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Abstract

Elastic properties of carbon nanotubes and nanoropes are investigated using

an empirical force-constant model. For single and multi-wall nanotubes the

elastic moduli are shown to be insensitive to details of the structure such as

the helicity, the tube radius and the number of layers. The tensile Young’s

modulus and the torsion shear modulus calculated are comparable to that of

the diamond, while the the bulk modulus is smaller. Nanoropes composed of

single-wall nanotubes possess the ideal elastic properties of high tensile elastic

modulus, flexible, and light weight.

PACS numbers: 61.46+w, 36.40+d
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I. Introduction

The discoveries of carbon nanotubes1 and the new efficient method of producing them2

stimulate a great interest in these novel materials. The electronic3 and magnetic properties4

of nanotubes depend sensitively on the structural details such as the tube radius and the

helicity. It has been speculated that nanotubes also posses novel mechanical properties.

Recent measurements have inferred a Young’s modulus that is several times that of the

diamond.5

The mechanical properties of small single-wall nanotubes have been studied by several

groups using molecular dynamics simulations.6,7 A Young’s modulus several times greater

than that of the diamond was predicted. However, those calculations were restricted to small

single-wall nanotubes of few Å in radius. Most samples of nanotubes are either multi-wall

or crystalline ropes of single-wall nanotubes.

A practical method of investigating elastic properties is to use the empirical force-

constant model. The phonon spectrum and elastic properties of the graphite has been

successfully calculated using such models.8 The similarity in local structure between the

graphite and the nanotubes ensure that a similar model is applicable for nanotubes. The

advantage of such a model is that it can be easily applied to nanotubes of different size,

helicity, and number of layers. One such model has been used to predict the phonon spec-

trum of small single-wall nanotubes.9 Here we present results of applying a similar model to

calculate elastic properties of single and multi-wall nanotubes of various size and geometry,

and that of crystalline nanoropes composed of single-wall nanotubes.

II. The Force-constant Model

In an empirical force-constant model, the atomic interactions near the equilibrium struc-

ture are approximated by the sum of pair-wise harmonic potentials between atoms. In the

most successful model for the graphite, interactions up to fourth-neighbor in-plane and out-

of-plane interactions are included.8 The force constants are empirical determined by fitting

to measured elastic constants and phonon frequencies.
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The local structure of a nanotube layer can be constructed from the conformal mapping

of the graphitic sheet on to a cylindrical surface. For a typical nanotube of few nm in radius,

the curvature is small enough that one expects short-range atomic interactions to be very

close to that in the graphite. Thus, we adopt the same parameters developed by Al-Jishi et

al.8 for graphite for intra-plane interactions in all nanotubes.

The different layers in a multi-wall nanotube are not well registered as they are in the

single crystal graphite. Thus, one can not adopt the same set of parameters for the interlayer

interactions. Instead, we model the interlayer interactions in nanotube by the summation of

pair-wise van de Waals interactions, U(r) = 4ǫ ((σ/r)12
− (σ/r)6)). Such a model has been

used successfully to calculate the bulk properties of C60 solid.10 The van de Waals parameter

σ = 3.4Å , ǫ = 12meV, were determined by fitting the interlayer distance and the elastic

constant c33 of the single crystal graphite.11

III. Single-Layer Nanotubes

Following the notation of White et al.12, each single-layer nanotube is indexed by a pair

of integers (n1, n2), corresponding to a lattice vector L = n1a1 + n2a2 on the graphite

plane, where a1, a2 are the graphite plane unit cell vectors. The structure of the nanotube

is obtained by the conformal mapping of a graphite strip onto a cylindrical surface. The

nanotube radius is given by R = ao

√

3(n2
1 + n2

2 + n1n2)/2π, where ao = 1.42Å is the C-C

bond length.

In principle, force constants depend on the size of the nanotube as overlaps of π orbitals

change with the nanotube curvature.13 However, Such dependence is very weak. In this

paper, we neglect this effect and concentrate on the dependence of elastic properties on the

geometry and interlayer interactions.

The elastic constants are calculated from the second derivatives of the energy density

with respect to various strains.14 The tensile stiffness as measured by Young’s modulus is

defined as the stress/strain ratio when a material is axially strained. For most materials, the

radial dimension is reduced when it is axially elongated. The ratio of the reduction in radial
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dimension to the axial elongation defines the Poisson ratio ν. We first calculate the Poisson

ratio by minimizing the strain energy with respect to both the radial compression and the

axial extension. The Young’s modulus Y is then calculated from the second derivative of

the strain energy density with respect to the axial strain at the fixed ν.

