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Spin flip probability of electron due to torsional wave
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The probability of spin flip of an electron due to a torsional wave is calculated. It is compared to
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INTRODUCTION

In modern formulations of gravity, from supergravity
and string theory to local gauge formulations, torsion
is a necessary ingredient, for reviews of torsion see the
literature.[1],[2],[3] Soon after Einstein published the gen-
eral theory of relativity in 1915, the limited geometry de-
veloped by Riemann was seen to be a small part of the full
geometry of curved spacetime, which is now known to in-
clude torsion and non-metricity (although non-metricity
is assumed to vanish here). It has been shown in [2] that
torsion arising from the intrinsic spin of particle leads to
the correct conservation law for total angular momentum
plus spin, and more recently it was shown that torsion
must exist on local gauge theory principles.[4]

Over the years there have been many mathematical
formulations of gravity with torsion, but the most gen-
erally agreed upon theories are those where the source
of torsion is the intrinsic spin of an elementary particle.
Orbital angular momentum does not create torsion, and
can be accounted for in the usual way with the conven-
tional energy momentum tensor describing rotating mat-
ter. Such a situation manifests itself within the metric
tensor, but does not give rise to torsion.

In the literature there are two main approaches to the
spin formulation of gravity with torsion. One is the local
Poincaré gauge theory in which the torsion is the gauge
potential,[1] and the other is the string theory-like torsion
in which case the torsion is derived from a potential 2-
form. In this article we assume torsion is derived from a
potential.

On the experimental front, most efforts search for a
small dipole field created by spin-polarized materials act-
ing on particles with intrinsic spin.[5],[6],[7] So far, the
best these experiments can do is place an upper limit on
the coupling constant. However, torsion can manifest in
other ways and the point of this paper is to describe an
entirely new approach to detect it.

The approach is this: First a torsion wave will be cre-
ated by coherently spin flipping a large number of parti-
cles with intrinsic spin. This is the source. For example,

electrons in an alternating electric field will suffer such
flipping. This will induce other electrons, the detector,
to flip. This flip can be measured by conventional elec-
trodynamic means. In the present paper, we calculate
the probability that the torsion wave flips the electron,
so we can ultimately learn how much power is needed to
detect the field.
Potential future measurements of torsion will be a

groundbreaking event. Not only will it present the first
demonstration of non-Reimannian geometry, it may also
be interpreted as the first measurement of an effect pre-
dicted by string theory. Natural units are used mostly,
but occasionally cgs units are inserted for clarity.

BACKGROUND

The field equations for gravity and torsion may be de-
rived from the action principle

δ

∫

d4x
√−g

(

R

2k
+ L

)

= 0 (1)

where k = 8πG and R is the curvature scalar of U4 space,
i. e., spacetime with torsion, and L represents matter
coupling.
In order to get a physical field, i.e., a field obeying a

second order differential equation, it is assumed that the
torsion is derived from a potential ψµν according to

Sµνσ = ψ[µν,σ] =
1

3
(ψµν,σ + ψσµ,ν + ψνσ,µ). (2)

This is also referred to as string theory torsion and the
Kalb-Ramond field. Discussion of the history of this
field, which predates string theory, may be found in the
literature.[2]
The field equations are

Gµν − 3Sµνσ
;σ − 2Sµ

αβS
ναβ = kT µν (3)
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where Gµν is the (non-symmetric) Einstein tensor of U4

spacetime. The torsional field equations, which are what
we are interested here, are the antisymmetric part of this,

Sµνσ
;σ = −kjµν (4)

where jµν ≡ (1/2)T [µν].
It is also useful to write the equations in V4 (Rieman-

nian) spacetime

oGµν = k(T µν + tµν) (5)

where

ktµν = 3SµαβSν
αβ − 1

2
gµνSαβσSαβσ (6)

and where oGµν is the Einstein tensor of Riemannian
spacetime. This shows that, for example, a torsion wave
carries energy and momentum. In fact, using the gauge
invariance

ψµν → ψµν + ξ[µ,ν] (7)

one may derive the wave equation from (4), and it was
shown that torsion waves carry energy.[8]
Since the torsion is totally antisymmetric we may

equally well define the torsion vector by

bµ = ǫµαβσS
αβσ. (8)

Now, defining bµ = {b0, b} the field equations for torsion
may be written in the Minkowski space limit.[2] They are
written and compared to electromagnetism in the Table.
The point to be made here is that the torsion obeys the
wave equation. From the field equations in vacuum we
have the constraint, k × b = 0 so that a traveling plane
wave solution is given by

b = b sin(kz − ωt)ẑ. (9)

It has been shown in [8] torsion waves are created by
coherently flipping the spin of N particles with spin at
frequency ω and that the power is proportional to N2ω4.

