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Abstract

We compute the partition function of four-dimensional abelian gauge theory on a general four-
torus 7% with flat metric using Dirac quantization. In addition to an SL(4, Z) symmetry,
it possesses SL(2, Z) symmetry that is electromagnetic S-duality. We show explicitly how
this SL(2, Z) S-duality of the 4d abelian gauge theory has its origin in symmetries of the 6d
(2,0) tensor theory, by computing the partition function of a single fivebrane compactified
on T? times T?, which has SL(2,2) x SL(4, Z) symmetry. If we identify the couplings
of the abelian gauge theory 7 = % + ii—g with the complex modulus of the 72 torus 7 =
B% + ig—;, then in the small 72 limit, the partition function of the fivebrane tensor field
can be factorized, and contains the partition function of the 4d gauge theory. In this way
the SL(2, Z) symmetry of the 6d tensor partition function is identified with the S-duality
symmetry of the 4d gauge partition function. Each partition function is the product of zero
mode and oscillator contributions, where the SL(2, Z) acts suitably. For the 4d gauge theory,
which has a Lagrangian, this product redistributes when using path integral quantization.

*E-mail: ldolan@physics.unc.edu
"E-mail: sylmf@email. unc.edu


http://arxiv.org/abs/1411.2563v2

1 Introduction

Four-dimensional N = 4 Yang-Mills theory is conjectured to possess S-duality, which implies
the theory with gauge coupling g, gauge group G, and theta parameter f is equivalent to one
with 7 = % + % transformed by modular transformations SL(2, Z), and the group to GV
[1]-[3], with the weight lattice of GV dual to that of G . The conjecture has been tested by the
Vafa-Witten partition function on various four-manifolds [4]. More recently, a computation
of the N = 4 Yang-Mills partition function on the four-sphere using the localization method

for quantization, enables checking S-duality directly [5].

This duality is believed to have its origin in a certain superconformal field theory in six
dimensions, the M5 brane (2,0) theory. When the 6d, N = (2,0) theory is compactified on
T2, one obtains the 4d, N = 4 Yang-Mills theory, and the SL(2, Z) group of the torus should
imply the S-duality of the four-dimensional gauge theory [6]-[9].

In this paper, we compare the partition function of the 6d chiral tensor boson of one fivebrane
compactified on T? x T%, with that of U(1) gauge theory with a # parameter, compactified
on T%. We use these to show explicitly how the 6d theory is the origin of S-duality in the
gauge theory. Since the 6d chiral boson has a self-dual three-form field strength and thus
lacks a Lagrangian [10], we will use the Hamiltonian formulation to compute the partition
functions for both theories.

As motivated by [11], the four-dimensional U(1) gauge partition function on 7% is

ZAd,Mazwell — 4,. e—27rH4d+i27mo‘P4d chm odes Zésdc 7 (1.1)
where the Hamiltonian and momentum are
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in terms of the gauge field strength tensor Fj; (63,6%,6°,6%), the conjugate momentum II¢,
and the constant parameters g.5, R and v* in the metric G;; of T 4. They will be derived
from the abelian gauge theory Lagrangian, given here for Euclidean signature

1 47 . 70
= 5 d03d04d0sdbs (6—2\/§F”Fij— s Ky Fry), (1.3)

with 3456 — 1, €ijkl = geijkl, and g = det(Gij)‘



In contrast, the partition function of the abelian chiral two-form on 72 x T* is [12]
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where §' and #? are the coordinates of the two one-cycles of 72. The time direction #° is
common to both theories, the angle between #' and 62 is 52, and G5™" is the inverse metric
of Gs,,n, where 1 < m,n < 5. The eight angles between the two-torus and the four-torus

are set to zero.!

Section 2 is a list of our results; their derivations are presented in the succeeding sections. In
section 3, the contribution of the zero modes to the partition function for the chiral theory
on the manifold M = T2 x T* is computed as a sum over ten integer eigenvalues using the
Hamiltonian formulation. The zero mode sum for the gauge theory on the same 7% C M is
calculated with six integer eigenvalues. We find that once we identify the modulus of the 72
contained in M, 7 = %+ i%, with the gauge couplings 7 = % + ii—g, then the two theories
are related by Z%¢ =eZ%

zeromodes zeromodes’
that arises in addition to Fj; from the compactification of the 6d self-dual three-form. In

where € is due to the zero modes of the scalar field

section 4, the abelian gauge theory is quantized on a four-torus using Dirac constraints, and
the Hamiltonian and momentum are computed in terms of oscillator modes. For small T2,
the Kaluza-Klein modes are removed from the partition function of the chiral two-form, and
in this limit it agrees with the gauge theory result, up to the scalar field contribution. In
Appendix A, we show the path integral quantization gives the same result for the 4d gauge
theory partition function as canonical quantization. However, the zero and oscillator mode
contributions differ in the two quantizations. In Appendix B, we show how the zero and
oscillator mode contributions transform under SL(2, Z) for the 6d theory, as well as for both
quantizations of the 4d theory. We prove the partition functions in 4d and 6d are both
SL(2, Z) invariant. In Appendix C, the vacuum energy is regularized. In Appendix D, we
introduce a complete set of SL(4,Z) generators, and then prove the 4d and 6d partition
functions are invariant under SL(4, Z) transformations.

LA different consideration of the fivebrane on 7% x T in [13] includes the time direction in 7.



2 Statement of the main result

We compute partition functions for a chiral boson on 72 x T* and for a U(1) gauge boson on
the same 7. The geometry of the manifold 7% x T will be described by the line element,
ds® = R3(d0* — p%d0")? + R2(d6")?
+ " gap(do™ —y7do°)(d6” —~Pde°) + RE(d6°)?, (2.1)
a7/B

with 0 < 0/ < 27,1 <1<6, and 3 <a <5. Ry, Ry are the radii for directions I = 1,2 on
T2, and f3? is the angle between them. Jap fixes the metric for a T3 submanifold of T*, Rg
is the remaining radius, and y“ is the angle between those. So, from (2.1) the metric is

T? Gi1 = Ri? + R36°5%, G2 = —R34%, Goo = R3;
T Gap = Jas; Gab = —9ap”, Ges = Re® + gus7*7";
Ga1 = Ga2 =0, G16 = G2 = 0; (2.2)
and the inverse metric is
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6% is chosen to be the time direction for both theories. In the 4d expression (1.3) the indices
of the field strength tensor have 3 < i,j,k,I < 6, whereas in (1.4), the Hamiltonian and
momentum are written in terms of fields with indices 1 < m,n,p,r,s < 5. The 5-dimensional
inverse in directions 1, 2, 3, 4, 5 is G5"™",

1 32 323
Gl = G2 = 2 G2 — 2 |
5 TR 5 TR I TRz
G =g ar=0, G =0 (2.4)

g is the 3d inverse of 9ap- The determinants are related by

\/5 = v/ detGy; = Rle\/g = RleRG\/t = R/ G5, (2.5)

where G is the determinant for 6d metric Gy;. G5, g and g are the determinants for the 5d
metric Gy, 4d metric G;;, and 3d metric g,3 respectively.

The zero mode partition function of the 6d chiral boson on 7% x T with the metric (2.3) is
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where the zero mode eigenvalues of the field strength tensor are integers, and (2.6) factors
into a sum on H,gy as Hzy5 = ny, Hizo as Hi3 = ng, Hizq4 = ng, Hi25 = njo; and a sum
over Hlaﬁ defined as H134 =ni, H145 = Ny, H135 = N3 and Hgag as H234 = Ny, H245 = N5,
Hoss = ng, as we will show in section 3.

The zero mode partition function of the 4d gauge boson on 7% with the metric (2.2) is

e’ R fe? R
Zzoromodes = Z exp{———gaﬁﬂaﬂﬁ} Z exp{___gaﬁeory(SF 51_[6}
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Where ﬁa take integer Values ﬁ3 = Ny, ﬁ4 = N5, ﬁ5 = Ng, and ﬁ34 =N, ﬁ35 = Ny, ﬁ45 = ns,
from section 3. We identify the integers

~ 1 —
Haap = Fop and Hinp = EEQBVHV, (2.8)

where g = g Ry 2 from (2.5), and the modulus

R 0 4
2 1__ 2T
T=0"+ R2 27T+Z62’

so that as shown in section 3, we have the factorization

754

zero modes

=z

zero modes?

(2.9)

where € comes from the remaining four zero modes H,g, and His, due to the additional
scalar that occurs in the compactification of the 6d self-dual three-form field strength,



€= Z exp{— \/_g "HigoHizor}
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From section 4, there is a similar relation between the oscillator partition functions

: 6d 4d
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Therefore, in the limit of small 72, we have
lilesz_)O ZGd,chiral — 66/ Z4d, Maxwell. (215)

We use this relation between the 6d and 4d partition functions to extract the S-duality of
the latter from a geometric symmetry of the former. For 7 = 3% + ig—; = % + iﬁ—g, under the
SL(2, 2) transformations

1
T———; T—>T-—1, (2.16)
T
784 e and Z8L are separately invariant, as are ZzerO odes and Z24 which we will prove

in Appendix B. In particular, Z4¢ is independent of e? and #. A path integral computation
agrees with our U(1) partition function, as we review in Appendix A [14]. Nevertheless, in
the path integral quantization the zero and non-zero mode contributions are rearranged, and
although each is invariant under 7 — 7 — 1, they transform differently under 7 — —%, with

ZI;{O modes - |T|3ZZP;1{0 modes and Zrﬁ){l zero modes - |T| 3Zr]1?){1 zero modes” For a general Spin
manifold, the U(1) partition function transforms as a modular form under S-duality [15], but

in the case of T* which we consider in this paper the weight is zero.



3 Zero Modes

In this section, we show details for the computation of the zero mode partition functions.
The N = (2,0), 6d world volume theory of the fivebrane contains a chiral two-form By,
which has a self-dual three-form field strength Hyyn = 0 Byn + O By + On By with
1<L,M,N <6,

1
6v—G

Since there is no covariant Lagrangian description for the chiral two-form, we compute its
partition function from (1.4). As in [12],[16] the zero mode partition function of the 6d chiral
theory is calculated in the Hamiltonian formulation similarly to string theory,

Hipun (6,65 = GrrGun Ganre? N BST oo (8, 6°). (3.1)

754

zero modes

— tr(e”HHI'PY) (3.2)

where t = 2rRg and ¢! = 27TG66, with [ = 1,..5. However, y' and y? are zero due to the
metric (2.3). Neglecting the integrations and using the metric (2.4) in (1.4), we find

~tH = ~ZRsR1Rov/g™ 97 ¢ HopaHuriro - _RG V9" 9" HaapHawse
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and the momentum components 3 < a < 5 are
L 65 1 s
Pa = =3¢ HizyHags + 5€7° HiysHzas, (3.4)

where the zero modes of the ten fields Hj,,, are labeled by integers ny,...nio [12]. Then
(3.2) is given by (2.6).

