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Interacting random Dirac fermions in superconducting cuprates
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We study the effects of quasiparticle interactions on disorder-induced localization of Dirac-like
nodal excitations in superconducting high-Tc cuprates. As suggested by the experimental ARPES
and terahertz conductivity data in Bi2Sr2CaCu2O8+δ , we focus on the interactions mediated by
the order parameter fluctuations near an incipient second pairing transition d → d + is. We find
interaction corrections to the density of states, specific heat, and conductivity as well as phase
and energy relaxation rates and assess the applicability of the recent localization scenarios for non-
interacting random Dirac fermions to the cuprates.

In the past few years, the problem of disordered two-
dimensional (2D) Dirac fermions received much of atten-
tion, as it provides an effective description for the ran-
dom bond Ising model, network models of Quantum Hall
plateau transitions, and some other statistical problems.
Also, dynamical Dirac fermions can be used to conve-
niently describe low-energy excitations in a variety of
correlated systems, such as p-wave (e.g., Ru2SrO4) and
layered d-wave (high-Tc cuprates) superconductors and
superfluids (He3), and zero-gap semiconductors (e.g.,
graphene sheets).

The Hamiltonian of a generic disordered gapless super-
conductor and, in particular, planar d-wave system, pos-
sesses an additional discrete symmetry of charge conjuga-
tion which gives rise to as many as seven novel random
Gaussian ensembles corresponding to different patterns
of spin rotational and time reversal symmetry break-
ing [1]. Moreover, in a stark contrast with the conven-
tional case of a normal metal with extended Fermi surface
the density of states (DOS) of the non-interacting Dirac
fermions in a 2D d-wave superconductor is strongly af-
fected by disorder [2]. Furthermore, depending on the
concrete model for disorder, such as isotropic versus pre-
dominantly forward potential impurity scattering, the
DOS of the random Dirac fermions can exhibit different
low-energy asymptotic behaviors even within the same
random ensemble [3–8].

The multitude of different regimes and crossovers pre-
dicted for the non-interacting random Dirac fermions
raises a question about their observability in such re-
alistic d-wave systems as the high-Tc superconductors
where quasiparticle interactions are believed to be im-
portant. Moreover, the localization theory still remains
incomplete without an extra input in the form of quasi-
particle dephasing rate which controls the magnitude of
disorder-induced localization corrections in the infinite
system.

Thus far, despite the continuing progress in under-
staning of the non-interacting (de)localization phenom-
ena in the d-wave systems, the above issues did not re-
ceive enough attention. In the present paper, we fill in

this gap by investigating the effects of physically relevant
quasiparticle interactions on the localization properties of
the Dirac-like nodal excitations in the superconducting
cuprates.
In the Nambu spinor representation, the quasiparticle

(retarded) Green function reads as

ĜR
k (ǫ) = [(ǫ − ΣR

k (ǫ))τ̂0 + ξkτ̂3 +∆kτ̂1]
−1 (1)

where we introduced the 2×2 unity matrix τ̂0 in addition
to the triplet of the Pauli matrices τ̂1,2,3.
The bare quasiparticle spectrum which is composed

of the normal state dispersion ξk and the dx2−y2-

symmetrical gap ∆k becomes linear Ek = [ξ2k+∆2
k]

1/2 ≈
[(vf δk)

2 + (vgδk)
2]1/2 for momenta near each of the

four gap nodes located at ±K1,2 = ±(±kF , kF )/
√
2.

The pairs of orthogonal vectors vf = (∂ξk/∂k) and
vg = (∂∆k/∂k) correspond to the components of the
quasiparticle group velocity which are normal and tan-
gent to the fudicial Fermi surface, respectively.
By using the standard DOS definition

ν(ǫ) = − 1

π
Tr

∑

k

ImGR
k (ǫ) (2)

and linearizing the spectrum near the nodes, one readily
recovers the linear DOS ν(ǫ) = |ǫ|/(πvfvg) of the nodal
low-energy excitations in a clean 2D d-wave supercon-
ductor.
The origin of the quasiparticle interactions in the

cuprates remains a subject of an ongoing debate. The re-
cent ARPES [10] and optical (terahertz) conductivity [11]
data in Bi2Sr2CaCu2O8+δ seem to rule out any short-
ranged coupling that would have resulted in a T 3 tem-
perature dependence of the inverse inelastic quasiparticle
lifetime [12]. Instead, these data show an approximately
linear behavior which is suggestive of the possibility of
some sort of a quantum-critical behavior [13].
In the common scenario of a quantum-critical point

