton
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Yukawa terms are unchanged as well. The masses of the charged heavy leptons E±
e , E

±
µ , E

±
τ

are determined by the product of Y ′ and 〈Φ3〉, which can be chosen at the TeV scale.

Furthermore, the masses of the heavy quarks T, S,D inherited from the 331 model could

also be produced at the TeV scale through the appropriate choices of new Yukawa couplings

and 〈Φ11
〉. For instance, if we assume that the new Yukawa couplings are of order unity,

then we simply require 〈Φ11
〉 to be TeV scale.

III. ANOMALIES

There are six types of triangle anomalies. Namely, SU(3)3C , SU(3)2C X , SU(3)3L,

SU(3)2L X , X3 and X , where the last anomaly is from a mixed gauge-gravity triangle

diagram. In the 331×T ′ model, the left-handed leptons are assigned in SU(3)L anti-triplets

with the same SU(3)C × SU(3)L × U(1)X quantum numbers as those in the original 331

model. The first two and the third generations of quarks also carry exactly the same quan-

tum numbers as those in the original 331 model. The right-handed neutrinos are irrelevant

for any anomaly cancellations as they are singlets of SU(3)C × SU(3)L × U(1)X . Since the

right-handed charged leptons are singlets under SU(3)C ×SU(3)L, they do not participate

in the SU(3)3C , SU(3)2C X , SU(3)3L, SU(3)2L X anomaly cancellations. Thus, cancellations

of these anomalies proceed in the same way as in the original 331 model, which require three

generations. For the X3 and X anomalies, the contributions from eR, µR, τR cancel those

from EeR, EµR, EτR respectively and this happens generation by generation. However, for

the rest of the X3 and X anomalies, cancellations proceed in the same way as in the

original 331 model, which again require three generations.

Therefore, our new 331 × T ′ model retains all the acceptable predictions for fermion

masses and mixings contained in the original 321 × T ′ model, while three generations are

still required by anomaly cancellation as in the original 331 model.

It is possible that the discrete symmetry T ′ originates from a discrete gauge symmetry

that is spontaneously broken. The advantage of having a gauge origin is that T ′ could then

be protected against violations by quantum gravity effects [26]. But the introduction of a

new discrete gauge symmetry may also imply the possibility of discrete gauge anomalies

[27, 28]. The requirement of discrete gauge anomaly cancellations leads to the discrete

anomaly conditions after the discrete gauge symmetry is broken. It is remarkable that our
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model with T
′

symmetry is discrete anomaly free (see it e.g. the second row of Table 2 in

[29]).

IV. YUKAWA COUPLINGS TO 126 GEV SCALAR

The discovery of a resonance at ∼ 126 GeV at the LHC [1, 2], strongly suggestive of the

Higgs boson, has naturally caused intense interest. Its preliminary properties are consistent

within errors with the Higgs particle predicted by the minimal standard model. The two-

body decays which can be measured accurately in the near future include H → γγ, H → b̄b,

and H → τ̄ τ . These are respectively sensitive to the Yukawa couplings YHt̄t (through the

top triangle contribution which competes with the W -loop), YHb̄b, and YHτ̄τ .

In the minimal standard model, the Yukawa couplings YHf̄f appear in the simple form

YHf̄f f̄ fH so that they are proportional to the masses

YHf̄f ∝ mf , (10)

where the proportionality constant is 1/v with v being the vacuum expectation value of

the Higgs field. In the current renormalizable model with a non-trivial flavor symmetry

GF = T
′ × Z2, there are several Higgs and the Yukawa couplings of the lightest one will

generally deviate from the simple proportionality of Eq. (10). Such deviations may likely

be small but crucial to understanding how the group GF operates. One may even say that

if the conventional prediction of Eq. (10) would hold exactly at high precision, then the

renormalizable GF models would be disfavored.

