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We conducted a cross-sectional study of NMR-derived HDL subclasses and alcohol intake among 2171 community-dwelling older adults with a

large proportion of daily or near-daily alcohol consumers (44 %). We aimed to assess whether, in addition to increasing total HDL, alcohol may

induce a beneficial shift in HDL particle size distribution. Participants were categorised based on reported alcohol intake (g per week) and on

frequency (none, ,3 times/week, 3–4 times/week, $5 times/week). The association between alcohol intake and lipoprotein fractions was exam-

ined using sex-specific linear regression models adjusted for age, BMI, diabetes, current smoking, exercise and hormone therapy in women. There

was a stepwise gradient with the highest weekly alcohol consumption associated with the highest total HDL size and greatest number of medium

and large HDL particles, as well as higher total HDL concentrations (all P,0·001); total small HDL did not differ. Alcohol–HDL size associations

were similar in both sexes and did not differ by use of hormone replacement therapy in women. In conclusion, regular alcohol consumers had a

higher number and percentage of large HDL particles than non-drinkers. These results suggest that one way that alcohol may decrease CVD is

through potentially favourable changes in lipoprotein subclass composition.

Alcohol: Lipoproteins: Cholesterol: Epidemiology

CVD is the leading cause of morbidity and mortality in most
of the world, despite efforts to reduce risk through effective
LDL-lowering therapy(1,2). To further reduce CVD burden,
attention has expanded toward HDL as a therapeutic target.
A low HDL-cholesterol (HDL-C) level is a significant
independent risk factor for CVD and high HDL-C is usually
cardioprotective(3,4). While numerous efforts are underway
to develop new pharmacological approaches to increase
HDL levels, lifestyle interventions are also promising (for a
review, see Singh et al.(5)).

Abundant evidence indicates that regular light or moderate
alcohol consumption reduces the risk of CHD and all-cause
mortality (for a review, see O’Keefe et al.(6)). At least half of
alcohol’s cardiovascular benefits are attributed to increased
HDL-cholesterol(7); HDL rises in a dose-dependent fashion
with a 5 % increase with one drink per d and up to 12 % increase
with two or three drinks per d over a 3-week time period(8 – 13).

Lipoprotein subclass composition may help explain
CVD risk, though few large studies have investigated the
relationship between NMR-measured HDL particle size and
CVD risk. Results from existing studies of HDL size
and CVD risk have been mixed. Early studies suggest that

high levels of large HDL confer decreased risk and high
levels of small HDL increase risk(8 – 10,14 – 17); more recent
studies have found the reverse(18 – 21), with risk highest at
very high levels of HDL size(22).

We hypothesised that, in addition to increasing total HDL,
regular alcohol consumption induces a favourable shift in
HDL particle size, which might help explain alcohol’s protec-
tive role in CVD risk. We tested this hypothesis in a cross-
sectional study using lipoprotein data from NMR spectroscopy
to examine the quantitative association of alcohol consump-
tion with the amount, size, and subclass proportions of
HDL-C in a population of relatively healthy community-
dwelling older men and women with a large proportion of
daily or near-daily drinkers.

Methods

Study population

The Rancho Bernardo Study is a longitudinal population-
based study of healthy ageing and CVD risk factors. Study
participants are mostly white and middle- to upper-middle
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class; all are ambulatory. At the initial visit in 1972–4, 82 %
of adult Rancho Bernardo residents enrolled in the study. In
1984–7, 81 % (n 2480) of surviving community-dwelling par-
ticipants returned for a follow-up visit at which time they
completed a comprehensive questionnaire and provided a
blood sample for laboratory analysis. After exclusions
(age , 50 years, current cholesterol medication, or
TAG . 4000 mg/l), 2174 were eligible for the present study.
Of these, two were excluded for missing alcohol information
and one for implausibly high reported alcohol intake, leaving
a final sample of 2171. The study complies with the Declara-
tion of Helsinki and was approved by the institutional review
board of the University of California, San Diego. All study
participants gave written informed consent.