Similarly, we compute the zero mode partition function for the 4d U(1) theory from (1.1).

We consider the charge quantization condition

1 1 1
ny= — F=— F,p5do” A dBP, ny € Z, foreach 1 < < 3. (3.5)
21 Jx1 21 Jx1 2

as well as the commutation relation obtained from (4.17)

d30'

2

2

A0, eﬁ)dea,/ nﬁ(@,oﬁ)] = i/ do® =P, (3.6)
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D

and use the standard argument [16],[17] to show that the field strength F,, 3 and momentum



II* zero modes have eigenvalues

(@
(2m)?’

na?/B
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Fop = na,g € Z for a < f3, and (7, 6% = n® e z3. (3.7)

Thus we define integer valued modes ﬁ’ag = 2nF,p and e = (27)2I1®. Taking into account
the spatial integrations df®, (1.2) gives

—orH* 4 z'27wo‘Pa4d
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+ 2m’7aﬁﬁfag, (3.8)

where (1.2) itself is derived in section 4. So from (3.8) and (1.1),

Zz4(§lrom0des = Z exp{_ﬁR_%gaﬁﬁaﬁB} ’ Z exp{_e_gR_%gaﬁea’yaﬁlﬂsﬁﬁ}
T4,N5,M6 4 \/g ni,n2,n3 87T \/g
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where n; are integers, with ﬁ34 = nq, ﬁ’35 = ngo, ﬁ45 = ng, and 3 = Ny, 4 = ns, I = ng.
(3.9) is the zero mode contribution to the 4d U(1) partition function (1.1), and is (2.7).

If we identify the gauge couplings 7 = % + ii—’{ with the modulus of T2, 7 = 5% + ig‘“—;, then

) — = 1
A Ry’ 27 p (3.10)

and (3.9) becomes
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Then the last four terms in the chiral boson zero mode sum (2.6) are equal to (2.7) since

7T R2R6 R 2 / / 7T R2R6 ~ ~
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when we identify the integers
- 1 ~
H2aﬁ = Faﬁ and Hlaﬁ = EeamH 5 (313)

with § = g Rg? from (2.5). Thus the 6d and 4d zero mode sums from (2.6) and (2.7) are
related by

d
Zzero modes — 6Z;loro modes>? (314)
where
€= Z g aalH12aH12a’}
ng,ng,n10
Zexp{——RﬁRlefgaa BB g HaﬁéH 188" — iy 676 H12~/ aﬁé} (3'15)
ny

4 Oscillator modes

To compute the oscillator contribution to the partition function (1.1), we quantize the U(1)
gauge theory with a theta term on the 7% manifold using Dirac brackets. From (1.3), the
equations of motion are 8iFij = 0, since the theta term is a total divergence and does not
contribute to them. So in Lorenz gauge, the gauge potential A; with field strength tensor
F;; = 0;A; — 0;A; is obtained by solving the equation

J'0;A; =0,  with  9'A; =0. (4.1)
The potential has a plane wave solution

A;i(0,60%) = zero modes + Y (fi(k)e™? + (fi(k)e™?)*) (4.2)
k#£0



with momenta satisfying the on shell condition and gauge condition
Gkikj =0,  k'fi=0. (4.3)

As in [11],[16] the Hamiltonian H*? and momentum PZ2¢ are quantized with a Lorentzian
signature metric that has zero angles with the time direction, v = 0. So we modify the
metric on the four-torus (2.2), (2.3) to be

éLaB = 9aB Gres = —Re>, Gras=0

~a o ~ 1 o ~ ~
GoP = g, GgGZ—R—%, G =0, Gp=detGry=—g. (4.4)

Solving for kg from (4.3) we find

ko = L1 k], (4.5)
G

where 3 < o, B <5, and |k| = \/¢9*Pkoks. Employ the remaining gauge invariance
fi = fl = fi + kX to fix f§ =0, which is the gauge choice

Ag = 0.

This reduces the number of components of A; from 4 to 3. To satisfy (4.3), we can use the
0'Fig = —050* A, = 0 component of the equation of motion to eliminate f5 in terms of f3, f4,

1
fs = —E(ngs +p*fa),
leaving just two independent polarization vectors corresponding to the physical degrees of
freedom of a four-dimensional gauge theory.

From the Lorentzian Lagrangian and energy-momentum tensor given by

0
— 262\/ GLGY Gy Py + 55— e /" Fy F,
; oL
7= 50; Ay’

———0; Ay, — 5;-£, (4.6)
we obtain the Hamiltonian and momentum operators

9~ fo% ao Q@
H.= /d39T66 = /d39<— e—\gG(iﬁg ¥ FoaFos + \/;g 9% FapFury = 0all" Ag), (4.7)

Fo = /dgeﬁa - /d39< - 6_22\/55%695”1“67%5 — 0117 A + HG@‘”AG)’ (48)
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where we have integrated by parts; and the conjugate momentum is

oL oL

2 =66 B 0 s 6
L = — — @ F R PYF H = = U. 4
506 Ay 2VIGLI Fop = g5 Fpy 506Ag (4.9)
Then we have
R2 0 0
e 3 6 o avyo o
H,—iy"P, = /d0 (5 ; f ag(n 52 ) (1 4 57 )

g . 0
- ;/; g gﬁBFangB — iy (17 + WGB'Y(SFM;)FQQ), (4.10)

up to terms proportional to Ag and 0,II% which vanish in Lorenz gauge. Note the term
proportional to eﬁ“/éFM;Fag vanishes identically. (4.10) is equal to H*? — iy® P34 given in
(1.2), and is used to compute the zero mode partition function in (2.7) via (3.8).

To compute the oscillator modes, the appearance of @ solely in the combination

1™ + #anm in (4.10) suggests we make a canonical transformation on the oscillator
fields I1%(6, 6°), Ag(g, 6°) [18]. Consider the equal time quantum bracket, suppressing the %
dependence,

—

[ / A0’ e*POF, 5 A, HV(*)} = 2i7*FF,5(0), (4.11)
and the canonical transformation

U(0) = exp{t

o3 / B F ALY, (4.12)

~

under which I1%(8, 65), Ag(g, 65) transform to I1*(8,6°), Ag(g, 6%),

R a0 .
(0) = T(0) + g —5¢ F,5(6)

—

Ut
Ul (0) = Ag(h). (4.13)
Therefore the exponent (4.10) contains no theta dependence when written in terms of ﬁa,
which now reads

(H.—iy*P / dg* s LT + ;/;g G FapFg —in° T Fag).  (4.14)
Thus, for the computation of the oscillator partition function we will quantize with 8 = 0.
Note that had we done this for the zero modes, it would not be possible to pick the zero
mode integer charges consistently. Since the zero and oscillator modes commute, we are free
to canonically transform the latter and not the former.

In the discussion that follows we assume # = 0 and drop the hats. We directly quantize
the Maxwell theory on the four-torus with the metric (4.4) in Lorenz gauge using Dirac

11



constraints [19, 20]. The theory has a primary constraint Hﬁ(g, %) ~ 0. We can express the
Hamiltonian (4.7) in terms of the conjugate momentum as

H.= /d93R6
NG

The primary Hamiltonian is defined by

—— G pTITIP + 2g°‘agﬁﬁF 8F55 (4.15)

R2
H, = /d@‘“)(f ¢ s 1T1P + ;/;g 9P FopFys — 0,11 Ag + >\1H6), (4.16)

with A1 as a Lagrange multiplier. As in [16], we use the Dirac method of quantizing with
constraints for the radiation gauge conditions Ag ~ 0, 0“A, =~ 0, and find the equal time
commutation relations:

. 4 , 1
B 6 7 n6\1 — o sB _ BB , 3p _ n!
(10°(,0°), AalT, 0] = =i(07 = 67 Qu =) 8°(0 = 0

[4a(6.6%), A5(0",6%) =0, [11°(6,6°),11°(#,6°)] = . (4.17)
In Ag = 0 gauge, the vector potential on the torus is expanded as

A (0,6% = zeromodes + Z (fra” ’k6+f“* e~y
k£0,keZ3
where 1 < k < 2,3 < o < 5 and kg defined in (4.5). The sum is on the dual lattice

k=ky€ Z3 £ (0. Here we only consider the oscillator modes expansion of the potential and
the conjugate momentum in (4.9) with vanishing 6 angle

E£0
q 2./7 ~ , . »
B 6y _ 66 56 L k0 T ik-0
11°(0,0°) = i~ G g Z:krﬁ (akﬁ,e ag g€ ). (4.18)
E
and the polarizations absorbed in
apo = faag (4.19)

From (4.17), the commutator in terms of the oscillators is

d30d30/ —ika 0% —ik!n0'% A 0—»0 A 9—7 0 B T 1 _0 420
B e (40 (0,0), As(F,0)] = [(ag, +a' ;). (ay +al 4 )] = 0. (420)

We consider the Fourier transform (4.20) of all the commutators (4.17), so the commutator

12



of the oscillators is found to be:

[a_‘ 7at’ ] = e~ ! (gaﬁ - /7)6" E
ko’ "k p 2./GGS0 ks 2(2m)3 9 kyky R
_ T T
[ag; a5 51 = 0, [aEa, aE'ﬁ] = 0. (4.21)

In Ag = 0 gauge, we use (4.18) and (4.21) to evaluate the Hamiltonian and momentum in
(4.7) and (4.8)

2 g 1~ / 1 / !
1, = [ @020 (= 3689 BAadhdar + 19" 4% FuFury).

2

Py= s
RZe?