DIRAC EQUATION

To describe spin one-half particles it is useful to intro-
duce the tetrad e i

µ according to

gµν = e i
µ e

j
ν ηij (10)

Torsion Electromagnetism

Potential a, A φ, A

Field b = ∇×A− ȧ E = −∇φ− Ȧ

bo = ∇ · a B = ∇×A

Sources N , I j, ρ

Field ∇bo = −ḃ− I ∇×H = 4πJ + Ḋ

Equations ∇× b = N ∇×E + Ḃ = 0

∇ ·D = 4πρ

∇ ·B = 0

Gauge a → a+∇× V φ → φ− λ̇

Invariance A → A+∇φ+ V̇ A → A+∇λ

Wave ∇
2A− Ä = 0 ∇

2A− Ä = 0
Equation

FIG. 1: Comparison of torsion and electromagnetism.

where ηij is the Minkowski metric. Latin indices label the
tetrad indices (there are four) and Greek are the coordi-
nate indices. The tetrads are taken to be orthonormal so
that eµie

j
µ = δji . It is also useful to define the object of

anholonomity,

Ω a
αβ = ea[β,α], (11)

and

Ω c
ab ≡ eαae

β
bΩ

c
αβ . (12)

The covariant derivative, in anholonomic coordinates,
is given by

∇iA
j = Aj

,i + Γ j
im Am (13)

where Γ j
im , is the anholonomic connection coefficient,

and ∂i ≡ eµi ∂µ.
We may write ∇iA

j = eµie
j
ν ∇µA

ν so that

Γ σ
αβ = Γ m

ab eσme
b
βe

a
α − eσb,ae

b
βe

a
α. (14)

This important result relates the affine connection Γ σ
αβ

to the anholonomic connection coefficients Γ m
ab . One

may invert (14) by transvexing with the tetrad (and the
dual tetrad), which yields,

Γ c
ab = eαae

β
be

c
σ Γ σ

αβ − eαbe
c
α ,a. (15)

Latin indices are raised and lowered with ηab, and we
define the quantity Γ ab

µ :

Γ ab
µ ≡ e n

µ Γ ab
n . (16)
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Written as ωµmn = ηamηbnΓ
ab
µ , and ωamn = e µ

a ωµmn,
it is called the spin connection or the connection 1-form.
We can also write

Γabc = −Ωabc +Ωbca − Ωcab + Sabc. (17)

The curvature tensor is

R n
jki = 2(Γ n

[ji,k] + Γ m
[ji Γ n

k]m +Ωm
kjΓ

n
mi ) (18)

where brackets imply antisymmetrization with respect to
the non-underlined indices.
With this we can write the covariant derivative of a

spinor ψ representing a spin one-half particle,

Dµψ = ψ,µ − 1

4
γaγbΓ

ab
µ ψ. (19)

The minimally coupled matter Lagrangian may now be
written as

L = − i~c
2

[

(Daψ)γ
aψ − ψγaDaψ − 2imc

~
ψψ

]

(20)

with

Daψ = ψ,µ +
1

4
Γ ab
µ ψγaγb. (21)

with e ≡ √−gµν.
We can now consider variations of the tetrad and the

torsion potential,

δ

∫

e

(

R

2k
+ L

)

d4x = 0. (22)

In (22) variations are taken with respect to the tetrad eiµ,

the Dirac adjoint ψ, and the torsion potential ψµν . The
resulting field equations are

Gmn − emµ e
n
νS

µνσ
;σ − 2SmabSn

ab = − i~ck
2

Σmn, (23)

γaDaψ +
imc

~
ψ = 0, (24)

and

Sαβσ
;σ = − i~ck

2
Ξαβσ

;σ (25)

where Ξαβσ = (1/2)ψγ[αγβγσ]ψ. In the above, the en-
ergy momentum tensor of the gravitational field equa-
tions is defined according to

δ

∫

eLd4x ≡ − i~c
2

∫

ed4xΣ µ
i δe

i
µ, (26)

which turns out to be

Ξmn = ψγ(mDn)ψ −D(mψγn) +
i

3
ψ(γabagmn − b(mγn))ψ. (27)

However, in the broadest context, one usually considers the non-minimally couple field in which case

L = − i~c
2

[

(Daψ)γ
aψ − ψγaDaψ − 2imc

~
ψψ − B

4
ψγ5γµbµψ

]

(28)

where B must be determined experimentally. SPIN FLIP

We are now in a position to consider the spin flip of
an electron due to an incident torsion wave. We shall
consider an electron trapped in a uniform magnetic field.
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It is assumed that pure gravitational effects are negligible
and therefore we consider the torsion to be propagating
in a Minkowski spacetime.
It is noted that this is as close as we can come to a free

electron with spin. To account for spin there must be
some fiduciary measurable, and the most reasonable case
is that of a magnetic field. The solution to the Dirac
equation for an electron trapped in a uniform field is
given by[9]

ψf = Cf e
−i(Ef t−pf

xx−pf
zz)e−ξ2/2uf (29)

where the momentum terms are eigenvalues,

C2
f =

√
eB(Ef +m)

8LxLzEf
(30)

and

ξ =
√
eBy − px√

eB
. (31)

We assume the final state is spin up and the initial state
is spin down, so that,

uf =











hn−1

0

pfzhn−1/(Ef +m)

−
√
2neBhn/(Ef +m)











(32)

and

ui =











0

hn
−
√
2neBhn−1/(Ei +m)

−pizhn/(Ei +m)











(33)

where hn = NnHn where Hn are the Hermite polynomi-
als Nn = 1/

√

2nn!
√
π. By definition, here, the Hermite

polynomial with a negative subscript is zero, and it is
assumed that we have two dimensional box normaliza-
tion, the sides being Lx and Lz. The functions u will
be functions of y which goes from minus to plus infinity.
It may be noted that the gauge freedom in the choice of
the electromagnetic potential translate to a freedom in
the choice of y or x, or a combination of the two.

