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Abstract

We report the first theoretical model for the alkali fluids which yields a

liquid-vapor phase coexistence with the experimentally observed features and

electrical conductivity estimates which are also in accord with observations.

We have carried out a Monte Carlo simulation for a lattice gas model which

allows an integrated study of the structural, thermodynamic, and electronic

properties of metal-atom fluids. Although such a technique is applicable to

both metallic and nonmetallic fluids, non-additive interactions due to valence

electron delocalization are a crucial feature of the present model.
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Until recently little has been known regarding metal-atom fluids near the high tem-

peratures and pressures characteristic of their liquid-vapor critical points. However, such

knowledge is not only of considerable scientific interest but is also required for potential

technological applications near those conditions. The electronic and thermodynamic prop-

erties of such fluids are intimately related and knowledge of these properties is essential in

determining the right material for a given application. Such considerations have motivated

experimental studies of those materials with the lowest critical temperatures: Hg (1751 K),

Cs (1924 K), and Rb (2017 K) [1], with data on K (2178 K) now being available [2]. The data

have become precise and reliable in the last decade and span thermodynamic and electrical

measurements under the same conditions. Such data show that the liquid-vapor coexistence

curve of metal-atom fluids are different from those of Lennard-Jones-like ones [2,3]. For ex-

ample, the liquid and vapor branches of the coexistence curves are strongly asymmetric and

the rectilinear diameter law breaks down over a large temperature range, not only very close

to the critical points. These materials also undergo a metal-nonmetal (M-nM) transition.

This body of data, however, still seeks microscopic theoretical foundations [4]. This paper

presents a simple model which appears to contain the basic ideas required to reproduce, in

a unified manner, the peculiar characteristics observed in the alkali fluids.

The goal of the present work - understanding the structural, thermodynamic, and elec-

tronic properties of metal-atom fluids - poses a considerable scientific challenge. Its various

aspects are coupled since it is the electrons which determine interatomic interactions and

thus the structure and thermodynamic data. The ionic structure, in turn, determines the

electronic properties. In the study of metal-atom fluids it is difficult to impose a structure,

since it is so intimately related to electronic effects and there is no long-range symmetry

to simplify the problem. Also, because in such materials the interactions are not pairwise

ones for intermediate densities, due to electron delocalization over some regions, the problem

is more complicated than that for fluids in which the interactions are not state dependent.

Similarly, as these materials also undergo a M-nM transition, the traditional techniques used

to study free-electron-like fluids are not applicable over many of the conditions of interest.
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The microscopic theory required for these materials should seek to explain the essential in-

terdependence of thermodynamic, structural, and electronic properties. Previous theoretical

efforts to comprehensively explain the available experimental data on metal-atom fluids have

been sparse. The points of view taken were usually based on the limiting cases of either a

metallic dense liquid or solid, or alternatively of a nonmetallic dilute vapor. Attempts were

then made to describe the fluid, or some of its properties, in a limited density and tempera-

ture range [5–7]. General arguments based on electron correlation effects (Hubbard model)

and/or disorder induced localization (Anderson model) [8] are useful to study the M-nM

transition in systems with frozen ionic structure but probably not in metal-atom fluids.

A first step towards a comprehensive theoretical treatment attempted the extension of

concepts and techniques of plasma physics to treat both liquid and vapor phases, and then

tried to introduce the required neutral atoms and small clusters [9]. We also proposed such

an approach [10,11] and showed that a toy model gives a liquid-vapor coexistence and a

critical point with some correct features, but we were far from reproducing the peculiar

coexistence curve of alkali fluids. In recent work [12], we followed this approach including a

quantitatively good description of the plasma: a standard description of liquid metals near

their triple point [13]. Extension of this treatment to high temperature and low density

gave a plasma liquid-vapor coexistence with a very high critical temperature (around four

times the experimental value) and a very different shape for the coexistence curve than

that observed. We then extended the model to allow for chemical coexistence of neutral

atoms with the plasma. Virial ion-atom interactions were used, instead of their neglect as

in the previous toy model. However, reasonable values of the parameters did not improve

the previous plasma results. We have concluded that a mean-field theory is not capable of

reproducing the structure or phase diagram of the alkali fluids [12].