Alcohol consumption

Usual alcohol consumption and weekly number of drinks of
beer, wine and liquor were reported on a standardised self-
administered questionnaire. One drink was equivalent to
roughly 12 g alcohol. Participants also were asked, ‘How
often do you usually consume alcoholic beverages?’ with
possible responses: ‘never’, ‘1 time/month’, ‘1–2 times/
month’, ‘1–2 times/week’, ‘3–4 times/week’ and ‘almost
daily or daily’. Before analysis, the less frequent categories
were merged to form the following categories of alcohol fre-
quency: none, ,3 times/week, 3–4 times/week, and
5 þ times/week.

Lipoprotein and lipid measurements

Lipoprotein subclasses were determined by standard NMR
spectroscopy at LipoScience, Inc. (Raleigh, NC, USA) in
1999 from plasma samples collected at the 1984–7 follow-
up visit and stored at 2708C. Proton NMR spectra of freshly
thawed samples (0·25 ml) were acquired in duplicate at 478C
using a dedicated 400 MHz NMR analyser (LipoScience,
Inc.). Lipoprotein particles of different size give rise to dis-
tinguishable lipid methyl group NMR signals, the intensities
of which are proportional to the lipid mass of the par-
ticles(23,24). The NMR signal amplitudes were converted to
mass concentration units (mg/l) of cholesterol (for LDL and
HDL subclasses) or TAG (for VLDL subclasses) to allow
comparison with chemically measured lipid fractions.

The NMR-determined subclasses were classified by
diameter range. Diameter range was determined by calibration
with purified lipoprotein subfractions isolated by ultracentrifu-
gation and/or agarose gel filtration chromatography. For the
present study we examined the HDL subclass categories:
small HDL (7·3–8·2 nm), intermediate HDL (8·2–8·8 nm)
and large HDL (8·8–13 nm). Summation of subclasses
provides level of total HDL. Average HDL particle size was
calculated by weighting the relative mass percentage of each
subclass by its diameter. The HDL subclasses correspond to
HDL subclasses by gradient gel electrophoresis as follows:
large HDL < HDL2b þ HDL2a; intermediate HDL < HDL3a;
small HDL < HDL3b þ HDL3c.

Total fasting plasma cholesterol and TAG levels were
measured by enzymic techniques using an ABA-200 biochro-
matic analyser in a Centers for Disease Control (CDC)-
certified laboratory (Abbott Laboratories, Irving, TX, USA).

HDL level was measured after precipitation of the other
lipoproteins with heparin and manganese chloride. LDL
levels were calculated using the Friedewald equation(25).

Other covariates

Height, weight and waist circumference were measured in the
clinic by trained nurses with participants wearing light cloth-
ing and no shoes. BMI (kg/m2) was used as an estimate of
overall adiposity. Diabetes was defined by the 1999 WHO
criteria: fasting blood glucose $ 126 mg/dl ($1260 mg/l),
2 h post-challenge glucose level $ 200 mg/dl ($2000 mg/l),
history of diabetes diagnosed by a physician, or treatment
with an oral hypoglycaemic agent or insulin(26). Participants
self-reported their use of postmenopausal hormone replace-
ment therapy (HRT), smoking and physical activity in a
validated questionnaire. HRT and other medications were
validated by a nurse who examined pills and prescriptions
brought to the clinic.