We start with the transition amplitude, defined by

Sfi = −iκ
4

∫

d4xψfγ
5γσbσψi (34)

where κ = 1+B and f and i denote final and initial states
and bσ is the torsion field. Below, this will be compared
to case when an electromagnetic waves interacts with the
spin, in which case we have,

Sem
fi = −ie

∫

d4xψfγ
σAσψi. (35)

To begin let us write (34) as

Sfi = − iCfCi

L0

∫

d4xei(Ef t−pf
xx−pf

zz)e−ξ2Mfie
−i(Eit−pi

xx−pi
zz)

(36)
where L0 = ω/eE and the matrix element is

Mfi = u†fγ
0γ5γσbσui, (37)

which becomes

Mfi = b0

(

hnf−1hni
πz

Ef +m
− hnf−1hni

pfz
Ei +m

)

+ b1

(√
2hnf−1hni−1p

f
z

√
Bnie

(Ef +m)(Ei +m)
−

√
2hnf

hni
πz
√

Bnfe

(Ef +m)(Ei +m)

)

(38)

+b2

(

i
√
2hnf−1hni−1p

f
z

√
Bnie

(Ef +m)(Ei +m)
+
i
√
2hnf

hni
π
√

Bnfe

(Ef +m)(Ei +m)

)

+b3

(

−2hnf
hnf−1

√

Bnfe
√
Bnie

(Ef +m)(Ei +m)
− hnf−1hni

pfzπ

(Ef +m)(Ei +m)
+ hnf−1hni

)

.

It useful to compare this to the interaction of the elec-
tromagnetic field described by the potential Aσ, in which

case (38) is replaced by
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M em
fi = A0

(√
2
√

B(n+ 1)ehnhn+1p
i
z

(Ef +m)(Ei +m)
−

√
2
√
Bnehn−1hnp

f
z

(Ef +m)(Ei +m)

)

(39)

+A1

(

h2np
f
z

Ef +m
− h2np

i
z

Ei +m

)

+A2

(

ih2np
i
z

Ei +m
− ih2np

f
z

Ef +m

)

+A3

(√
2
√

B(n+ 1)ehnhn+1

Ef +m
−

√
2
√
Bnehn−1hn
Ei +m

)

.

In the case of electromagnetism we see the only non-
zero matrix elements arise from the case in which the
“large” part of the spinor interacts with the“small” part,
but with chiral torsion field there is the much larger term
multiplied by b3, which is not multiplied by p/E (the last
term in 38). In others words, for the electromagnetic field
the spin flip term enters as v/c, whereas with torsion it
enters in the zeroth order.
Now, with the wave given by (9) the scattering ampli-

tude may be written as

Sfi = S+
fi + S−

fi (40)

where

S±
fi = ±κCiCfb

8

∫

d4xe−itδ±ei∆pxxei(∆pz±k)ze−ξ2Mfi

(41)
and where δ± = Ei − Ef ± ω, ∆px = pxf − pxi and

Mfiψfγ
5γ3ψi. Defining the delta functions produced

by the x and z integrations as Lx and L±
z we have

Lx =

∫

dxei∆pxx (42)

and

L±
z =

∫

dzei∆(pz±k)z (43)

and

S±
fi = ±κCiCfb

8
LxL±

x

∫

dtdye−itδ±e−ξ2h2n(ξ) (44)

where it was assumed the transition was described by
n → n + 1. Finally, squaring and integrating over the
density of states dρ = (LxLz/(2π)

2)dpxdpz, and taking
the non-relativistic limit one obtains the transition prob-
ability W , i. e.,

W =

∫

|Sfi|2dρ. (45)

In the low velocity limit this becomes

W =

(

κb

8

)2( sin ω−ω0

2 t
ω−ω0

2c

)2

. (46)

This is result is very similar to the Rabi formula, which
is[10]

W =

(

µE

~

)2( sin ω−ω0

2 t
ω−ω0

2c

)2

. (47)

where E is the electric field amplitude and µb = e~/2mc.

SUMMARY

The main result of this paper is given by (46). It de-
scribes how an electron interacts with the torsion field
and shows new kinds of measurements to detect torsion
are possible. Many experiments over the years investi-
gating torsion[5] have bet set up experiments hoping to
detect a force between spin polarized bodies. So far, all
these have done is set an upper limit on torsion. One
main limitation is that there is no way to increase the
field strength once the polarization has reached satura-
tion. In the present scheme, we may in principle increase
the power of the torsion wave in a way that is only limited
by the amount of equipment used. To detect the actual
spin flip of an electron we may rely on electromagnetism.
Considerations for the best possible arrangements are un-
derway.
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