An unanswered question, in the above approach, is: why do some fraction of the valence

electrons choose to be bound in atoms while others are delocalized, at fixed temperature

and density? The answer must lie in a hitherto ignored underlying structure. An important

clue is that clustering effects are strongly enhanced for metal-atom systems, compared to
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nonmetallic ones, due to their high cohesion which arises from the valence electron delo-

calization over the cluster. In contrast, to retain its valence electron an atom should have

no near neighbors to which that electron can be favorably delocalized. We present here a

simple lattice gas model which includes such considerations and yields results showing the

observed peculiarities of the alkali fluids.

In our model, we allow the ions to partially occupy the sites of a body centered cubic

(bcc) lattice, which has the same maximum number of nearest neighbors as do real metals.

The lattice parameter is determined by the condition that the maximum density ρ0 be equal

to that of the liquid metal at its triple point. The energy, in a mean-field treatment of the

model, is obtained from the energy per ion u(ρ) in a normal treatment for a liquid metal

with mean density ρ [13]. That is, using a jellium reference system for the delocalized va-

lence electrons yields kinetic, exchange, and correlation energy contributions, and a linear

response function. Also, a hard-sphere reference for the ions gives a pair distribution func-

tion. Finally, a pseudopotential is associated with the ions (Ashcroft, empty core, fitted to

the liquid metal conductivity at the melting point) and the screened ion-electron and ion-

ion interactions (minus reference system effects) are treated by perturbation theory. This

is a Gibbs-Bogoliubov variational approximation. The electronic effects are treated at zero

temperature since no appreciable changes result from including the temperature effects in

the kinetic and exchange energies. The results with the mean-field lattice model (Table I)

are very close to those of the previous, continuous, plasma model [12].

The crucial point, however, is to calculate the energy of the system taking into account

the strong inhomogeneities due to clustering. We now propose to get the energy per ion

using the mean-field energy u(ρ̂) which is to be evaluated at a local average density ρ̂.

This density takes into account the ion and its environment, through the occupation of

its nearest-neighbor lattice sites. Thus, ρ̂ = (n + 1)ρ0/9 and n is the number of occupied

nearest-neighbor sites; it takes values from 0 to 8. For ions without any nearest neighbors

(n = 0), this energy, calculated as in a plasma, is compared with that of a free atom ( i.e.

minus the ionization energy ) and in a variational spirit the lower value is chosen. Although
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the energy difference is small, the atomic state is lower for all the alkalis. This approach thus

includes the structurally-based possibility of valence electron localization, to form atoms, or

some degree of delocalization. For cesium we take ρ0 = 1.84 g/cm3 and obtain the following

energies per ion (in eV):

n 0 1 2 3 4 5 6 7 8

u -3.89 -4.20 -4.42 - 4.58 -4.71 -4.81 -4.90 -4.99 -5.06 .

This simple model for the configuration energy contains a basic difference with the pairwise

interactions of usual lattice models: non-additive interactions with neighboring ions due to

valence electron delocalization. Also, such interactions are misrepresented in a mean-field

treatment of a metal-atom fluid if the density fluctuations become important.

We present the results of Monte Carlo simulations for this model, applied to cesium and

potassium. We have carried out simulations within a cube with twelve bcc cells on each

side (3456 sites). Some results have been checked using a larger cube (8192 sites), without

appreciable changes in the results. The simulations, carried out at fixed temperature and

chemical potential, give the equilibrium density and internal energy of the system. The

pressure is obtained by thermodynamic integration. Structural features such as a nearly

linear decrease in the average coordination of ions in the expanded coexisting liquid result

from this calculation; that feature agrees with what has been deduced from analysis of

neutron scattering data [14]. In Fig. 1, we show the coexistence curves, in critical reduced

units, obtained for cesium along with the experimental result. Using the present method, the

shape of the coexistence curve is in good agreement with experiments, recovering the strong

liquid-vapor asymmetry. Although the size of our simulation box prevents a closer approach

to the critical point than about one per cent, our results clearly show a non-classical critical

behavior, in agreement with experiment and previous theoretical predictions [15,16]. Near

the critical point, the diameter ρd = (ρL + ρV )/2ρC is indicated in the figure and clearly

shows the nonlinear behavior: ρd− 1 ∝ |(TC −T )/TC |
1−α. Our estimate for 1−α, 0.8± 0.1,

is compatible with the experimental value [3] of 0.87 ± 0.03. We have also calculated the
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phase diagram for potassium; in reduced critical units it is very similar to that of cesium. In

agreement with experiments, our results for different alkali fluids give similar reduced phase

diagrams.