27
/ d63d0*de® /g ¢°% Fep Fags. (4.22)
0

With (4.18), (4.22) can be expressed in terms of the oscillator modes where time-dependent
terms cancel,

kez340

Py = ~2Y2G00 (0 Y koka (0ol +al a

P B) (4.23)
kez3+40

and we have used the on-shell condition é%Gkﬁkﬁ + |k|? = 0, and the transverse condition

k*ap = kaaTEa = 0. Then,

. .1 2y/g 3 . 8B of T
—HC+Z’YaPa = —ZR—6—62 (27'(') ) ES;éﬁ’k‘(—ZRﬁ‘k"i"yaka)g ( k:ﬁ kﬁ’—i_algﬁ kﬁ/)
keZ3#0

(4.24)

Inserting the polarizations as ap = f(’ja’g and a%a = foé’\*agr from (4.19) in the commutator
(4.21) gives

2
B t . (& & 1 k kﬁ [ K A
[akcpag,ﬁ] - 4\/§ |k| (271')3 <gOLB |k|2 ) k k’ faf [ak’aE ]7 (425)

where we choose the normalization

[aZ aq M = 5“)‘5

5, (4.26)

kR

with 1 < k, A < 2. Then the polarization vectors satisfy

13



62 R6 1 kakﬁ / A A 62 R6 1
fﬁf}\* KA __ Jor 7 gﬁﬁ fﬁf kGRA — L . 27
~ 45 [k (2m)3 ( e ) 2 4./3 |k| (2m)3
" rk Pk 5" 62 R 1
gﬁﬁ fﬁf)\f _ SKA 6

1.3 IF] @)

So the exponent in (1.1) is given by

e . 2\/9 : a !
—H,+iv*P, = —iRg ;—[(2@3 > k(= iRgk| ++7ka) g"° (2a,§5%f+ [am,ajgﬁ,])

kez340
o . Z K/Ki
——ZQZ (v*ka —ZR6|k|)aﬂaﬂ —5 Z (—iRglk]) o
kezZ340 €z34
(4.27)
The U(1) partition function is
Z4d’Mawwell = t”” eXp{Z’]T(_HC + Z/}/ZPZ)} Zzeromodes Z(z)lgC7 (4'28)
so from (4.27),
Zglsdc _ —2m ZE€Z3#6 (fyaka—iRa‘M) agTaE — mRg ZE€Z37§6 |k‘ Kk ‘ (429)
From the usual Fock space argument
tr WS PO — HZ k‘|wp“”“”|k‘ H =
p k=0 v
we perform the trace on the oscillators,
2
4d _ —7TR6 Y ae 23 /9P nang 1 )
Zosc (6 € H —7,27r('yana—iR6 %qaﬁnan/g) ) (430)

nGZS;éO

2
. <e_7TRﬁzﬁeZ3 V9*Pnang H / . > 5
—27TR6 O‘Bnanlg 2Ty Ny

(4.31)

4d, M axzwell __
Z Zzero modes

623;&0

where Z24 . is given in (2.7). (4.31) and (4.37) are each manifestly SL(3, Z) invariant
due to the underlying SO(3) invariance we have labeled as o = 3,4,5. We use the SL(3, Z)

invariant regularization of the vacuum energy reviewed in Appendix C to obtain

1 -2 N/
z4d.Mazwell _ 74d 2fl6™™" Yz (903nnP)2 1 ?
zero modes ~ | € )

23#0 —27rR6w/ O‘Bnang 2Ty N
(4.32)
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which leads to (2.13).

On the other hand, one can evaluate the oscillator trace for the 6d chiral boson from (1.4)
as in[12],[16]. The exponent in the trace is

2T . 2T
9w ReH + i2ny' P; = % dPOH}p €5 Hepn = % POV —GH™ Hgppm
0

2T
= —im / d°O(TI™" Hep, + Heppn IT™™)
0

= —2im ZngSTBg —im Zpﬁé’m, (4.33)
P#0 PF0
where II"" = ——VZGH&”“, and I16™" is the momentum conjugate to Bysy. In the gauge

Bg, = 0, the normal mode expansion for the free quantum fields B,,,, and II"™" on a torus is
given in terms of oscillators By and CI';T defined in [12], with the commutation relations

(B, Cyl) = 6" 65 (4.34)
where 1 < k, A < 3 labels the three physical degrees of freedom of the chiral two-form, and
P = (p1, P2, Pa) lies on the integer lattice Z5. From the on-shell condition GEM prpm =0,

o . g2, B
P6 = —7"Pa — 1Rs O‘Bpapﬁ + R2 + (ﬁ + ?)pQ + 2R—%p1p2. (435)

Thus the oscillator partition function of the chiral two-form on 72 x T is obtained by tracing
over the oscillators

784 — ¢y =27 S0 P6Cy By—im 340 po0™"
3
_ —nRe > 5V9 9*“Ppaps+p? H )
1— e—27r2p6

P70

= 3
_ (e—ﬂ'RtS 25625 v 9P paps+p? H 1 ) , (436)
1 — e—2mR6+/9°Ppaps+p*+2miv*pa

PEZ5AD

=2
sum [12] ylelds

where p? = 2 + (R% + B ) + 95° RZPLD2- Regularizing the vacuum energy in the oscillator

_ VG5
Zﬁd chiral Z (eRGW s Zﬁ#ﬁ (Gmpn™nP)3

zero modes

1 3
ﬁelz_slaéa 1 - 6—2“36\/gaﬁpapa+ﬁ2+2ﬂ’v%a> ’
(4.37)

where 77 € Z° is on the dual lattice, Gy, is defined in (2.2), and Z%¢

zero modes

is given in (2.6).

Comparing the 4d and 6d oscillator traces (4.31) and (4.36), the 6d chiral boson sum has
a cube rather than a square, corresponding to one additional polarization, and it contains
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Kaluza-Klein modes. In Appendix D, we prove that the product of the zero mode and the
oscillator mode partition function for the 4d theory in (4.32) is SL(4, Z) invariant. In (D.48)
we give an equivalent expression,

Z4d Mazwell Z . (6% H 1 )2

zero modes R, .
—27 26| ng|4+2miv3ng
n3£0 1 —e RS‘ | 7

[[ e <tn ] 1 )2
1— 6—27rR6\/gaf6'nan5+27ri'yana ’

(na)E22£(0,0) n3€Z
(4.38)

where 4 < a <5, with < H >, defined in (C.3).

In Appendix D, we also prove the SL(4,Z) invariance of the 6d chiral partition function
(4.37), using the equivalent form (D.65),
mRg 1 3

6d,chiral I |
Z Zzero modes * (6 63
nz€Z#40 1 —e

R .
—27rR—§ |ng|+2miy3 ng)

_ 6d 1
. ( H e 27rR6<H>pJ_ H )37 (439)
1— 6—27rR6\/ga5nan5+ﬁ2 +i2TY %N

n, €2Z4£(0,0,0,0) n3€EZ

with < H >I6,il in (D.64), and 7% = (7;}2)2 + (}%2 + (ﬁ ) yn3 + 262n2n1 In the limit when

R; and Ry are small with respect to thle metrlc parameters gaﬁ7R6 of the four-torus, the

contribution from each polarization in (4.38) and (4.39) is equivalent. To see this limit, we can

separate the product on n; = (ny,n2,n,) # 01 in (4.39), into (ny = 0,n9 = 0,n, # (0,0)),

(n1 #0,n2 #0, all ng), (n1 = 0,n9 #0, all n,), (n1 # 0,19 =0, all n,)) to find, at fixed ns,
H 1

2 .
n1 €24#£(0,0,0,0) 1 e—27rR6\/ g*Bng nB—l—(nl) +( +(/3 )2 )n%+2%{n2n1+27rwana

1
- H 1 — e—27rR6\/gaBnanﬁ+27ri~/ana

na€22+(0,0)
11 1
(nq)? (6 ) B2 .
m#0me#0,(na€22) | _ e_Z”RG\/QO‘B"a"BJrTng( + Ry it gz nana 2wy na
Il :

1 ,6‘2 2 .
n1=0,n240,(na €22) 1 e—27rR6\/ga5nan5+(Eg+_Z( Rl)-)n%+27rzfyana

1
11 o

na=0,m1£0,(na€22) | _ 6—2”36 9*Pnang+=4

(4.40)
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Thus for 72 smaller than 7%, the last three products reduce to unity, so

Il L et ] —
— 27 Re~/ 9P nang+n2+2mivon — 97 ReA/9Prang+2minng
nl6247é6 1—e 6V 9 alg Yo ng na€Z27ﬁ(0,0) 1—e 6V 9 ang YN
(4.41)

The regularized vacuum energies in (C.3) and (D.64),

K (2mnRs|p,|)

o0
<H>p 4= —m 1 py| Zcos(pa/{“an) - , for |pi| = Vg%nany,

n=1

K (2mnRs|p,|)

o0
<H >2il750 =71 |py| Z cos(par*2mn) , for |pi| =12+ g%ngny,

n

n=1

(4.42)

have the same form of spherical Bessel function, but the argument differs by modes (p1, p2).
Again separating the product on n; = (ny,n9,n,) in (4.39), into

(n1 = 0,n2 = 0,n4 # (0,0)), (n1 # 0,n9 # 0all n,), (n1 = 0,n9 # 0, all n,), (n1 # 0,y =
0, all n,)) we have

6d 4d 6d
H 6_2WR6<H>PL _ ( H 6_27TR6<H>I)L) . ( H 6_2WR6<H>PL)
n €24+£(0,0,0,0) ne€22#(0,0) n17#0,m2#£0,n,EZ2
_ 6d _ 6d
. ( H e 27TR6<H>pJ_) . ( H e 27rR6<H>pJ_)
n17#0,m2=0,n,E 22 n1=0,n27#0,n,€ 22
(4.43)

In the limit R, Ro — 0, the last three products are unity. For example, the second is unity
because for nq,no # 0,

lim n? + g*Pngng ~ Vn?,

Ri,R2—0
li K1(27nR — lim V2K (2 R \/~2>:0 4.44
Rhgg;o(lml 1(2mnRslp. ) gl VA2 K 2mn 3(Vi?) , (4.44)

since lim, oo £ K1 (z) ~ /2 e — 0 [21]. So (4.43) leads to

_ 6d _
lim H e 2mHe<H>p) _ H e 2mRe<H>p, (4.45)

Ri,R2—0
n, €Z4£(0,0,0,0) na€22#£(0,0)
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Thus in the limit when 7?2 is small with respect to 7%,

. _ 6d 1
R
,R2—0 2 2)2 2 .
P €24£(0,0,0,0) n3€Z —27Rgy | (9P nang+—k+(Z+ S n2 428 nony +i2myona
1—e Ry "Ry Ry Ry

R I | | 1
1— e—ZWRG\/gQBnanlg-i-%ri'yana

na€22:£(0,0) nz€Z

(4.46)

So we have shown the partition functions of the chiral theory on 7% x T and of gauge theory
on T%, agree in the small 72 limit upon neglecting the less interesting contribution €,

lim 2% —¢ .74
Rl,RQ—)O osc osc)

(4.47)

which is (2.11). Again, € is equivalently the oscillator contribution from one polarization,
that is

1 —2 V3
1 _ »—27Re\/g*Pnang—2mivna ’
rezsag 1 — € .

The relation between the 4d gauge and 6d tensor partition function is shown in the small 72
limit,

lim ZGd,chiral — 66/ . Z4d,Maxwell7 (449)
Ri,R2—0

which is (2.15). €€’ is the partition function of a real scalar field in 4d, and is independent of
the gauge coupling 7.