(QCP), the long-ranged interactions between the quasi-
particles result from their exchange by fluctuations of the
new order parameter. The recent analysis of different in-
cipient orderings singled out one of the second pairing
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transitions dx2−y2 → dx2−y2 + is(id′xy) as the most plau-
sible candidate [13]. Alternatively, one can also consider
the long-ranged interaction due to charge fluctuations in
the vicinity of a crystal structural instability [14]. Yet
another type of interaction mediated by the exchange
of antiferromagnetic fluctuations with momenta q ≈ Q

where Q = (±π, π) has been studied extensively in the
context of the normal state of the cuprates and recently
extended to the superconducting regime [15], albeit with
no disorder included.
In order to put all of the above quasiparticle interac-

tions into one unifying framework we consider a generic
form of the bosonic collective mode propagator

V̂ R
i (ω,q) =

Viτ̂i ⊗ τ̂i
(ω/c)2 − (Q− q)2 − λ2 − ViΠR

i (ω,q)
(3)

which describes the interactions in the spin, pairing, and
charge channels for i = 0, 2, and 3, respectively. In Eq.(3)
the parameter λ2 controls the proximity to the QCP, and
the fermion polarization functions ΠR

i (ω,q) account for
the feedback effect of the nodal Dirac fermions on the
spectrum of the collective mode.
As regards modeling the disorder, we consider the

experimentally relevant case of time-reversal and spin-
rotational invariant scattering due to non-magnetic im-
purities (class CI in the classification chartered in Ref.
[1]) which we treat as scatterers with density ni cou-
pled to the nodal Dirac fermions via the vertex Uk,k′ τ̂3.
The latter accounts for arbirary strength and momen-
tum dependence of disorder scattering and gives rise to
the scattering T -matrix

T̂k,k′(ǫ) =
∑

k′′

[δk,k′′ − Uk,k′′ τ̂3Ĝ
R
k′′(ǫ)]−1Uk′′,k′ τ̂3 (4)

where the first and second terms in the brackets cor-
respond to the Gaussian and Unitary limits, respec-
tively [2]. In the earlier studies employing non-abelian
bosonization and nonlinear σ-model [3–5,7] the lat-
ter regime describing strong impurities has remained
unattainable, and a markedly different behavior pre-
dicted in this case [6,8] could not be readily addressed.
The first insight into the random Dirac problem can be

obtained from the self-consistent equation derived in the
standard non-crossed diagrammatic approximation [2]

Σ̂R
k (ǫ) = ni

∑

k′

T̂k,k′(ǫ)ĜR
k′(ǫ)T̂k′,k(−ǫ) (5)

As shown below, our neglecting the crossed diagrams is
well justified by the large anisotropy of the Dirac spec-
trum (vF /vg ∼ 20) observed in the cuprates [9].

Provided that ni|T̂k,k′(ǫ)|/vfvg << 1, for all the rele-
vant energies and momenta, the solution of Eq.(5) man-
ifests the emergence of a new energy scale −ImΣR(0) =
γ << ∆ which separates between the ballistic and diffu-
sive regimes and gives rise to the finite DOS

ν0 =
2γ

π2vfvg
ln

∆

γ
(6)

In the non-crossed approximation, the spin and thermal
conductivities which obey the Wiedemann-Franz law ap-
pear to be independent of disorder (h̄ = kB = 1):

σs =
3κ

4π2T
=

1

4π2

v2f + v2g

vfvg
, (7)

while the charge conductivity receives non-universal ver-
tex corrections [2]. This is consistent with the fact that,
unlike the charge of quasiparticles, their spin and energy
are conserved, and, therefore, in the absence of localiza-
tion they can both propagate diffusively [4].
In the diffusive (ǫ < γ) regime, the mean field DOS (6)

and the ”universal” conductivities (7) alike become sub-
ject to further corrections which stem from both disorder-
induced weak localization and interference between dis-
order scattering and quasiparticle interactions. In order
to compute these corrections one needs explicit expres-
sions for all the gapless diffusion (D) and Cooperon (C)
modes of the random Dirac problem beyond the ergodic
limit studied in Ref. [1].
The abovementioned strong anisotropy of the Dirac

spectrum in the cuprates implies σs ≫ 1 which, apart
from justifying the use of Eq.5 for calculating the
fermion self-energy, allows one to resort to the stan-
dard ladder approximation for the propagators D̂(Ĉ) =
∑

ij Dij(Cij)τ̂i ⊗ τ̂j expanded in the basis of the tensor
products of the τ̂i-matrices.
By analogy with a normal metal, we first consider the

ladders formed by one retarded and another advanced
Green functions (RA-ladder) and find the following sin-
gular contributions to the propagators of the soft modes

Dij(Cij)(ǫ, ǫ′,q) = δij
γ2

πν0

η
D(C)
i

Dq2 − i(ǫ− ǫ′)
(8)

with the amplitudes ηDi = (1, 1, 1, 1) and ηCi =
(1, 1,−1, 1) corresponding to the D and C propagators,
respectively [16].
As previously pointed out [4], the diffusion coefficient