Statistical analyses

Data were analysed with SPSS (version 16.0; SPSS Inc.,
Chicago, IL, USA). ANOVA, general linear models, and x2

analysis were used for descriptive statistics across four
alcohol-use groups (none, ,3 times per week, 3–4 times
per week, 5 þ times per week). Mean HDL particle sizes, sub-
class levels and other characteristics were compared among
alcohol-use groups by univariate analysis for linear and quad-
ratic trend. The association between alcohol consumption
(both as a continuous variable and as a categorical variable
based on alcohol frequency) and HDL subclasses was assessed
with multiple linear regression; current HRT use in women
(categorical, yes or no), BMI (as a continuous variable), dia-
betes (categorical, yes or no, based on 1999 WHO criteria),
smoking (categorical, yes or no), exercise (categorical, moder-
ate activity 3 or more d per week, yes or no) and age (as a
continuous variable) were evaluated as covariates. Because
HDL size and the intermediate and large HDL subclasses
were skewed, median levels are presented for those variables.
Non-parametric analyses with Kruskal–Wallis tests revealed
qualitatively similar findings as parametric analyses; P values
are presented for parametric analysis of linear and quadratic
trend only. All analyses were stratified by sex. Statistical
significance was designated as P,0·05.

Results

A total of 1197 women (mean age 72 years) and 974 men
(mean age 73 years) participated in the present study. Overall,
8 % of participants had a BMI greater than 30 kg/m2, 17 % met
Adult Treatment Panel III criteria for central obesity (waist
girth $ 102 cm for men and $ 88 cm for women) and 15 %
had diabetes. Only 13 % reported current smoking and of
those approximately half smoked one pack per d or more;
81 % reported exercising three or more times per week.
Current postmenopausal HRT was reported by 27 % of
women; 19 % were taking oestrogen alone and 8 % were
taking a combined oestrogen–progestin therapy.

Overall, 958 (44 %) participants reported drinking at least
five times per week (38 % of women and 51 % of men);
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12 % abstained from alcohol. Table 1 shows selected baseline
characteristics of study participants across alcohol frequency
categories. In both sexes, smoking behaviours and exercise
frequency increased linearly with alcohol frequency while dia-
betes prevalence and fasting insulin levels decreased with
increasing alcohol frequency. Women on HRT reported
higher frequency of alcohol consumption and a corresponding
significantly higher alcohol consumption in grams. BMI and
waist circumference were lower among those with higher
alcohol consumption in women but not men. Waist:hip ratio
and creatinine levels did not differ by alcohol intake.

We assessed chemically measured TAG, total cholesterol,
LDL and HDL and NMR-determined HDL subclasses includ-
ing large, intermediate and small HDL and overall HDL size.
The mean values of enzymically derived HDL-C (620 mg/l)
and HDL measured by proton NMR (HDL-P) (480 mg/l) dif-
fered appreciably, with HDL-P approximately 21 % lower
than HDL-C. However, the correlation between the ascertain-
ment methods was high (R 0·85; P,0·01) (data not shown).
Table 2 shows unadjusted levels of lipids and HDL subclasses
by category of alcohol frequency. TAG levels were progress-
ively lower as the frequency of alcohol consumption
increased; however, when alcohol consumption was assessed
as a continuous variable (number of drinks per week), TAG
levels and alcohol consumption were negatively correlated
among individuals who drank # 14 drinks per week
(R 20·051; P¼0·033) and positively correlated among those
who drank . 14 drinks per week (R 0·108; P¼0·024) (data
not shown). Total cholesterol levels were higher with increas-
ing alcohol frequency in both men and women. While LDL-
cholesterol (LDL-C) changes were not significant for men
and followed an inverted U-shaped pattern for women
(P quadratic#0·001) in that non-drinkers and daily drinkers
had the lowest levels, an analysis of the LDL particle
number showed that increased alcohol consumption was
associated with increased particle number for both men and
women (P#0·01). LDL-C and HDL-C levels were modestly
inversely correlated with each other for men (R 20·12;
P,0·01) and women (R 20·27; P,0·01). The LDL-C:HDL-C
ratio decreased with increasing alcohol consumption for
both sexes but this decrease was primarily due to an alco-
hol-related increase in HDL. Qualitative results for these
analyses were similar when women were stratified by current
HRT use.