5 S-duallty of Z4d,Ma:cwell from Zﬁd,ChiT’al

In Appendices B and D we show explicitly how the SL(2, Z) x SL(4, Z) symmetry of the
partition function of the 6d tensor field of the M-fivebrane of N = (2,0) theory compactified
on T% x T* implies the SL(2, Z) S-duality of the 4d U (1) gauge field partition function. These
computations use the Hamiltonian formulation. In Appendix A we review the path integral
formalism for the 4d zero and non-zero mode partition functions, and give their relations to
the quantities computed in the Hamiltonian formulation. The results are summarized here.

1
d 3 g4
Zélero modes — (Im T) 2 D2 ZZI;{O modes* (51)
6
Zyt, = (Im7) "2 S RZLL (52)



; 3
Zzoro modes Zzero modes> Zzero modes 7 ’T‘ Zzoro modes under S
Zzero modes Zzero modes> Zzero modes 7 Zzero modes under 7' (53)
and
4d 4d -3
Zosc Zoscv Znon zero modes 7 ‘T’ Znon zero modes under S
4d 4d
Zosc 7 Zosm Znon zero modes 7 Znon zero modes under 7T'. (54)

S and T are the generators of the duality symmetry SL(2,Z), S : 7 — —%, T:7—71-—1,

where 7 = 27T + 24” is also given by the modulus of the two-torus, 7 = 32 + i%

6 Conclusions and Discussion

We computed the partition function of the abelian gauge theory on a general four-dimensional
torus 7% and the partition function of a chiral boson compactified on 72 x 7. The coupling
for the 4d gauge theory, 7 = % + ii—’;, is identified with the complex modulus 7 = #2 + i%
of the two-torus 72 in directions 1 and 2. Assuming the metric of 72 is much smaller than
T*, the 6d partition function factorizes to a partition function for gauge theory on T* and a
contribution from the extra scalar arising from compactification.? The 6d partition function
has a manifest SL(2, Z) x SL(4, Z) symmetry Therefore the SL(2, Z) symmetry with the
group action on the coupling, 7 = 27T + z—g, known as S-duality becomes manifest in the 4d
Maxwell theory. Presumably this happens for an arbitrary four manifold, but we chose 7%
in order to generate explicit formulas, i.e. explicit functions of 7 and the 4d metric.

The 6d chiral two-form has no Lagrangian, so we use the Hamiltonian approach to compute
both the 4d and 6d partition functions. For 4d gauge theory, the integration of the electric
and magnetic fields as observables around one- and two-cycles respectively take integer values
due to charge quantization. We sum over all possible integers to get the zero mode partition
function. For the oscillator modes, we quantize the gauge theory using the Dirac method
with constraints. In 6d, the partition function follows from [12],[16].

We have also given the path integral result for the 4d partition function. It agrees with
the partition function obtained in the Hamiltonian formulation. However, the path integral
factors into zero modes and oscillator modes differently, which leads to different SL(2, Z)
transformation properties for the components. The 6d and 4d partition functions share the
same SL(2,Z) x SL(4, Z) symmetry.

If we consider supersymmetry, compactification of the 6d theory on 72 leads to N = 4 gauge
theory in the limit of small 72. On the other hand, an N = 2 theory of class S [22],[23]
arises when the 6d, (2,0) theory is compactified on a punctured Riemann surface with genus
g. Here the mapping class group of the Riemann surfaces acts as a generalized S-duality on
4d super-Yang-Mills theory [24]-[26].

2The Lagrangian for this single 4d scalar with a Lorentzian signature metric is

L = 54T (5h2 060060 — 39°70.0039).
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In another direction, we can study the 2d field theory present when 6d theory is compactified
on a four-dimensional manifold. A 2d-4d correspondence, relating a generalized gauge theory
partition function and a 2d correlation function, acting between N = 4 gauge theory on
S* and a 2d Toda-Liouville conformal theory on 72, holds for the radius of S* fixed to 1
[24],[5],[27]-[29]. It is difficult to see how the 2d-4d correspondence works for the gauge field
on T* because the 4d oscillator partition function is most naturally viewed as that of a 2d
theory on a T2 in directions 3 and 6, whereas the 4d zero mode sum is equivalent to a 2d
zero mode partition function on a 72 in directions 1 and 2. For an arbitrary 4d metric, the
theory may be too rich for a 2d-4d pairing. A 2d-4d relation can also be analyzed from a
topological point of view [4],[30],[31]. Finding explicit results, such as we have derived for
T? x T*, for these more general investigations would be advantageous.
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A Comparison of the 4d U(1) partition function in the Hamiltonian and
path integral formulations

For convenience in comparing the 4d gauge theory with the 6d chiral theory in sections 2
and 3, we quantized both using canonical quantization. Since a Lagrangian exists for the 4d
gauge theory, it is useful to verify that its path integral quantization agrees with canonical
quantization. We find the two quantizations distribute zero and oscillator mode contributions
differently, and thus these factors transform differently under the action of SL(2,Z). We
summarize the path integral quantization results from [9], [14], [15], [32]. Following [9], [15],
the two-form zero mode part, 2£ is the harmonic representative and can be expanded in
terms of the basis ajy = (2 & >df0' A dB?, etc., I =1,2,..,6 namely

Em:ZmIOq, (A1)
1

where m are integers. Define (m, n) to be the intersection form such that (m,n) = [ mAn,
and thus

(m,m) = /d496”le Fr

1672
(m,*m) = 812 /d49\/_F”FZ] (A.2)

So the action (1.3) is given as

472 16
I= 7 (m,*m) — 5

1 . 70 |
o (m,m) = o— / d*0\/gF F;; — 3.7 / d*0eIR E Fy. (A.3)

The zero mode partition function from the path integral formalism can be expressed as a
lattice sum over the integral basis of mj [9], [15],

s moiee = S exp| = o (om ) + 2 (am,m)]
= Z exp[%rT((m,m) + (m, *m)) - %7"( - (m,m) + (m,*m))],(AA)

where 7 = % —I—ii—g, and we have chosen the 6 dependence of the action as in [9]. Alternatively
the zero mode sum be can written in terms of the metric using (A.3)

Tp /7 5 = V9 s 7 VI as7 T
Zzero modes — Z exp{ [ - §R6\/§gaﬁgﬁﬂsFavFﬁ5 — T R 65 F&B’YﬁFé’B’ - WR_Gga6F6aF6B
F—'ijEZG

N 02 .~ - o 4r
+ 27TR_Gga FGaFgﬁ’Yﬁ - 28—7T€aBFYF6aFﬁ7j| 6_2}
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where E]— = 2mF;; = my are integers due to the charge quantization (A.1), and where
we have taken into account the integrations [d*¢ = (27)* in (A.5). To compare the zero
mode partition functions from the Hamiltonian and path integral formalisms, we rewrite the
Hamiltonian formulation result (2.7) as

Zzero modes
2 =~ avyd B~
e“Rg ~0 ATV G s a0 ~ ~ 4\/§ 5 PV ~
= — ——gas(II? oo Es) - (T1° 4 PO By Eg
~Z exp[ 4\/5‘%5( +Ze2R69 XY+ 47 ) - ( eR ar 9 Fo + 47 ve)
Havpaﬁ
Ar* /g 4 2’ 5%
~ " R? FsgyPFygn® — 6—2\/59069V FMF@;}. (A.6)
After Poisson resummation,
Z exp[-m(n+z)-A- (n+x)] = (detA)™ Z e AT mg2rinx (A7)
TLEZ3 HEZ3

where A,3 = 47r fgag and ¢ = zg;{@go“ng;ﬁ + 9 V[ 6, we get the Hamiltonian ex-
pression as

2, 2 2
Zzeromodos = (Z_ﬂ_)_géﬁg Z exp{— 2&{; QBH Hg—l H eory(SF + é{; QBH Fﬁéfy
Tl Fop
- %Q\R[ ™ By Py — 28 507570 e Frs)
. 7
(Im7)2 R62 Zzeromodes7
(A.8)

where II,, is the integer value of ﬁo‘, and we identify II, with Fgo in (A.5). Then

=(Im7) 2 & z4d (A.9)

zero modes’

g4

zF!

zero modes

which is (5.1).

We review from [14] how the non-zero mode partition function is defined by a path integral,

Znon zero modes — /A DAMG_I- (AlO)

Performing the functional integration with the Fadeev-Popov approach, [14] regularizes the
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path integral by

b=t detA
)% (27711][17')IT ¢ 2,
detA}

1 g 3 det(2nIm7TAy) 3 g
tonsromodes = —5=r (o) 4B GG Ay | = (G

(A.11)
where b; = 4 is the dimension of the group H'(T*). A, = (d'd + dd'), is the Laplacian

operator acting on the p-form. g = detGjj. So Ay = —G79;0;, and det(A;) = det(Ag)™.
Thus

N

g 3 -1
AR = Im7)2 detA; . A12
non—zero modes \/ﬁ( ) 0 ( )
The determinant can be computed
_1 1
detA,? = exp{—gtrlnA}, (A.13)

1 1
exp{—gtrlnAo} = exp< - —trln( - G668g — 2G0 0600 — G20, 85))

—exp(——z Zl R2n6—|—2R2nan6+Go‘Bn ng))

n,#0 16
1
:exp( Z Zln R2 (ng + v na) +g* na“ﬁ))
na7$0 ne
(A.14)
Let pu(E) =32, IH(%(TLG +9%n4)? + E?), where E? = g®’nong, p =27 R,
6
ou(E) Z 2F B psinh(pE)
OF 4= g +7°na)? + B2 cosh(pE) — cos(2m7°na)
= Opln|[cosh(pE) — cos(217"na)]. (A.15)
After integration, we have
2
w(E) = In [cosh(pE) - 005(27r70‘na)] +1In (Rg\/;) . (A.16)
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where the constant In (Rg \/g> maintains SL(4, Z) invariance of the partition function. So,

detAo_% = eXp( — %trlnAg) = e_% 225 ME)

_ (2n)s 11 1
Rg = V2y/cosh(pE) — cos(2my%n,)

(2m)i e N
- RG H 1 — e~ PE+2min*ng ” ( 17)
Na 2340
Therefore, using (A.12), we have
i
39
Zriln—zero modes — (Im T) 2059 Z:Jlgcv (A18)

which is (5.2).