D appearing in Eq.(8) must satisfy the Einstein relation
σs = Dν0/4. In our approach, this happens naturally,
once the real part of the fermion self-energy ReΣ̂R

k (ω)
from Eq.(5) is accounted for in the ladder equations.
As opposed to the case of a normal metal, in a super-

conductor the gapless poles also appear in the RR (AA)-
ladders due to the combination of processes of impurity
scattering and Andreev reflection [1]. The correspond-
ing propagators D(C) are related to (8) by virtue of the
charge conjugation performed on one of the two lines of
the ladder:

D(C)(ǫ, ǫ′,q) = −
∑

i

Cij(Dij)(ǫ,−ǫ′,q)(τ̂2τ̂
∗
i τ̂2)⊗ τ̂i (9)
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which can be cast in the form of Eq.(8) with ηDi =
(−1, 1,−1, 1) and ηCi = (−1, 1, 1, 1).

A straightforward analysis shows that it is the RR-
Cooperon C which appears to be solely responsible for
the first order weak localization DOS correction [5]

δwlν(ǫ) = − 1

π2D
ln

γ

ǫ
(10)

Eq.(10) indicates that perturbation expansion remains
well under control for energies above the characteristic
scale ∼ γ exp(−4π2σs) where it eventually breaks down.

Besides the above soft modes, in the case of a nearly
nested (square-like) normal state Fermi surface there
might also exist additional (pseudo)Goldstone ones with
gaps of the order of chemical potential µ of the bare elec-
trons. In the d-wave superconducting state, the corre-
sponding poles occur in both RA- and RR(AA)-ladders
when the sum of the two momenta carried by the lines
equals Q, provided that the normal state dispersion sat-
isfies ξk ≈ −ξk±Q. In the Unitary limit, the presence
of these extra modes reverses the sign of the localiza-
tion correction (10) in the energy interval µ2/γ < ǫ < γ
[16], resulting in a behavior which is reminiscent of that
predicted in Refs. [6,8] for µ = 0. Nonetheless, at yet
lower energies the DOS will eventually get suppressed, in
accord with the scenario of Refs. [4,5,7].

Next, we calculate the interaction (Altshuler-Aronov
type) corrections which stem from the interplay between
disorder and quasiparticle interactions (3). As usual, the
latter can be divided into the exchange and Hartree con-
tributions.

Upon computing the diffusion-dressed interaction ver-
tices, we find that away from half-filling (2K1,2 6= Q)
no diffusion poles occur for any finite transferred mo-
menta Q 6= 0 which limits the subsequent discussion to
the intra-node inelastic scattering.

Furthermore, the vertices τ̂1,3 undergo no singular dif-
fusion dressing, as they correspond to the two spatial
components of the Dirac fermion current operator. By
contrast, both vertices τ̂0 and τ̂2 which represent the
Dirac fermion density and mass operators do develop
diffusion poles in the RA- and RR(AA)-channels, respec-
tively.

In light of the above, from now on we focus on the
coupling V̂ R

2 (ω,q) mediated by the fluctuations of a sec-
ondary pairing order parameter with Q = 0 which was
suggested as a possible scattering mechanism in the high
temperature (ballistic) regime [13]. Here we restrict our
attention to the case of the is secondary pairing, for the
case of the idxy pairing appears to be somewhat more
intricate [17]. Unlike any other before mentioned types
of interactions, it is strongly enhanced by disorder, thus
producing the diffusive DOS correction

δexν(ǫ)

ν0
=

∫ ∞

−∞

dω

2π

∑

q

[

−1

2
tanh

ǫ− ω

2T
Im

V R
2 (ω,q)

(Dq2 − i(2ǫ− ω))2

+coth
ω

2T
ImV R

2 (ω,q)Re
1

(Dq2 − i(2ǫ− ω))2

]

(11)

In the conserving approximation, the above vertex renor-
malization is necessarily accompanied by the singular po-
larization of the disordered Dirac fermions

ΠR
2 (ω,q) = ν0 ln

γ

Dq2 − iω
(12)

Close to the QCP (λ2 < V2ν0), the term (12) domi-
nates over the other terms in the denominator of Eq.(3),
thereby resulting in the intrinsically attractive coupling
V̂ R
2 (ω,q) ≈ −1/ΠR

2 (ω,q) which yields a positive DOS
correction

δexν(ǫ) =
1

4π2D
ln | ln γ

ǫ
| (13)

Thus, in contrast to the exchange DOS correction in a
normal metal, in our case δνex appears to be substan-
tially weaker than the effect of weak localization (10).