The statements above are true for general renormalizable GF models. To illustrate them,

we focus on the present choice GF = T ′ × Z2 [10] and the minimal model as previously

discussed in [13]. We shall concentrate only on the third-generation couplings YHf̄f for

f = t, b, τ . Imposing strict renormalizability on the lepton lagrangian allows nontrivial

terms for the τ mass:

Yτ

(

L̄L τR H ′
3

)

+ h.c. , (11)

where H ′
3
transforms as H ′

3
(1, 3̄, 1, 3, −1). The Yukawa couplings to the third-generation

of quarks are contained in

Lquarks
3rd = Yt

(

{Q̄L}11
{tR}11

H11

)

+ Yb

(

{Q̄L}11
{bR}12

H13

)

+ h.c. . (12)
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No T
′

doublet (21, 22, 23) scalars have been added. This allows a non-zero value only for

Θ12. The other CKM angles vanish, making the third generation stable and mb > ms,d as

outlined in [10]. Such a model leads to the formula [13] for the Cabibbo angle

tan 2Θ12 =

(√
2

3

)

, (13)

or equivalently, sinΘ12 = 0.218.., which is close to the experimental value sinΘ12 ≃ 0.227.

It can also lead to the successful relationship between neutrino mixing angles θij

θ13 = (
√
2)−1

∣

∣

∣

π

4
− θ23

∣

∣

∣
, (14)

which is in excellent agreement with the latest experiments [30].

In such a model, the lightest Higgs H is a linear combination of other Higgs:

H = aH11
+ bH13

+ cH ′
3
+ ... , (15)

and the consequent Yukawa couplings are

YHt̄t = a−1 Yt, YHb̄b = b−1 Yb, YHτ̄τ = c−1 Yτ . (16)

The VEV v is shared between the < Hα > (α = 11, 13, 3, ...) irreps of T ′ and there is no

reason to expect a = b = c = . . . so that the proportionality of Eq. (10) will generally be

lost. In fact, if Eq. (10) remained exact, the only solution would be a trivial one where all

states transform as 11 of T ′ and the GF is inapplicable. The successes in [13] and [30] would,

in such a case, be accidental. On the other hand, if Eq. (10) is inexact, the evaluations of

the coefficients a, b, c, ... can then be used to understand more perspicuously the derivations

of mixing angles for quarks and leptons given respectively in [13] and [30], in a first clear

departure from the minimal standard model.

V. DISCUSSION

One of the perpetual difficulties one encounters in constructing models of fermionic flavor

is the necessity of an extended Higgs sector. Typically, if more symmetry is added, then

more scalars are needed to break that symmetry and generate the wanted structure of

masses and mixings. The model at hand is no exception, although it is somewhat more

attractive than average since all the scalars are in fundamental irreps of the SU(3)L in the

9



electroweak gauge group. (This is an improvement on previous 331 models that required a

6 scalar of SU(3)L.) This simplification leads to fewer phenomenological problem, e.g., the

ρ parameter is unchanged ent heterotic model provides new candidates for particles to be

discovered in the TeV range by, for example, the LHC. As new gauge bosons, there are the

bileptons familiar from the 331 model which come both doubly-charged and singly-charged

in the SU(2) doublets (Y ++, Y +) and (Y −−, Y −) with striking signatures in like-sign lepton

pairs; also there is a Z
′

. From muonium-antimuonium conversion experiments [31], a lower

bound on the bilepton mass MY > 850 GeV has been deduced, although this assumed flavor

diagonality of the bilepton couplings. More general analysis of bilepton production at the

LHC, with weaker assumptions, appears in [32] and [33].

There are additional fermions beyond the standard model. These include the exotic

quarks D and S with charge Q = −4/3 and the T with Q = +5/3. There are also three new

charged leptons, one per family, Ee, Eµ, and Eτ . All of these additional states are predicted

to be in the TeV or multi-TeV range, accessible to the LHC especially at its full energy and

luminosity.
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Appendix A: Higgs Potential

The VEVs for H3, H ′
3
, H11

, H13
, Φ3 and Φ11

can be obtained from minimizing the

following Higgs potential:

V = λ1

(

H†
3
H3 − v2

3

)2

+ λ2

(

H ′†
3
H ′

3
− v′ 2

3

)2

+ λ3

(

H†
11
H11

− v2
11

)2

+ λ4

(

H†
13
H13

− v2
13

)2

+ λ5

(

Φ†
3
Φ3 − v′′ 2

3

)2

+ λ6

(

Φ†
11
Φ11

− v′ 2
11

)2

+ λ7

[(

H†
3
H3 − v2

3

)

+
(

H ′†
3
H ′

3
− v′ 2

3

)]2

+ λ8

[(

H†
3
H3 − v2

3

)