Together with (A.9), the partition functions from the two quantizations agree but they factor
differently into zero and oscillator modes,

Z4d,Mazwell _ z4d Z4d _ ZPI A (A.19)

zero modes </ osc zero modes ““non—zero modes*

B SL(2,Z) invariance of the Z0%chiral and Z4dMarwell partition functions

The S-duality group SL(2, Z) group has two generators S and 7" which act on the parameter
T to give

1
S:t———, T:7—71-1 (B.1)
T
Since 7 = 8% + i% = % + ii—g, the transformation S corresponds to

Ri — Ri|r|™',  Ro— Rolr|,  B%— —|7|7%8% (B.2)

and T corresponds to

B — g% —1. (B.3)
Or equivalently
A Aw, ., 9
S gl 0= -0l
0 — 0 — 2, (B.4)

which for # = 0 is the familiar electromagnetic duality transformation % — %g.
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6d partition function

The 6d chiral boson zero mode partition function (2.6),

!/
~ O
HioaHi0'}

Z zero modes — Z exp

ng,ny,nio

Zexp{——RGRle\/_gaa 9% §" HopsHoo s — imy €% Hygy oy}

1 22
Z eXP{——RGRlR2f( b )9° 7 Honp Howpr }

B R?
T4,N5,16
R6R2 = / ’ .
. Z eXp{_ﬂ- Rl \/55290{& gﬁﬁ HlaBH2a’B’ +Z7T'7a€PYﬁéHl’yBH2a6
ni,n2,n3

7T R R ’ ’ ’
6 2 \/’ ool Bﬁ aﬁ gﬁa )HlaBHla’B’} (B.5)

where Hizq = ni,Hias = no, Hizs = n3, Haga = na, Hos = ns, Hazs = ne, Hzss = ny,
His3 = ng, His4 = ng, His5 = nyg, is invariant under both S and T'. To show the invariance
using (B.2,B.3) we group the exponents in (B.5) into two sets,

TR = oo/ 77
- R1R62 V39" Higo Higer — ER6R1R2 fgaa A5 g HaﬁéH s — ATy e Hi2yHags,

(B.6)
and
1 522 aa’ BB’ Ry ~n2 aa BB
- —RGRlef (=3 2t e 72097 9" HaagHawp — 75 Ro\/38°9* 9" HiapHaw g
“/B 7TR6R2 =~ ad ﬁﬁl
+Z7T’Y € H176H2a5 2 R, \/gg g HlaﬁHla’B’- (B7)

(B.6) has no 8% dependence and therefore is invariant under 7. (B.7) transforms under 7" to
become

1 22 , Re ,
— _R6R1R2\/_(R2 + Ji —5)g 2" 685 Mo Hoorpr — 7TR— Ro\/38%9°% P9 H, 0 Howr

ER
2 R1Ry

Rg -~ / T Re = ! ! Rs g , ,
1 VR8¢ Haag Hawy = 5 5V GR29" 67 HaasHaw + 7 Ba\/59° 97 HrapHar

+ i7T’Ya5756H176H2a5 g gaa gﬁﬁ HlaﬁHla’B’

(B.8)

which is equivalent to (B.7) in the sum where we shift the integer zero mode field strength
Hlaﬁ to Hlaﬁ - H2aﬁ'
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Under S, we see (B.6) as a function of Ry Ry is invariant, and find (B.7) transforms to

™ R6R2 — ’ / R6 — ’ ’
2R V39" "7 HoppHowpr + WR—IR2\/§529M 9" HyopHow g
5
+ iy € Hy g Hons — —RlRﬁRQ\/ (9% + = 77 )9 6% Hyng Hiapr- (B.9)

So by shifting the integer field strength tensors Hi,3 — Hanp and Hong — —Hiqp, the sum
on (B.7) is left invariant by S. Thus we have proved SL(2, Z) invariance of the 6d zero mode
partition function (2.6), and that its factors e and Z24 . in (2.9) are separately SL(2, Z)
invariant.

For the oscillator modes (4.36), the only term that transforms in the sum and product is

2 522 2

o (0 + S5 Rﬁgplpz, (B.10)

~2:
P=rz r2"

which is invariant under 1" by shifting the momentum p; — p; + ps. With the S transforma-
tion, p? becomes

,822 1 ) 252
+ + —==p5 — —= , B.11
(g R, 2) R12p2 R12p1p2 ( )
and by also exchanging the momentum p; — ps and py — —pi1, the term remains the
same. So the 6d oscillator partition function (4.36) is SL(2Z) invariant, which holds also for

regularized vacuum energy as given in (4.37).

4d U(1) partition function

In the Hamiltonian formulation, SL(2, Z) leaves invariant the U(1) oscillator partition func-
tion (4.30), since it is independent of e? and §. We have also checked above, starting from 6d,
that the zero mode 4d partition function (2.7) is invariant. Thus the U(1) partition function
from the Hamiltonian formalism is S-duality invariant.

The S-duality transformations on the corresponding quantities in the path integral quanti-
zation can be derived from (A.9) and (A.18). Since Im7 — ﬁgImT under S, and is invariant
under T, we have

3
Zzoro modes 7 Zzero modes?’ Zzero modes 7 ‘T’ ero modes under S
Zzoro modes ? Zzero modes?’ Zzero modes Zzero modes under T’ (B 12)
and
4d 4d PI -3 7P
Zosc 7 Zoscv Zosc ? |T| Zosc under S
4d 4d PI PI
Zise —> Zoses Zose — Zoge under T, (B.13)

which is (5.3) and (5.4).
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A 2d-4d correspondence for ZE!

zero modes

We remark here that the zero mode contribution to the partition function for the 4d Maxwell
field is equivalent to the zero mode contribution to the partition function for a 2d worldsheet
action [9],

5= / o[V Goagd, X0, X5 + e Bagd, X0, X°), (B.14)

where 1 < p,v <2and 3 < a,B <5.

. 2
22 modes = Y @mT@LoimTRR) - N7 (15 ()2 =(pr)2) =% ((p1)*+(pr)?)
(p1,pr)€T's,3 (P1:pr)€l3 3
7T2 «
_ Z ez@nam —4—2(m mP G op+(na—Bapm?)GP (ng—Bg,m?))

na€Z3 mBPez3
=zP!

zero modes

where ZzerOmodes is given in (A 5) The 2d metric is h1; = R? + R3826%, hiy = —R352,
hoo = R2, and 7 = 3% + z 27T + z—g The nine parameters of the moduli space %

of the Lorentzian lattice F3,3 are given by the 4d gauge theory metric as

Rg Eapr Y
Gap = —~ Bog = 221

=YJap =
N J
The integers are identified with the Maxwell field components as

Fso = na, Faﬁ—%

The points (pry,prs) on the Lorentzian lattice I'y 4 are [33]

PLy = nae “+m ( ap + Gaﬁ)e*ﬁ pR«/ = nae S +m (Baﬁ - Gaﬁ)eikyﬁa

i = mepm, PR = mepm, Z exerl = Gaﬁ, i — Ph = 2nam",
pi —i—pR = mmPGug + (na - Bapmp)G"B(ng — Bgem?),

for 1 <a,fB,v,6 <d.

However, the non-zero mode partition function of the 2d theory (B.14)

Znon zeromodes — (77(7—)77(7_—))_3 (B15)

is not the 4d non-zero mode partition function (A.18), although they both transform in
the same way under the SL(2, Z) duality transformation. Indeed (A.18) is more naturally
described by a 2d scalar theory with massless and massive modes on a two-torus in the
directions 3 and 6, as we show in Appendix D.
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C Regularization of the vacuum energy for 4d Maxwell theory

The sum in (4.30) is divergent. We regularize the vacuum energy following [12],[16]. For
< H >= %Epa cz3\/ 9*Ppaps, the SL(3, Z) invariant regularized vacuum energy becomes

<H>——43\/_ > 7:—47“/2 (C.1)

nonf)?
neeZ3£0 (9as nEZ37$O

For the proof of SL(4, Z) invariance in Appendix D, it is also useful to write the regularized
sum (C.1), as

<H>= Y <H>,=<H>, o+ Y <H>,, (C.2)
pLEZ2 pLEZ2#£0

where p| = p, € 22, a =4,5, and
< H > _lz 33 —Lin—ig(—l)——L-
pLzo—2p€Z\/9 psps—Rgn_l = = "ToR
5 —

<H>, = |pJ_|2R3 Z cos(par*2mn) [K2(27T7’LR3|]9J_|) — K0(27mR3|pJ_|)]. (C.3)

n=1

IpL| = \/Pappd®, using the 2d inverse metric as defined in Appendix D.

D SL(4, Z) invariance of Zd:Maxvell gpq 70d.chiral

Rewriting the 4d metric (3,4,5,6)
From (2.2) the metric on the four-torus, for a, f = 3,4, 5, is
Gop =0gap  Gas=—9ap?’.  Ges = R§ + gapr™7”. (D.1)

We can rewrite this metric using a,b = 4,5,

933 = R% + gap®s’,  Ga3 = 9k’ b = gapy (V)T =74 =-73% (D2

Gz = R3 + gapk®w?, Gas = — (V) R2 + gapk®7°, G0 = —gapk’,
Gab = Gabs Gas = —ga s Gos = RE + (v*)’R3 + g 77" (D.3)

The 3d inverse of g,z is

ab a
K a3 _ K 33 _ 1

~ab
gt =g+
R3
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where g% is the 2d inverse of ggp.
g =det Gy = RE det g5 = R§ § = RER3 det g, = RER3 §.
The line element can be written as

ds® = R§(d0°)’ + > gap(do™ —*d0)(d6” — 17de")

a,8=3,4,5
= R%(d6® — (%)d6°)? + R2(d6°)*
+ ) gap(d0® —F°d6° — k°d6°) (A6 — 7P d6° — KPd6?). (D.5)
a,b=4,5
We define
F=9+ ig—i. (D.6)
The 4d inverse is
~ = - 1 - ,73 . I{a|7_|2 ,73,7(1
G33 — 7] G66| |2 G26 S G = L GBa — + :
R R R R§ R
@, ~a, b axb a 3..a ~a
Fab _ G +£") RO At o
Gab: ab K 2 /7/7 /7(/7"{ Gﬁa:—: D.7
g + R2 | | R2 + R% ’ R% R% ( )

Generators of GL(n, 2)

The GL(n, Z) unimodular group can be generated by three matrices [34]. For GL(4, Z) these
can be taken to be Uy, Us and Us,

U = ; Us =

= o o O
o O O =
O O = O
O = O O
(=il
oo = o
o= o o
— o o o
S O = O
O = O O

so that every matrix M in GL(4, Z) can be written as a product U Uy?U3* U U U . . .,
for integers n;. Matrices Uy, Us and Us act on the basis vectors of the four-torus &; where
C_f,' . C_fj = afagle = Gij,

ds = (1,0,0,0)
dg = (0,1,0,0)
s = (0,0,1,0)
=(0,0,0,1). (D.9)

29



For our metric (D.3), the U, transformation

al as 1000
—/ —
Qg 0lg 1100

= U. = D.10
a, | ay 00 10 (D-10)
a, ds 0001

results in @ - @4 = o/304Gi; = Gsg = Ghs, -y = /505G = Gs3 + G = Ghg, ete. So
U, corresponds to

Ry — R, Rg — Rg, v = 7° — 1, " = k% 7% = 3 + £, gab — Gab (D.11)
or equivalently
Rs = Re, v° = 7" =1, gap = gap 7 =17 (D.12)

which leaves invariant the line element (D.5) if d§® — d6® — d6°, d6® — d6°, dO* — do°. U,
is the generalization of the usual 7 — 7 — 1 modular transformation. The 3d inverse metric
g*? = {g®, g*, g*3} does not change under Us. It is easily checked that U is an invariance
of the 4d Maxwell partition function (4.32) as well as the 6d chiral boson partition function
(4.37). It leaves the zero mode and oscillator contributions invariant separately.