Farther away from the QCP (λ2 > V2ν0), the bosonic
propagator (3) becomes effectively short-ranged, and the
(positive) interaction correction to DOS becomes explic-
itly dependent upon the coupling strength: δexν(ǫ) ∼
(V2ν0/λ

2) ln γ/ǫ, while the corresponding Hartree term
vanishes identically.
The latter regime appears to be partly similar to the

case of a short-ranged non-singular ferromagnetic cou-
pling of the local quasiparticle spin densities in a gapless
bulk superconductor which yields the interaction DOS
correction of the same functional form and sign as the
localization one [18].

The DOS correction (13) can also be deduced from the
singular contributions to thermodynamic quantities, e.g.,
specific heat

δC(T ) = T
d2

dT 2

∫ ∞

0

dω

2π
[coth(

ω

2T
) + 1]

∑

q

tan−1 ImΠR
2 (ω,q)

ReΠR
2 (ω, q)

=
T

2π2D
ln | ln γ

T
| (14)

calculated for λ → 0. Accordingly, the exchange con-
tribution to the conductivity correction is given by the
expression

δexσs(T ) = −2σsIm

∫ ∞

−∞

dω

2π

d

dω
[ω coth(

ω

2T
)]

∑

q

Dq2V R
2 (ω,q)

[Dq2 − iω]3
=

1

8π2
ln | ln γ

T
| (15)
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which also shows a much weaker temperature depen-
dence than the logarithmic weak-localization correction
δwlσs(T ) = − ln(γτφ(T ))/2π

2 controlled by the inelastic
phase-breaking time τφ(T ) [4].
The latter can be estimated as a time interval for which

the accumulated phase uncertainty

δΦ(t) =

∫ ∞

−∞

dω

2π
coth(

ω

2T
)

∑

q

ImV R
2 (ω,q)

1− exp(iωt−Dq2t)

[Dq2 − iω]2
(16)

becomes of order unity [20]. From the condition δΦ(τφ) ∼
1, we obtain the estimate

τ−1
φ (T ) ∼ T

16πσs ln
2 γ/T

(17)

that should be contrasted against the apparent phase-
breaking rate ∝ T 1/3 found to describe both, experimen-
tally and theoretically, quasiparticle transport in the nor-
mal state of the cuprates [21].
Also, the dephasing time (17) differs from the inelastic

energy relaxation (or, ”out-scattering”) time [19]

τ−1
ǫ =

∫ ∞

−∞

dω

2π
[coth(

ω

2T
)− tanh(

ω

2T
)]

∑

q

ImV R
2 (ω,q)

1

Dq2 − iω + τ−1
ǫ

(18)

For T << γ/σs the solution of this self-consistent equa-
tion can be found in the form

τ−1
ǫ (T ) =

T lnσs

16πσs ln
2 γ/T

(19)

Unlike τφ which is determined by the processes with en-
ergy transters ω ∼ τ−1

φ , τǫ receives contributions from
the frequencies up to ω ∼ T . In the ballistic (T > γ)
regime, τ−1

ǫ (T ) becomes a linear function of tempera-
ture, in agreement with the earlier theoretical [13] and
experimental [10,11] results.
In conclusion, we carried out the analysis of the effects

of the experimentally relevant quasiparticle interactions
mediated by fluctuations of a secondary pairing order pa-
rameter (is) on the localization properties of the nodal
quasiparticles in disordered high-Tc superconducors. In
the course of this study we revisited the problem of local-
ization of noninteracting random Dirac fermions and ex-
plicitly solved for all the relevant diffusion and Cooperon
modes in a 2D d-wave superconductor with arbitrarily
strong impurities. We found that, despite being singu-
lar as a function of transferred energy and momentum,
the interaction in question generates only subdominant,
albeit positive, DOS, specific heat, and conductivity cor-
rections and, therefore, does not necessarily alter the

main predictions of the non-interacting localization sce-
nario of Refs. [4,5,7]. Lastly, we provided the so far miss-
ing ingredient of the localization theory by computing
the inelastic dephasing and energy relaxation.

We note, in passing, that the latter does not ac-
count for the possibility of the formation of a strongly
anisotropic network of delocalized resonant impurity
states, as proposed in Ref. [22]. However, as far as the
thermodynamic and transport properties of the rest of
the electronic spectrum are concerned, our findings pro-
vide further support for the attempts to find manifesta-
tions of the quasiparticle localization-related phenomena
in the superconducting cuprates [23].

Meanwhile, the high precision heat transport measure-
ments [24,25] might have already provided such an impor-
tant evidence of weak localization as positive magneto-
(thermal)conductivity. Should this interpretation of the
data of Ref. [25] proposed in [23] prove to be correct, the
phase relaxation time (17) may as well turn out to be
experimentally accessible.
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