Levels of each HDL measure were significantly related to
alcohol frequency. Levels of HDL-C (P,0·001), large and
intermediate HDL-P (P,0·001), large HDL-P percentage
(P,0·001 in women, P¼0·002 in men), total and large
HDL-P for men and women not on HRT (P,0·001), large
HDL-P percentage (P,0·001 in women, P¼0·002 in men),
small HDL-P in men (P¼0·013), and HDL size (P,0·001)
were higher with increased alcohol consumption; the opposite
was true for small HDL-P percentage (P,0·001). Small HDL-
P in women followed an inverted U-shaped pattern in which
levels were highest for non-drinkers and for those who
drank most frequently (quadratic P,0·001). Total and large
HDL-P followed a J-shaped pattern for women on HRT.
Levels of HDL-C, large HDL-P and intermediate HDL-P
were higher in women compared with men across all alcohol
categories. Figure 1 graphically compares HDL subclass
proportions by alcohol frequency, sex and current HRT.

We defined a multivariate model of various HDL subclasses
as a linear function of both alcohol frequency and the number
of alcoholic drinks per week (where an alcoholic drink con-
tains 12 g alcohol), HRT, BMI, diabetes, smoking, exercise
and age. Results were similar for both analyses. Results with
alcohol as a continuous variable are shown in Table 3. Alcohol
and HRT were associated with higher levels of HDL-C,
medium HDL-P, large HDL-P and HDL size. While small
HDL-P levels were lower among those currently using HRT
and only modestly lower among those with higher levels of
alcohol consumption, the percentage of small HDL-P was
significantly lower with hormone use and increasing alcohol
consumption (P,0·001) (data not shown). BMI, diabetes,
smoking, exercise and age also influenced HDL subclasses
to varying degrees, as represented by the size of b coefficients
in Table 3.

Discussion

It is known that both alcohol intake and high levels of HDL-C
are associated with decreased risk of CVD (for reviews, see
Singh et al.(5) and O’Keefe et al.(6)). In the present study of
relatively healthy community-dwelling older adults, of
whom 44 % were daily or near-daily alcohol drinkers, alcohol
consumption was associated with 20 % higher total HDL-C,
with a higher total amount and percentage of large and
medium HDL-P, and with a lower percentage of small
HDL-P. These trends were identical for men and women,
and independent of HRT use, itself a modulator of HDL
amount and type(27 – 29). The size of the alcohol-associated
HDL changes reported here are equivalent to those of
niacin, the current treatment of choice to raise HDL-C.
Niacin raises HDL by approximately 20–30 %(5), presumably
through increases in apo A-1 production and large HDL with
little effect on small HDL(30). Consistent with previous
studies, moderate alcohol consumption was associated with
decreased TAG levels whereas reported consumption greater
than two drinks per d was associated with higher TAG
levels(6).

Previous research

We are aware of five other epidemiological studies that exam-
ined the association between alcohol intake and HDL sub-
classes; only one of these assessed subclasses by NMR
spectroscopy. The first, a cross-sectional study of 151 male
and 146 female, mostly Mormon, participants found that
among participants aged $ 18 years, alcohol was associated
with an increase in the large lipid-rich HDL2b in both sexes
and a selective increase in intermediate-sized HDL3a/2a

region in men only(31). In a case–control study of 340 hospi-
talised patients with a myocardial infarction and an equal
number of matched controls, those who reported drinking
the most alcohol had higher levels of total, large HDL2 and
small HDL3

( 11). In the third study of 279 men, participants
who drank more than 5 g alcohol per d had a higher proportion
of large lipid-rich HDL2 cholesterol compared with small
lipid-poor HDL3 than those who drank less than 5 g alcohol
per d(32). These three studies used gradient gel electrophoresis
to measure HDL subclasses. Among participants in the
Atherosclerosis Risk in Communities (ARIC) Study, alcohol
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Table 1. Baseline characteristics of 2171 Rancho Bernardo Study participants from the 1984–7 visit with lipoprotein subclass measurements according to usual alcohol frequency

(Mean values and standard deviations, medians and interquartile ranges or percentages)