The other generator, Uy is related to the SL(2, Z) transformation 7 — —(7)~! that we
discuss as follows:

Uy =U'M;s (D.13)
where M3 is a GL(3, Z) transformation given by
-1

M; = (D.14)

= o O O
O O = O
o O O

O = O O

and U’ is the matrix corresponding to the transformation on the metric parameters (D.16),

0 100
-1 0 0 0

U/:0010 (D.15)
0 001
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Under U’, the metric parameters transform as

R3 — R3|5:|7 RG — R6|?|_17 73 — _73|7~—|_27 K — aa’ 7a — _’{aa 9ab —7 YGab-

~ 1 .
T —=. Or equivalently,
=

Gap = Gapy,  Gaz = Gas, G — —Ga3, G33 — Ges, Ges — Gz3, Gzg — —Gag,

~ab ~ab ~a3 ~ab ~ab ~a3 ~33 G4 ~66 ~2 66 ~36 ~36
GZ%Giv GZ —>GZv GZ%_G27 G4—>T G4_>|T|G47 G4—>_G47

(D.16)

where 4 < a,b <5, and
Pt il (e D17)
= Ry R )

The transformation (D.16) leaves invariant the line element (D.5) when df® — d6°,
d9% — —d6?, d#* — dB*. The generators have the property det Uy = —1,det Uy = 1,
det Uz = —1, det U’ =1, det M3 = —1.
Under Mjs, the metric parameters transform as
R¢ — Rg, Y= = A =" Gab = Garibtls a3 = —Gatids 933 = Gad,
gab — g“+1’b+1, g — —g¢tA ¢33 M det 9 =0, G—3- Or equivalently,

Gap = Gayip+1,  Gaz = —Gay14, Gas = Gay16, G33 = Gaa, Ges — Ges, G36 — —Glas,
Gob s GEFIP GHS Ly GeTIA, Gub L, GO, G, G, Gy G5, G G,
det 64 = Rg g, det 64 — det 64,

(D.18)

where 4 < a,b <5, and a4+ 1 = 3 for a = 5. We see that Ms takes Z¢ to its complex

zero modes

conjugate as follows. Letting the M3 transformation (D.18) act on (2.7), we find that the
three subterms in the exponent

2 2 2
(& = 0 167 ’ /)~ ~ ’ ~ o~ i ~ o~ Jo ~ o~
— SRV + ) (979 FaFay + 49" 9 FunFurs + 29" 9 FusFurs — 29 g FusFurs)

N (D.19)
are separately invariant under (D.18) if we replace the integers Fi,z € Z3,11% € Z3 by

Fab — Fa—i—l,b—i—ly Fag — —F‘a+1,4, ﬁ3 — 1:[4, ﬁa — _ﬁa—l—l. (DZO)
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(D.21)

However, acted on by M3 with the field shift (D.20), the term
2wi7aﬁ5ﬁa5 — —2wi7aﬁ5ﬁa5

changes sign. Thus we have
M : Zéledro modes 7 Zz4éiro*modes (D22)
The action of U’ on 224
Next we show that under U’, Z24 . transforms to |7|> Z24_ . . From (A.5) and (A.9),
we have
Am s gi 272 i
d 3 e - -
Zzero modes — (6_2) 2 _% Z exp{— o2 RG\/ggwgl / Ei’Fjj’ - 5660‘6’YFGQF6“{}7 (D23)
RG FijEZG
from which it will be easy to see how it transforms under the U’ transformation. Under U’
from (D.16), the coefficient transforms as
AT _3 Q% ~12
g AN (D.24)

The Euclidean action for the zero mode computation is invariant under U’, as we show next

by first summing ¢ = {3, a,6}, with 4 < a <5.

27T2R6\/§R1 ey~ ~
“Ta gt ek
27T2R q [~ 1~ ~ =~ ~ )~ ~ o~ ~ )~y ~ o~ ~ _ ~ ~ ~
= —7626*/5 <GZ“ GV FuFoy + 4G G FyFys + 4G G Fyy Fog + 2G4 GP FosFys
— 262362’3ﬁa3ﬁa,3 + 4éza’éiﬁﬁva3ﬁa/6 — 4@2662/3}%&31‘%&/6 + 4623626}%@1,}%36
+ 2G5 G FogFug — 2G5 G S Fog Frug + 4G G0 Fug Fag — AGY G Fous Fyg
(D.25)

+AGP G Fop s — 4GS G Fog Fyg — 2G30 G0 Fyg Fyg + 2623526F36F36>~

Letting the U’ transformation (D.16) act on (D.25), we see the first term in the exponent of

(D.23) changes to
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212 R, o~ ~ e~ g~
6726\/7 (Gaa G abF 1y + 4G GZGFabFag - 4Gza G?PFabFa’G + | |2G G23Fa3Fa’3
— 2GGYOF 3 F g — 4GS GO F 3 Fug + 4GP GY O Fy Fryrg — 4GO‘6G5 Foar Fag
+ 2|?|2éia/ 626Fa6Fa’6 - 262662,3}161}‘@’6 - 4626626}%&31}36 + =3 | |2

(D.26)

The second term in the exponential of (D.23) is a topological term, and is left invariant under
the action of U’ by inspection. If we replace the integers Fga — FGa and FaG — Fag, the
two terms are left invariant, so the sum

2772\/§ ij 7,] aBy i
2 : e ag F /F /-‘rz € FGQF[;.Y (D27)

FUEZ‘S

is invariant. Thus we have shown that under the U’ transformation (D.16),

Zzoromodcs(R?”ﬂ?Rﬁ‘ﬂ_17gab7_73’?’_27§a7 ) ‘7’2 Zzoromodos(R?nRﬁvgab?’Y:S?’%a7§a)’
(D.28)
Also from (D.23), we can write (D.22) as
Ms : z4d (€%,0,G;) — Z2d (e%,-0,Gy)). (D.29)
3 zero modes s Uy Mg zero modes ) s Ty
and thus under the GL(4, Z) generator Uy,
Zzoromodes — ‘T’2 (Zzoromodes)*' (D30)

The residual factor |7|? is sometimes referred to as an SL(2,2Z) anomaly of the zero mode
partition function, because U’ includes the 7 — —= transformatlon Finally we will show
how this anomaly is canceled by the oscillator contrlbutlon.

Under Us, the metric parameters transform as
R¢ — R, o = A =" Gab = Gabs  Ya3 — —Ga3, 933 — 933,
gab — g“b, g3 = —g®, ¢ = ¢®,  det 9ap =0, G—G- Or equivalently,
Gap = Gapy,  Gaz — —Ga3, Gag — Gas, G33 — Gz, Ges — Ges, Gze — —Gg,
Gib s Gib, G GO GHS LGS, G GBS L GO, G G
det 64 = Rs 9, det 64 — det 64, (D.31)
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where 4 < a,b < 5 and G is the 3d inverse. We can check that Z;ledromodes becomes its
complex conjugate under Us given in (D.31) as follows. Letting the Us transformation (D.31)

act on (2.7), we find that three of the terms in the exponent

2 =~ 2 2
e Rﬁ 0 167 ’ / / ’ ’
- 8@—%2 ) (979" Fu Py + 49" 9 Fup Fars + 29" 9% Fas Far — 29°9"* Fag Fusy )
2
€ RG ~ ~
— 1% o117,
4v/g
0e’Rg oS B
_ v 1D HB
87_‘_\/590{56 vé )

(D.32)

are separately invariant under (D.18), if we replace the the integers l?’ag e Z3 > e 23 by
ﬁab — ﬁ’ab, Fag — —Fag, 1:[3 — 1:[3, ﬁa — —ﬁa, (D33)
However the subterm

2miy TP Fpp — —2min® TP E,p (D.34)

acted by Us with the field shift in (D.33). Therefore the zero mode partition function goes
to its complex conjugate under Us.

Appropriate generators for SL(4,2)

We claim that U2, Uy and UjUsz generate the group SL(4, Z) since GL(n, Z) is generated
by Ui, Uy and Us or alternatively Ry = Uy, Ry = U3_1U2 and R3 = Us, i.e., any element in
GL(n,Z) U can be written as

U=R™R"R3™R1"™ Ry">R3"°.... (D.35)

It is understood that SL(n, Z) is generated by even numbers of Ry, Ry and Rs. Thus, the
possible set of group generators for SL(n, Z) is

R}, R3,R3, RiRy, RyRs, R3Ri, RyRy, R3Ry, RiRj (D.36)
with the properties that B3 = 1 and R3 = 1. A smaller set of the SL(4, Z) generators is
Ri, R1R3, RaRs, (D.37)

since other generators in (D.36) can be expressed with the generators in (D.39) through the
following relations

RiRy = Ry R3(RoR3) ™", RoRy = (R1Ry) 'R}
R3Ry = (RoR3) ™", R3Ry = (R1R3)"'RY. (D.38)
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Notice that
{R1, RiR3, RyRs} = {U},U1Us, Uy '}. (D.39)
These three matrices generate SL(4,Z). They can be shown to generate Trott’s twelve

generators B;;[35].