+
(

H†
11
H11

− v2
11

)]2

+ λ9

[(

H†
3
H3 − v2

3

)

+
(

H†
13
H13

− v2
13

)]2

+ λ10

[(

H†
3
H3 − v2

3

)

+
(

Φ†
3
Φ3 − v′′ 2

3

)]2

+ λ11

[(

H†
3
H3 − v 2

3

)

+
(

Φ†
11
Φ11

− v′ 2
11

)]2

+ λ12

[(

H ′†
3
H ′

3
− v′ 2

3

)

+
(

H†
11
H11

− v2
11

)]2

+ λ13

[(

H ′†
3
H ′

3
− v′ 2

3

)

+
(

H†
13
H13

− v2
13

)]2

+ λ14

[(

H ′†
3
H ′

3
− v′ 2

3

)

+
(

Φ†
3
Φ3 − v′′ 2

3

)]2

+ λ15

[(

H ′†
3
H ′

3
− v′ 2

3

)

+
(

Φ†
11
Φ11

− v′ 2
11

)]2

+ λ16

[(

H†
11
H11

− v2
11

)

+
(

H†
13
H13

− v2
13

)]2

+ λ17

[(

H†
11
H11

− v2
11

)

+
(

Φ†
3
Φ3 − v′′ 2

3

)]2

+ λ18

[(

H†
11
H11

− v2
11

)

+
(

Φ†
11
Φ11

− v′ 2
11

)]2

+ λ19

[(

H†
13
H13

− v2
13

)

+
(

Φ†
3
Φ3 − v′′ 2

3

)]2

+ λ20

[(

H†
13
H13

− v2
13

)

+
(

Φ†
11
Φ11

− v′ 2
11

)]2

+ λ21

[(

Φ†
3
Φ3 − v′′ 2

3

)

+
(

Φ†
11
Φ11

− v′ 2
11

)]2

+α1 (H3H3H3 + h.c.) + α2 (H3H3H11
+ h.c.) + α3 (H11

H11
H11

+ h.c.) , (A1)

where all the coefficients λ1, ..., λ21 are non-negative. Besides, v3, v′
3
, v11

, v13
, v′′

3
and v′

11

are the would-be VEVs for H3, H
′
3
, H11

, H13
, Φ3 and Φ11

respectively. Since the triplets

of T ′ are self-conjugate, any cubic combinations of 3 are T ′ invariant. The SU(3)L cubic

invariant is either 3 × 3 × 3 or 3̄ × 3̄ × 3̄. Originally, there are 56 possible Higgs cubic

terms. However, 23 of them violate the Z2 symmetry, 21 of them are either not invariant

under SU(3)L or U(1)X , and 9 of them are not invariant under T ′. So we are left with only

3 cubic terms. As long as α1, α2, α3 are sufficiently less than λ1, ..., λ21, the cubic terms

can be treated as small perturbations and do not alter the pattern of symmetry breaking.

The true VEVs should be approximately v3, v′
3
, v11

, v13
, v′′

3
and v′

11
. Since λ1, ..., λ21 are

non-negative, these VEVs minimize the Higgs potential. We plan to return to the issue of

11



perturbations involving these cubic terms in the near future.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) arXiv:1207.7214

[hep-ex].

[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) arXiv:1207.7235

[hep-ex].

[3] ATLAS Collaboration, ATLAS-CONF-2013-034; CMS Collaboration, CMS PAS HIG-13-005.

[4] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 110, 081803 (2013)

arXiv:1212.6639 [hep-ex]. ATLAS Collaboration, ATLAS-CONF-2013-013; CMS Collab-

oration, CMS PAS HIG-13-002.

[5] ATLAS Collaboration, ATLAS-CONF-2013-031; CMS Collaboration, CMS PAS HIG-13-003;

ATLAS Collaboration, ATLAS-CONF-2013-029 and ATLAS-CONF-2013-040.

[6] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957) [Zh. Eksp. Teor. Fiz. 33, 549 (1957)]; B. Pon-

tecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]; Z. Maki,

M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[7] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor.

Phys. 49, 652 (1973).

[8] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010) arXiv:1002.0211 [hep-ph].

[9] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor.

Phys. Suppl. 183, 1 (2010) arXiv:1003.3552 [hep-th].

[10] P. H. Frampton and T. W. Kephart, Int. J. Mod. Phys. A 10, 4689 (1995) hep-ph/9409330.