Women (n 1197) Men (n 974)

Alcohol consumption

(frequency per week). . .
None

(0 times/week)

(n 158)

Light (,3

times/week)

(n 489)

Moderate (3–4

times/week)

(n 93)

Regular (daily)

(n 457)

None

(0 times/week)

(n 96)

Light (,3

times/week)

(n 289)

Moderate (3–4

times/week)

(n 88)

Regular (daily)

(n 501)

Mean SD Mean SD Mean SD Mean SD P linear trend Mean SD Mean SD Mean SD Mean SD P linear trend

Age (years) 72 10 71 10 69 8 70 9 0·013 71 11 71 10 70 10 72 9 0·238

Alcohol (g/week) 0 7 14 55 31 153 80 ,0·001 0 11 19 61 31 190 115 ,0·001

Current smoker (%) 8 8 13 24 ,0·001 9 6 9 13 ,0·001

Former smoker (%) 3 45 54 64 ,0·001 56 65 64 76 ,0·001

BMI (kg/m2) 24·5 4·1 24·5 3·8 24·2 3·6 23·7 3·7 ,0·001 25·4 3·3 25·9 3·5 26·2 3·7 25·6 3·1 0·677

Exercise 3 þ

times/week (%)

77 76 86 78 ,0·001 80 87 82 84 ,0·001

Diabetes (%) 15 15 11 10 ,0·001 23 19 14 16 ,0·001

Hormone

replacement (%)

30 39 41 41 ,0·001

Fasting insulin (mU/ml) 13 9 13 8 11 5 11 7 0·001 14 9 16 14 14 8 13 8 0·006

Fasting glucose (mg/l) 980 200 980 210 990 140 980 170 0·568 1030 220 1040 200 1040 190 1040 210 0·798

HOMA-IR*† 0·008 0·022

Median 2·7 2·7 2·6 2·4 2·9 3·2 2·8 2·8

Interquartile range 1·7–3·8 1·8–4·0 1·9–3·5 1·5–3·4 2·0–4·0 2·0–4·4 2·1–4·2 1·8–4·0

SGOT (U/l)* 0·993 0·141

Median 24 24 25 24 25 25 26 25

Interquartile range 20–30 19–29 20–29 19–29 19–31 19–30 19–32 19–31

SGPT (U/l)* 0·404 0·576

Median 16 16 16 16 18 19 20 18

Interquartile range 12–21 13–21 12–21 12–21 12–25 14–24 13–28 13–25

HOMA-IR, homeostasis model of insulin resistance; SGOT, serum glutamic oxaloacetic transaminase; SGPT, serum glutamic pyruvic transaminase.
* Asymmetric variables log-transformed for analysis.
† HOMA-IR available in a subset of 1552 men and women.
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Table 2. Lipids and HDL subclasses by usual alcohol frequency in men and women

(Mean values and standard deviations, medians and interquartile ranges or percentages)

Women (n 1197) Men (n 974)

Alcohol consumption
(frequency per week). . .

None
(0 times/week)

(n 158)

Light (,3
times/week)

(n 489)

Moderate (3–4
times/week)

(n 93)
Regular (daily)

(n 457) P †

None
(0 times/week)

(n 96)

Light (,3
times/week)

(n 289)

Moderate (3–4
times/week)

(n 88)
Regular (daily)

(n 501) P †

Mean SD Mean SD Mean SD Mean SD Linear Quadratic Mean SD Mean SD Mean SD Mean SD Linear Quadratic

TAG* (mg/l) ,0·001 0·595 0·002 0·842
Median 1070 1080 930 900 1100 1020 970 940
Interquartile range 740–1590 740–1510 620–1430 660–1310 800–1490 700–1500 690–1470 660–1380