Since we have tested the invariance of the zero mode partition function under Us, we only
need to check invariance under U;Usz and U12. For U,Us, as previously we separate Uy into
U’ and M3,

U\Us = U'MsUs = U (M3Us). (D.40)

Since both Mgz and Us take Zzeromodes to its complex conjugate, M3Us is an invariance of

the zero mode partition function. Thus from (D.28),

. 2
UUs : Zzero modes 7 |T| Zzero modes* (D41)
U.? acts on Z Joro modes
Since we have shown before
. ~|2 r74d *
Ul . Zzero modes 7 ‘T’ Zzero modes? (D42)
then
U2 z4d — zd (D.43)
1 - zero modes zero modes* :
To summarize, we have
. r74d
U2 . Zzoro modes 7 Z Zero modos?
2
UUs - Zzoro modes 7 ‘T‘ ero modes»
2
U1 Zzero modes 7 Zzero modes* (D44)
One can derive a similar transformation property for ZZ6Cro modes 1sing (2.9),
U Z zero modes 7 Z Zero modes?
3
UUs - Zzoro modes 7 ‘T‘ ero modes»
U Zzero modes 7 Zzero modes> (D45)

which follows from transformations on the factor e, given in (2.10). By inspection e is
invariant under U and M3, and transforms as

U':e—|Tle. (D.46)
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This can be seen by Poisson resummation since € can be written as

Re/g Re/G o~
€ :Zexp{—%gg“bnanb - 7T#\/E_]’y“’ybnanb} Z exp{—m(N +z)-A-(N+2x)},

- RiR R3R1R2|7~_|2 m,ns
= |T|_1 U/ E,
(D.47)
where
€aBé 4
H120c = Ngq, HCVB(S = m, m, N € = ’
g
R6\/g 3 ¢ .
iy _ ns K 'Ng + =12
A= <R3iR13R2 R6R1R2> , detA=[7?,  N= ( ) T < ’Ré‘ﬁiglﬂ |
v - m RsRiRal7?
R3\/§ }33}21}32|7—‘27

/ 4d
U’ acts on Z%.

oo, we first separate the product on @ = (n,n,) # 0 into a
product on (all n, but n, # (0,0)) and on (n # 0, ng = (0,0)). Then using the regularized
vacuum energy (C.1) expressed as sum over zero and non-zero transverse momenta p; = n,
in (C.2), we find that (4.32) becomes

To derive how U’ acts on Z34

TR
Z4d,Ma:cwell — Z4d . <€W§ H 1 )2

zero modes _27r% |n|—2miy3n
nZ01 —e 3

[[ o<t ] 1 )2
—2mRe/9*Pnang—2miv*na

na€22+(0,0) ez l—e
(D.48)

As in [12] we observe the middle expression above can be written in terms of the Dedekind

eta function n(7) = e 12 Hnez;ﬁo(l — ¥ with 7 = % + i%,

<€% 11 1 )2 = (A7)~ (D.49)

w01 — e—27rg—g|n\—27ri~/3n
This transforms under U’ in (D.16) as
~_ 1\ — =—1\\— ~— ~\ N —
((=7"Na(=7" )72 = [7]72 (D)), (D.50)

where n(—71) = (z’?)%n(?). In this way the anomaly of the zero modes in (D.28) is canceled
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by (D.50). Lastly we demonstrate the third expression in (D.48) is invariant under U’,

H e 2mRe<H>_ H ! >2:PI, (D.51)

—2mRer/9*Pnang—2mivon
na€22(0,0) nsez 1 —e ans «

where PI is the modular invariant 2d path integral of two massive scalar bosons of mass
V. g%ngny, coupled to a worldsheet gauge field, on a two-torus in directions 3,6. Following
[12], with more detail in (D.68), we extract from (4.30)

= (e—ﬂ'Ra Y rcz3 Vg¥Pnang H ! )2 (D52)

Z4d
—27‘('R6 V9P nang—2mivne

osc
nEZ3;£0

the 2d path integral of free massive bosons coupling to the gauge field, where n, is fixed and
Nnon-zero,

(PI)} = ¢ ™o Tmgez Vs T 1
1— 6—27TR6\/ ‘D‘Bnan5+27m'y Na

n3EZ
B'E

2
where s =n3, FE=4/9*Pno.ng, [ =2nRg

e
- H 1 — =B E+2mi(y3s+v%na)
s€Z

1
= forng — —n
81;[2, V2 y/cosh B'E — cos 21 (v3s + 9n,) ¢ ¢
_ 6_% sz (1n [CoshB’E—cos27r(738+'yana)]+1n2) — e—% Yeez V(E), (D53)

where

Z v(E) = Z (In [cosh B'E — cos 2m(v°s +v%n,)] + In 2)
s€Z s€Z

_ZZIn r—i—’y s +7%nq)% + E?. (D.54)
seZreZ

We can show directly that (D.54) is invariant under U’, since

1 ~

E2:gaﬁnan5:g33 24 2¢%%sng 4+ g®Pngny = R2(s+/{ na)? 4+ §%nqny,

2 1 a 2
6/2(r+'ys+’yna) R2(r+’yna+’y(s+nna)), (D.55)

then

2

ﬁ,2<r+vs+vna) + B

L5 K2 7R + 0+ 7m0+ 2 1+ Fma) 5 + K%0a) + Py, (D.56)

R28—|—I{’I’La T —|—R27‘+7na +R—%r—|—7na S+ K MNg)+ g ngnp. (D.
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So we see the transformation U’ given in (D.16) leaves (D.56) invariant if s — r and r — —s.
1
Therefore (D.54) is invariant under U’, so that (PI)2 given in (D.53) is invariant under U’.

M5 acts on Z*4

OsCc

M3 leaves the Z34 invariant as can be seen from (D.48) by shifting the integer n, as

ng — —ng, Ng = Nat1- (D.57)
So, under Uy = U’ M3,
Zoke = |71 2ok (D.58)

U, is an invariance of the oscillator partition function by inspection.

4d
Us acts on Z3§,

Us leaves the Z2% invariant as can be seen from (D.48) by shifting the integers n, as

ng — —ns, Ng — Ng. (D.59)

Thus, the oscillator partition function transforms under the SL(4,Z) generators
{U2,U,U3, Uy} as

Uy : Z4d — Zoh

osc osc?
—2 r74d
U- 1 U3 OSC — |7’ | Z

0SscC)?
U2z 744 (D.60)

So together with (D.44) we have established invariance under (D.39), and thus proved the
partition function for the 4d Maxwell theory on 7%, given alternatively by (4.32) or (D.48),
is invariant under SL(4, Z), the mapping class group of T*.

U’ acts on 794

osc

For the 6d chiral theory on T? x T*, where < H >61= 3 ZpEZ" \/G 5 "'p1pm, appears in (4.36),
the SL(3, Z) invariant regularized vacuum energy [12] becomes,

6d
<H> \/ Z Gl

_ _327T2¢G—52 !

3
20 (2)0 (gagnen® + (R} + R36267)(n!)2 — 262 R3nin? + R3(n?)? )
(D.61)
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and can be decomposed similarly to (C.2),

<H>M= 3" <p>Mocm>i 1 N <8 (D.62)
pL€Z4 PLEZ4750
where
1 . 1
< H >8%= _3272,/G /d4 TPLYL ——, D.63
P Y 5 (27T)4 yie JEZZ:#O |27T7’L3 + yJ_|6 ( )
n

with denominator |2n3 4y, |2 = G33(27m3)2—|—2(27m3)G3kyﬁ+Gkk/yﬁyf, with &k =1,2,4,5,

1
6d _
< Zpic0= "R,

(0.0]
< H >0 =pi PR3 cos(par®2mn)[Ky(2mnRs|py|) — Ko(27nRs|p. |)]

n=1

Ki(2mnRs3[p.|)

o0
= —n1p.|Rs Z cos(par*2mn) - , (D.64)

n=1

with p = (p1,p2,Pa) = n1 = (n1,n2,n4) = (n1,n2,n4,n5) € Z4,

2 2 22 ~
pL| = \/(7;%) + 25 + (g7 + Fp)nd + §nan.

The U’ invariance of (4.37) follows when we separate the product on @ € Z° # 0
into a product on (ng # 0, ni = (ni,n2,n4,n5) = (0,0,0,0)), and on (all n3, but
ny = (ny,n2,n4,n5) # (0,0,0,0)). Then

TRg 1

6d GRa
Zosc = (6 ot

)3

n3€Z#0 1—e 7TZ(’Y s ZR3 InJ‘)

6d 1
) ( H e—27rR6<H>pJ_ H )3
1_ e—27rR6\/52+ga5nanﬁ 82Ty ¥ ng

ny €24#(0,0,0,0) n3€Z

= (n(?) (7))~

_ 6d 1 5
' ( H ‘ 27TR6<H>1’J- H 27 R, B n2 492w~y ) ’
_ peT 6\/m +i2Ty*n
(n1,n2,n4,n5)€Z4#£(0,0,0,0) nzez L —e ang o
(D.65)
2
7 =34 il ~2 _ nf B2 1 B> 2 /
where 7 = 7”432, and n® = =t 2R—%n1n2 + (R—% + R—%)nQ. Under U,

n(7) 1(F) = 7 n(7) (7). (D.66)

U’ leaves invariant the part of the 6d oscillator partition function (D.65) at fixed n  # 0,
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since

o2 Re<H> H 1

2 2 22 .
n3€z —27Rg gaﬁnanﬁ+%+2%§n1n2+(ﬁl§+%2—)n% +i2Ty %N
1—e 1 1 2 1
(D.67)

is the square root of the partition function on 72 (now in the directions 3,6) of a massive
complex scalar with m? = G11n2 + G22n2 +2G2n 09 + § ngny, 4 < a,b < 5, that couples
to a constant gauge field A* = iG*in; with u,v = 3,6; 14,5 = 1,2, 4, 5. The metric on this 72

is hgs = R%, hes = R2 + (v*)?R3, hys = —y>R2. Its inverse is h33 + (7 ) , h96 = Elg

and h3¢ = 7 . The manifestly SL(2, Z) invariant path integral is

PIL = / dpdd e o™ 407 JoT d6° b (Dt An) (D= Av)grtm? G

/d(b d(b 27r de3 27\' dGGQ_ﬁ(—(Rl ('Y )82 ( 1 )282—212—8386+2A383+2A685+G11n1n1+G22n2n2+2G12n1n2+Gabnanb)¢
3

= det ([ + ()95 = ()08 — 29" (20606 + G mamy + GPngny

12 ab - ~3a - ~6a -1
+2Gning + GPngny + 201Gy 05 + 2iG°n,0g]

—trln |:—(Elg+(%—) )82 (R )282 273 ( )28386—1—6'11n1n1+G22n2n2+2G12n1ng+Gabnanb+2zG3“na83+2ZG6“na86:|
—c 3

- ZSGZ ZTEZ

—

2 3
In (‘;";2 7’2+(i2+(72—6)2)82+2'y3(1%6)27’5+G11n1n1 +G?2nono+2G12n1na+G%nany+2G3%n, s+2G%n, r) ]
= R3

= e ZSGZ V(E)7 (D68)

1 _ 22 _ 1 12 2 b by 2y
where from (2.3), G RZ,G =m Tt R27G :g—%,Ga = g° +ﬁ;z;/27

G3 = g% + 77 , G% = ;Yz—g,G&O’ = sz and 03¢ = —is¢, Jg¢ = —ire, s = ng, and
B = 27 Rg. The Sum on r is

Zln[ﬁ/2 T+ 735 +7n,) +E2], (D.69)
rez

with F2 = Glmnmm = G})lnlnl + G§2n2n2 + G%lngnl + G‘gbnanb + 2Gg3nan3 + Gg’?’ngng, and

2 232
Gé1:R27G12_}ﬁ%27G22 R2+5Rg’G1a_G2a_0 G3a_g RZ’
GB =g% = Rg, G = g% 4 £5° We evaluate the divergent sum v(E) on r by
=Y -
= B (r s+ yna)? + B2
=0gln [cosh B'E — cos2m(v°s + ’y“na)] , (D.70)
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2 inh . :
neZ T +i’)2 7 = by —onz- Then integrating (D.70), we choose the

integration constant to maintain modular invariance of (D.68),

using the sum

v(E) = In[cosh B'E — cos 27 (v*s +7*ng)] + In 2. (D.71)

It follows for s = n3 that (D.68) gives

1 1

Pl)2 =

(L) sel_lz V2y/cosh B'E — cos 27 (y3s + von,)
B'E

e 2
- H 1 — e— B E+2mi(v3s4+7%na)

s€Z
— e—ﬂRezsez \/Glsmnlnm H 1
ez 1— e—27rR6\/G?”mnm—l—27rify?’s+27ri~/ana
s
1
_ o 2mRe<H>n H (D.72)

nsez 1 — 6_2WR6\/W+27ri—y3n3+27rmana )
3

which is (D.67). Its invariance under U’ follows from the U’ invariance of (D.54), which

differs from (D.69) only by an additional contribution of 1% to the mass m?,

Hence (D.72) and thus (D.67) are invariant under U’.
Furthermore Z5% is invariant under M3, Us, Uz by inspection.