[11] A. Aranda, C. D. Carone and R. F. Lebed, Phys. Rev. D 62, 016009 (2000) hep-ph/0002044.

[12] P. H. Frampton and T. W. Kephart, JHEP 0709, 110 (2007) arXiv:0706.1186 [hep-ph].

[13] P. H. Frampton, T. W. Kephart and S. Matsuzaki, Phys. Rev. D 78, 073004 (2008)

arXiv:0807.4713 [hep-ph].

[14] D. A. Eby, P. H. Frampton and S. Matsuzaki, Phys. Lett. B 671, 386 (2009) arXiv:0810.4899

[hep-ph].

[15] D. A. Eby, P. H. Frampton and S. Matsuzaki, Phys. Rev. D 80, 053007 (2009)

arXiv:0907.3425 [hep-ph].

[16] C. M. Ho and T. W. Kephart, Phys. Lett. B 687, 201 (2010) arXiv:1001.3696 [hep-ph].

12

http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1212.6639
http://arxiv.org/abs/1002.0211
http://arxiv.org/abs/1003.3552
http://arxiv.org/abs/hep-ph/9409330
http://arxiv.org/abs/hep-ph/0002044
http://arxiv.org/abs/0706.1186
http://arxiv.org/abs/0807.4713
http://arxiv.org/abs/0810.4899
http://arxiv.org/abs/0907.3425
http://arxiv.org/abs/1001.3696


[17] P. H. Frampton, C. M. Ho, T. W. Kephart and S. Matsuzaki, Phys. Rev. D 82, 113007 (2010)

arXiv:1009.0307 [hep-ph].

[18] D. A. Eby, P. H. Frampton, X. -G. He and T. W. Kephart, Phys. Rev. D 84, 037302 (2011)

arXiv:1103.5737 [hep-ph]

[19] For a recent review of the SM×T ′ model see D.A. Eby, Binary Tetrahedral Flavor Symmetry,

Ph D thesis, UNC Chapel Hill, April 2013.

[20] P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992).

[21] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992) hep-ph/9206242.

[22] P. H. Frampton, C. M. Ho and T. W. Kephart, Phys. Lett. B 715, 275 (2012)

arXiv:1205.4483 [hep-ph].

[23] A. E. Crcamo Hernández, R. Mart́ınez and F. Ochoa, arXiv:1309.6567 [hep-ph].

[24] M. -C. Chen and K. T. Mahanthappa, Phys. Lett. B 652, 34 (2007) arXiv:0705.0714

[hep-ph].

[25] S. Sen, Phys. Rev. D 76, 115020 (2007) arXiv:0710.2734 [hep-ph].

[26] L. M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).

[27] L. E. Ibanez and G. G. Ross, Phys. Lett. B 260, 291 (1991).

[28] C. Luhn and P. Ramond, JHEP 0807, 085 (2008) arXiv:0805.1736 [hep-ph].

[29] C. Luhn, Phys. Lett. B 670, 390 (2009) arXiv:0807.1749 [hep-ph].

[30] D.A.Eby and P.H. Frampton, Phys. Rev. D86, 117304 (2012). arXiv:1112.2675[hep-ph]

[31] L. Willmann, et al. Phys. Rev. Lett. 82, 49 (1999).

[32] B. Meirose and A. A. Nepomucheno, Phys. Rev. D84, 055002 (2011) arXiv:1105.6299

[hep-ph].

[33] J. Sa Borges, Y. A. Coutinho, and E.A. Barreto, AIP Conf. Proc. 1520, 440 (2012).

13

http://arxiv.org/abs/1009.0307
http://arxiv.org/abs/1103.5737
http://arxiv.org/abs/hep-ph/9206242
http://arxiv.org/abs/1205.4483
http://arxiv.org/abs/1309.6567
http://arxiv.org/abs/0705.0714
http://arxiv.org/abs/0710.2734
http://arxiv.org/abs/0805.1736
http://arxiv.org/abs/0807.1749
http://arxiv.org/abs/1112.2675
http://arxiv.org/abs/1105.6299

	I Introduction
	II Particle Assignments
	III Anomalies
	IV Yukawa couplings to 126 GeV scalar
	V Discussion
	 Acknowledgments
	A    Higgs Potential
	 References