Table.1 lists the bulk, Young’s and shear (referred to the torsional shear) moduli calcu-

lated for selective examples of single-wall nanotubes. An important quantity in determin-

ing values of elastic constants is the wall thickness h of nanotubes. Previous calculations

has taken h = 0.66Å for single layer nanotubes which leads to the unusual large Young’s

modulus.7 For multi-wall nanotubes, all experiments indicate that the interlayer distance is

the same as that in the graphite, h = 3.4Å. Thus, it is reasonable to take the interlayer

distance h = 3.4Å as the wall thickness. We use the same values for all single multi-wall

nanotubes. This enables us to compare results across nanotubes of different size and number

of layers. For comparison, elastic moduli of the graphite11 and that of the diamond14 are

also listed.

Examine the numbers in Table.1 one concludes that: (1) Elastic moduli are insensitive

to the size and the helicity. (2) The Young’s and shear moduli of nanotubes are comparable

to that of the diamond and that if in-plane graphite. (3) Single-wall nanotubes are stiff in

both the axial direction and the basal plane.

VI. Multi-wall Nanotubes

The interlayer distance in all experimentally observed multi-wall nanotubes is compa-

rable to that in graphite. This puts a constrain on possible combinations of single-wall

nanotubes to form multi-wall nanotubes. We have calculated elastic moduli for many differ-

ent combinations. It is found that elastic properties are insensitive to different combinations

as long as the constrain – interlayer distance ≈ 3.4Å – is satisfied. Because of this insen-

sitivity we use results for one series of multi-wall nanotubes to illustrate our main points.

The series chosen is constructed from (5n, 5n), n = 1, 2, 3 · · · single-wall tubes. This is one

of the most likely structure for multi-wall tubes as its interlayer distance is very close to
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that actually observed.15

Table.2 lists the calculated elastic coefficients and the bulk, Young’s, and shear modulus

for this series of nanotubes up to 10 layers. The experimental values for the graphite and the

diamond are also listed for comparison. One observes that the elastic moduli are essentially

independent of the number of layers. The same is true for all other multi-wall nanotubes we

have calculated. From Table.2 and its comparison with Table.1 one concludes: (1)The elastic

moduli vary little with the number of layers. (2)The interlayer van de Waals interactions

contribute less than 10% to the elastic moduli of multi-wall nanotubes.

The Young’s modulus of multi-wall nanotubes was deduced recently by Treacy et al.5

from the thermal vibrations of anchored tubes. Their values range from 0.4 to 4 TPa with

the average values of 1.6 TPa. These results are substantial larger than our calculated

values of 1 TPa. The discrepancy may be due to the large uncertainty in how to estimate

the Young’s modulus from their experiments. In their estimation the isotropic model was

assumed, our results clearly show that this is not true. More recent direct measurement

of the multi-wall nanotubes using the AFM technique and the Euler’s buckling criteria has

yield a result of 1 TPa,16 in agreement with our calculations.

V. Crystalline Nanoropes

The discovery of a new efficient method of producing bulk quantity of single-wall nan-

otubes has made it possible to make crystalline ropes of nanotubes.2 These nanoropes consist

of 100 to 500 single-wall nanotubes of uniform size. Due to the weak inter-tube interactions

one expects these rope to be flexible in the basal plane, yet very stiff along the axial direction.

We use same model described above to calculate the lattice constant and elastic moduli

of these nanoropes. Table.3 summarize the bulk properties of nanoropes with nanotubes

radius ranging from 1nm (the (5,5) tube) to 2nm (the (13,13) tube). Due to extreme

disparity between the inter-tube and intra-tube interactions, we have neglected the coupling

between the two interactions. Thus, the lattice constant a0 and the cohesive energy E0 are

determined by inter-tube van de Waals interaction only. It is found that a0 and the cohesive

5



energy per atom scales with the tube radius R as a0 = 2R+3.2Å , E0 = 61.5(meV )/
√

R(Å ).

For nanorope composed of the typical (10,10) tube, R = 6.78Å , a0 = 16.8Å , E0 = 23meV.

The cohesive energy of the rope is comparable to that of the C60 solid (33mev).

From Table.3 one observes that: (1) Nanorope is very anisotropic. (2) The basal plane

is soft, while the axial direction is very stiff. (3) The C33 is about half that of the diamond.