Total cholesterol (mg/l) 2210 400 2280 410 2360 380 2300 360 0·044 0·029 2030 400 2060 360 2120 360 2110 380 0·011 0·616
LDL-C (mg/l) 1350 360 1410 390 1430 370 1340 360 0·125 ,0·001 1310 370 1320 320 1350 330 1330 350 0·695 0·621
HDL-C (mg/l) 620 170 640 160 720 190 750 190 ,0·001 0·262 480 110 510 170 520 130 570 150 ,0·001 0·705
LDL-C:HDL-C 2·4 1·0 2·4 1·0 2·2 0·9 2·0 0·9 ,0·001 0·068 2·9 1·1 2·8 0·9 2·7 1·0 2·5 0·9 ,0·001 0·538
Large HDL (mg/l) ,0·001 0·132 ,0·001 0·336

Median 220 220 200 290 100 120 150 150
Interquartile range 110–330 130–330 180–240 190–410 60–190 50–190 60–210 80–250

Intermediate HDL (mg/l) ,0·001 0·019 ,0·001 0·051
Median 60 60 70 90 50 50 50 60
Interquartile range 20–110 20–110 20–110 40–140 20–90 20–80 20–80 20–110

Small HDL (mg/l) 180 60 200 50 210 50 200 60 0·278 ,0·001 190 50 200 50 210 50 200 60 0·013 0·182
% Large HDL 43·5 43·2 46·4 48·1 ,0·001 0·214 30·7 31·7 31·4 35·3 0·002 0·436
% Intermediate HDL 16·2 14·7 14·3 16·8 0·103 0·035 15·7 14·4 14·6 16·4 0·118 0·168
% Small HDL 40·3 42·0 39·3 35·1 ,0·001 0·002 53·6 53·8 54·0 48·3 ,0·001 0·059
HDL size (nm) ,0·001 0·028 ,0·001 0·197

Median 9·1 9·0 9·1 9·2 8·6 8·6 8·7 8·8
Interquartile range 8·8–9·4 8·7–9·4 8·8–9·6 8·9–9·6 8·3–9·0 8·3–9·0 8·3–9·0 8·5–9·1

LDL-C, LDL-cholesterol; HDL-C, HDL-cholesterol.
* Log transformed for analysis.
†P values for one-way ANOVA weighted linear trend or quadratic trend.
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consumption was associated with higher levels of total HDL
and HDL3 cholesterol in African-American participants and
greater levels of total HDL, HDL2 and HDL3 in white partici-
pants measured by dextran-sulfate and Mg precipitation(33).
Only one study, the Cardiovascular Health Study of 1850 par-
ticipants aged 65 years and older, used NMR. They found that
alcohol intake was associated with decreased small HDL and
increased medium and large HDL measured by NMR(34).

Assuming that high levels of large HDL are protective,
these findings support the hypothesis that alcohol may
decrease CVD risk by inducing favourable changes in HDL
subclasses. This interpretation is based on the assumption
that small HDL contributes to increased cardiovascular risk
and large HDL contributes to decreased risk. However,
some mechanistic studies suggest that small HDL particles
may be anti-inflammatory and thereby decrease CVD risk
whereas large HDL particles may be pro-inflammatory and
increase risk for recurrent CVD(19 – 22,32). Importantly, the
latter results are from studies conducted primarily in individ-
uals with prevalent CVD or at high risk for CVD whereas
Rancho Bernardo participants are community dwelling and
unselected for CVD or CVD risk. Perhaps a pro-inflammatory
state such as CVD or consumption of alcohol, which has anti-
inflammatory effects(35,36), alters the functionality of HDL
subclasses. More research is needed to better understand the
role of HDL size in CVD risk.