Using the same approach for proving SL(4, Z) symmetry of the 4d partition function, we have
shown the 6d oscillator partition function for the chiral boson given by (4.36), or equivalently
(D.65), transforms as

Uy : 238 — 238

osc 0sc?

U\Us : Z5% — |73 288

osc osc?

U2 7254 — 784 (D.73)

Together with (D.45), the 6d partition function Z6%chiral = 76d 784 is SL(4, Z) in-

zero modes “/osc
variant.

41



References

1]

13)
14]
15]
[16]
17)

[18]

C. Montonen and D. I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett.
B72, 117 (1977).

P. Goddard, J. Nuyts and D. I. Olive, Gauge Theories and Magnetic Charge, Nucl.
Phys. B 125, 1 (1977).

E. Witten and D. 1. Olive, Supersymmetry Algebras That Include Topological Charges
Phys. Lett. B78, 97 (1978).

C.Vafa and E.Witten, A Strong Coupling Test of S Duality, Nucl. Phys. B 431, 3 (1994),
[arxiv:hep-th/9408074].

Vasily Pestun, Localization of Gauge Theory on a Four-Sphere and Supersymmetric
Wilson Loops, Commun. Math. Phys. 313, 71 (2012), [arXiv:0712.2824 [hep-th]].

E. Witten, Geometric Langlands from Siz Dimensions, [arXiv:0905.2720 [hep-th]].

E. Witten, Some Comments On String Dynamics, In *Los Angeles 1995, Future Per-
spectives in String Theory™* 501-523, [arxiv:hep-th/9507121].

E.  Witten, Conformal  Field Theory in  Four and Six  Dimensions,
[arXiv:0712.0157 [math.RT]].

Verlinde, E. Global Aspects of Electric-Magnetic Duality Nuclear Physics B 455, 211
(1995), [arXiv:hep-th/9506011].

E. Witten, Five-brane Effective Action in M theory, J.Geom.Phys. 22, 103 (1997),
[arxiv:hep-th/9610234].

M.B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Cambridge University
Press: Cambridge, U.K. 1987. See vol.Il, p40.

L. Dolan and C. R. Nappi, A Modular Invariant Partition Function for the Five-brane,
Nucl. Phys. B 530, 683 (1998) [arxiv:hep-th/9806016|; The Ramond-Ramond Self-
dual Five Form’s Partition Function on the Ten Torus, Mod. Phys. Lett. A 15, 1261
(2000), [arxiv:hep-th/0005074].

D. Bak and A. Gustavsson, “M5/D4 brane partition function on a circle bundle,” JHEP
1212, 099 (2012), [arXiv:1209.4391 [hep-th]].

R. Zucchini, Abelian Duality and Abelian Wilson Loops, Commun. Math. Phys. 242,
473 (2003) [arXiv:hep-th/0210244].

E. Witten, On S-duality in Abelian Gauge Theory Selecta Math. 1, 383 (1995)
[arXiv:hep-th/9505186].

L. Dolan and Y. Sun, Partition Functions for Maxwell Theory on the Five-torus and
for the Fivebrane on S' x T°, JHEP 1309, 011 (2013) [arXiv:1208.5971 [hep-th]].

M. Henningson The Quantum Hilbert Space of a Chiral Two-Form in d =5+ 1 Dimen-
sions, JHEP 0203, 021 (2002) [arXiv:hep-th/0111150].

H. Kikuchi Poincare Invariance in Temporal Gauge Canonical Quantization and Theta-
Vacua, Int. J. Mod. Phys. A 9, 2741 (1994), [arXiv:hep-th/9302045].

42


http://arxiv.org/abs/hep-th/9408074
http://arxiv.org/abs/hep-th/9408074
http://arxiv.org/abs/0712.2824
http://arxiv.org/abs/0712.2824
http://arxiv.org/abs/0905.2720
http://arxiv.org/abs/0905.2720
http://arxiv.org/abs/hep-th/9507121
http://xxx.lanl.gov/abs/hep-th/9507121
http://arxiv.org/abs/0712.0157
http://xxx.lanl.gov/abs/0712.0157
http://arxiv.org/abs/hep-th/9506011
http://arxiv.org/abs/hep-th/9506011
http://arxiv.org/abs/hep-th/9610234
http://arxiv.org/abs/hep-th/9610234
http://arxiv.org/abs/hep-th/9806016
http://xxx.lanl.gov/abs/hep-th/9806016
http://arxiv.org/abs/hep-th/0005074
http://xxx.lanl.gov/abs/hep-th/0005074
http://arxiv.org/abs/1209.4391
http://xxx.lanl.gov/abs/1209.4391
http://arxiv.org/abs/hep-th/0210244
http://arxiv.org/abs/hep-th/0210244
http://arxiv.org/abs/hep-th/9505186
http://arxiv.org/abs/hep-th/9505186
http://arxiv.org/abs/1208.5971
http://arxiv.org/abs/1208.5971
http://arxiv.org/abs/hep-th/0111150
http://arxiv.org/abs/hep-th/0111150
http://arxiv.org/abs/hep-th/9302045
http://arxiv.org/abs/hep-th/9302045

[19]

[20]

[21]

[22]

23]

[24]

[30]

[31]

32]

33]

[34]

[35]

P .A. M. Dirac, Lectures on Quantum Mechanics, New York: Belfer Graduate School
of Science, Yeshiva University (1964) 87p.

A. Das, Lectures on Quantum Field Theory, Hackensack, USA: World Scientific (2008)
775 p.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, New York: Dover
Publications (1972), p378.

D. Gaiotto, N = 2 duadlities, JHEP 1208, 034 (2012),
[arXiv:hep-th/0904.2715 [hep-thl].

D. Gaiotto, G. W. Moore, and A. Neitzke, Four-dimensional Wall-Crossing
via Three-dimensional Field Theory, Commun. Math. Phys. 299 163 (2010),
[arXiv:1306.4320 [hep-th]].

L. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville Correlation Func-
tions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 167 (2010),
[arXiv:0906.3219[hep-th]].

O. Aharony, N. Seiberg and Y. Tachikawa, Reading Between the Lines of Four-
dimensional Gauge Theories, JHEP 1308, 115 (2013) [arXiv:1305.0318 [hep-th]].

Y. Tachikawa, On the 6d Origin of Discrete Additional Data of 4d Gauge Theories,
JHEP 1405, 020 (2014), [arXiv:1309.0697 [hep-th]].

T. Okuda and V. Pestun, On the Instantons and the Hypermultiplet Mass of N=2% super
Yang-Mills on S*, JHEP 1203, 017 (2012), [arXiv:1004.1222 [hep-th]].

N. A. Nekrasov, Seiberg- Witten Prepotential From Instanton Counting, Adv. Theor.
Math. Phys. 7, 831 (2004), [arXiv:hep-th/0206161].

N. Nekrasov and A. Okounkov, Seiberg-Witten Theory and Random Partitions,
[arXiv:hep-th/0306238].

hep-th/0306238.

A. Gadde, S. Gukov, and P. Putrov, Fivebranes and 4-Manifolds,
[arXiv:1306.4320 [hep-th]].

A. Gadde, S. Gukov and P. Putrov, (0,2) Trialities, JHEP 1403, 076 (2014),
[arXiv:1310.0818 [hep-thl].

G. Etesi and A. Nagy, S-duality in Abelian Gauge Theory Revisited, J. Geom. Phys. 61,
693 (2011), [arXiv:1005.5639 [math.DG]]

A. Giveon, M. Porrati and E. Rabinovici, Target Space Duality in String Theory, Phys.
Rept. 244, 77 (1994), [arXiv:hep-th/9401139].

H. Coxeter and W. Moser, Generators and Relations for Discrete Groups, New York:
Springer Verlag (1980), p85.

S. Trott, Canadian Mathematical Bulletin, vol 5, no.3, (1962), p245.

43


http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/1306.4320
http://arxiv.org/abs/0807.4723
http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/1305.0318
http://arxiv.org/abs/1305.0318
http://arxiv.org/abs/1309.0697
http://arXiv.org/abs/1309.0697
http://arxiv.org/abs/1004.1222
http://arXiv.org/abs/1004.1222
http://arxiv.org/abs/hep-th/0206161
http://arXiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://arXiv.org/abs/hep-th/0306238
http://arxiv.org/abs/hep-th/0306238
http://arxiv.org/abs/1306.4320
http://arxiv.org/abs/1306.4320
http://arxiv.org/abs/1310.0818
http://arxiv.org/abs/1306.4320
http://arxiv.org/abs/1005.5639
http://arxiv.org/abs/1005.5639v3
http://arxiv.org/abs/hep-th/9401139
http://arxiv.org/abs/hep-th/9401139

	1 Introduction
	2 Statement of the main result
	3 Zero Modes
	4 Oscillator modes
	5 S-duality of Z4d,Maxwell from Z6d,chiral
	6 Conclusions and Discussion
	A Comparison of the 4d U(1) partition function in the Hamiltonian and path integral formulations
	B SL(2,Z) invariance of the Z6d, chiral and Z4d, Maxwell partition functions
	C Regularization of the vacuum energy for 4d Maxwell theory
	D SL(4,Z) invariance of Z4d, Maxwell and Z6d,chiral