The critical temperatures in our model are higher than those of the real fluids, as one

would expect from a lattice-gas treatment of the configurational entropy. However, the

results in table I show that the correlation effects included in the present model produce

a very large decrease of the critical temperature compared with the previously mentioned

mean-field approach. Also, the critical densities and pressures are brought into reason-

able agreement with experiments. Moreover, the relative critical parameters of cesium and

potassium in our model are very similar to the relative experimental ones.

We have next explored electronic properties related to structure. The experimental

signature of a M-nM transition in these systems is a decrease of several orders of magnitude

in the conductivity of the expanded fluid metal. In our model, such behavior is driven

by the percolation of the ionic cluster structure, rather than by considerations such as

those of Mott or Anderson. From typical configurations of our Monte Carlo simulation for

cesium, we have obtained the cluster structure at different temperatures and pressures. The

conductivity was estimated following the Kirchoff’s law model proposed by Nield et al. [17],

with arbitrary units fitting the experimental conductivity at the maximum density. The

results in Fig.2 show the conductivity estimated in this manner along the critical isotherm

versus the pressure, in excellent agreement with experiment [1]. The figure also shows the

calculated conductivity versus density at the critical temperature, and that arising from a

random filling of the lattice. The difference clearly shows the effects of clustering. The

percolation density (at which the conductivity goes to zero) at Tc is less than half that

obtained with random occupation.

We have presented a model allowing a unified study of the structural, thermodynamic,

and electronic properties of metal-atom fluids. The model takes into account non-additive

interactions, due to valence electron delocalization, and it is studied with a Monte Carlo

simulation which goes beyond mean-field, as is required. Although the model is a very
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simplified representation of a metal-atom fluid, comparisons with a range of experimental

results show that it contains the basic ingredients to allow reproduction of the peculiar

behavior observed in these systems. These peculiarities include the metal-nonmetal and

liquid-vapor transitions and the connection between ionic and electronic structures. Our

results for the critical temperatures are still too high, though the densities and pressures

are acceptable. It is reasonable to expect that, with a more realistic description of the fluid

entropy, a similar model (though more cumbersome to study) would also give a quantitatively

good result for the critical temperatures. Our simplified model appears to allow a unified

understanding of the peculiar characteristics of the alkali fluids.

This work was supported by the Dirección General de Investigación Cient́ifica y Técnica

(Spain) under Grant PB91-0090 and the Instituto Nicolas Cabrera.
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FIGURES

FIG. 1. Liquid-vapor coexistence curve of cesium. Filled circles: present MC simulation; full

line: fit to the experimental results of ref. [3]. The MC simulation diameter function, ρd, is also

plotted (crosses). The triangles show our metal-nonmetal transition ( i.e. the percolation line),

the dotted line is a guide to the eye.

FIG. 2. On the left we show the electrical conductivity σ versus the reduced pressure along

the critical isotherm: crosses - our model ; open circles - experimental values of ref. [1], both

normalized to the conductivity σ0 at our highest density ρ0. On the right we show our calculated

electrical conductivity but now versus the fractional occupation of the lattice; crosses are our results

for T = Tc and triangles for the random filling of the lattice.
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TABLES

TABLE I. Comparison of the calculated critical conditions, using lattice gas mean-field and

the present theory, with the experimental results of ref. [2] and [3]. The temperature T is in

Kelvin, the pressure P in bar, and the density ρ in g cm−3.

CESIUM POTASSIUM

Tc ρc Pc Tc ρc Pc

Mean Field 6730 0.03 9.6 7890 0.018 19

Our Theory 3600 0.50 100 3920 0.21 170

Experiment 1924 0.38 92.5 2178 0.18 148
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