The weak inter-tube interaction ensures that the rope is flexible as individual tubes can

rotate and slide with respect to each other easily. This is supported by the experimental

SEM images where long nanoropes are observed to be well bended and tangled.2

VI. Conclusions

We have investigated elastic properties of nanotubes and nanoropes using an empirical

force constant model. The simplicity of the model enable us to explore the dependence of

elastic moduli on the nanotube geometry. It is shown that elastic properties are insensitive

to the radius, helicity, and the number of layers. The calculated Young’s modulus (∼ 1

TPa) and shear modulus (∼ 0.5 TPa) are comparable to that of diamond for both single

and multi-wall individual nanotubes. Crystalline rope of nanotubes is very anisotropic in

its elastic properties – soft on basal plane and stiff along the axial direction. The large

Young’s modulus and flexibility of nanoropes make them ideal materials for nanometer

scale engineering.
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TABLES

TABLE I. Elastic moduli of selective single-wall nanotubes. (n1, n2) – index, R – radius in

nm. B,Y,M are bulk, Young’s and shear modulus in units of TPa (1013dy/cm2). ν is the Poisson

ratio. Experimental values for the graphite and the diamond are listed for comparison.

(n1, n2) R B Y M ν

(5,5) 0.34 0.191 0.971 0.436 0.280

(6,4) 0.34 0.191 0.968 0.437 0.284

(7,3) 0.35 0.191 0.968 0.454 0.284

(8,2) 0.36 0.190 0.974 0.452 0.280

(9,1) 0.37 0.191 0.968 0.465 0.284

(10,0) 0.39 0.192 0.968 0.451 0.282

(10,10) 0.68 0.191 0.972 0.457 0.278

(50,50) 3.39 0.192 0.969 0.458 0.282

(100,100) 6.78 0.192 0.969 0.462 0.282

(200,200) 13.56 0.192 0.969 0.478 0.282

Graphitea 0.0083 1.02 0.44 0.16

Graphiteb 0.0083 0.0365 0.004 0.012

Diamondc 0.442 1.063 0.5758 0.1041

a Graphite along the basal plane.11

b Graphite along the C axis.11

c Diamond along the cube axis.14
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TABLE II. Elastic coefficients and moduli (in TPa) of multi-wall nanotubes constructed from

the (5n, 5n), n = 1, 2, 3 · · · series of single-wall tubes. N – number of layers, R – radius of the

out-most layer in nm. B,Y,M are bulk, Young’s and shear modulus (in TPa). Values for the

graphite and the diamond are listed for comparison.

n R C11 C33 C44 C66 C13 Y M B

1 0.34 0.397 1.05 0.189 0.134 0.147 0.97 0.436 0.191

2 0.68 0.412 1.13 0.189 0.137 0.146 1.05 0.455 0.194

3 1.02 0.413 1.15 0.189 0.138 0.146 1.08 0.464 0.194

4 1.36 0.412 1.17 0.189 0.138 0.146 1.09 0.472 0.194

5 1.70 0.411 1.18 0.189 0.139 0.146 1.10 0.481 0.194

6 2.03 0.411 1.18 0.189 0.139 0.146 1.10 0.491 0.194

7 2.37 0.410 1.18 0.189 0.139 0.146 1.11 0.502 0.194

8 2.71 0.410 1.19 0.189 0.139 0.146 1.11 0.514 0.194

9 3.05 0.410 1.19 0.190 0.139 0.146 1.11 0.527 0.194

10 3.39 0.410 1.19 0.190 0.139 0.146 1.11 0.541 0.194

Graphitea 1.06 0.036 0.004 0.440 0.015 1.02 0.008 0.440

Diamond 1.07 1.07 0.575 0.575 0.125 1.06 0.442 0.575

aYoung’s and shear moduli refer to the basal plane.
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TABLE III. Lattice constant a0 (nm), cohesive energy per atom E0 (meV), and elastic moduli

(in TPa) of crystalline nanorope made of single-wall (n, n) tubes. R(nm) is the radius of single-wall

tube.

n R a0 E0 C11 C12 C33

5 0.33 0.99 33.5 0.066 0.022 0.795

6 0.40 1.13 30.1 0.071 0.024 0.736

7 0.47 1.26 28.2 0.078 0.024 0.687

8 0.54 1.40 26.2 0.082 0.029 0.641

9 0.61 1.54 24.7 0.085 0.029 0.600

10 0.67 1.67 23.5 0.090 0.032 0.563

11 0.74 1.81 22.5 0.098 0.035 0.532

12 0.81 1.94 21.6 0.102 0.036 0.502

13 0.88 2.08 20.7 0.106 0.036 0.475

14 0.94 2.21 19.9 0.111 0.042 0.452

15 1.01 2.35 19.3 0.118 0.043 0.430
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