Previous work suggests that alcohol influences HDL
through several pathways including: increased production of
apo A-1, a HDL precursor(11 – 13,33); increased muscle ATP-
binding cassette, subfamily A (ABCA1) which may be import-
ant in recycling preformed HDL through reverse cholesterol
transport(37); decreased cholesteryl ester transfer protein

(CETP)(38 – 41). The blunting of the LDL-C:HDL-C ratio
associated with increased alcohol intake in the present study
combined with the increased number of large HDL particles
is consistent with alcohol-induced decreased CETP activity.
Lowered CETP level is associated with increased total and
large HDL-P(42,43) as well as potent anti-atherosclerotic
activity in several studies(38); however, failure of the CETP-
inhibitor torcetrapib in a clinical trial(44 – 47) has raised
doubts regarding the role of CETP and HDL-C in cardiovas-
cular risk reduction (for a review, see Joy & Hegele(48)). In
the Investigation of Lipid Level management to Understand
its impact IN ATherosclerotic Events (ILLUMINATE) trial
torcetrapib had no impact on atherosclerosis(44 – 47) and led
to elevation in blood pressure, aldosterone levels, and morbid-
ity and mortality. Further analyses suggested that the
elevations in blood pressure and aldosterone were probably
not due to CETP inhibition, and it may be that these unique
side effects contributed to torcetrapib’s failure(49). More
research is necessary to better understand how alcohol affects
CETP inhibition and other pathways to alter lipoprotein distri-
bution and how alcohol-induced lipoprotein changes, which
are far more modest than those induced by torcetrapib,
affect CVD.

Limitations

The present study has limitations. The Rancho Bernardo Study
cohort is almost entirely white, middle- to upper-middle-class,
and older; therefore, these findings may not apply to other age,
ethnic and socio-economic groups. Although generalisability
is reduced, the homogeneity reduces confounding of socio-
economic status and ethnicity. While it is possible that
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self-reported alcohol intake resulted in over- or underestimat-
ing actual intake, relatively high alcohol intakes were freely
reported based on a standard questionnaire, probably reflecting
normative behaviour for this age and socio-economic group.
Although we adjusted for many of the most likely confoun-
ders, it is possible that the association between alcohol
intake and total HDL and HDL subclasses reflects residual
confounding due to unascertained differences between drin-
kers and non-drinkers. For example, dietary differences
could be an important source of confounding. However,
there is limited evidence in the literature that common diet
items other than alcohol have a meaningful effect on HDL-
C. The only nutrient proposed to have benefit is n-3 fatty
acids, largely from fatty fish. Although marine-derived n-3
fatty acids have only modest effects on total HDL-C, there
is some evidence that they also alter HDL subfractions
toward a more favourable, cardioprotective profile (increased
HDL2 (large HDL), decreased HDL3 (small HDL))(50,51).
The current enthusiasm for consuming fish for health followed
the era when the data of the present study were collected.
Though fish consumption may affect HDL composition,
there is little reason to believe that those who drink more alco-
hol also consume more fatty fish. Finally, the present study is
cross-sectional and therefore causality cannot be assumed, but
the strong dose–response association is suggestive.

Other studies have found that LDL subclasses determined
by NMR spectroscopy are highly correlated with the sub-
classes determined by gradient gel electrophoresis(52,53), but
the correlation among HDL subclasses has not been
adequately evaluated. The NMR-based approach to the
lipoprotein subclasses requires ongoing validation.

While our questionnaire did not distinguish regular from
binge drinking, binge drinking declines with age and is
likely to be low in this cohort where daily drinking was
common(54). Because most alcohol consumed in this cohort
was wine (32 %) or mixed drinks (56 %), not beer (11 %) or
hard liquor (,1 %), we had limited ability to determine
whether beverage type matters. Although wine, especially
red wine, is described as a particularly healthy form of alco-
hol, in epidemiological studies any type of alcohol is usually
associated with less CVD(55,56).

In summary, both alcohol consumption and high levels of
HDL-C are associated with a decreased risk of CVD. The pre-
sent results suggest that one way that alcohol might be cardi-
oprotective is through an increase in overall HDL-C coupled
with potentially favourable changes in HDL subclasses,
though more research is needed to better understand the role
of lipoprotein size in CVD risk as well as how an alcohol-
related lipoprotein profile affects CVD risk and outcomes.
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