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Abstract

Structural equation models and Bayesian networks have Wity used to analyze causal rela-
tions between continuous variables. In such framewonksali acyclic models are typically used to
model the data-generating process of variables. Recé@mlsts shown that use of non-Gaussianity
identifies the full structure of a linear acyclic model, tleta causal ordering of variables and their
connection strengths, without using any prior knowledgetennetwork structure, which is not
the case with conventional methods. However, existingregton methods are based on iterative
search algorithms and may not converge to a correct solitiafinite number of steps. In this pa-
per, we propose a new direct method to estimate a causalmydard connection strengths based
on non-Gaussianity. In contrast to the previous methodsatmorithm requires no algorithmic
parameters and is guaranteed to converge to the right@olithin a small fixed number of steps
if the data strictly follows the model, that is, if all the melcassumptions are met and the sample
size is infinite.
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1. Introduction

Many empirical sciences aim to discover and understand causal meoammslerlying various

natural phenomena and human social behavior. An effective way tg stugsal relationships is
to conduct a controlled experiment. However, performing controlledrarpeats is often ethically

impossible or too expensive in many fields including social sciences (B4®&8), bioinformatics

(Rhein and Strimmer, 2007) and neuroinformatics (Londei et al., 200@)s,Tit is necessary and
important to develop methods for causal inference based on the dataothat dome from such
controlled experiments.

Structural equation models (SEM) (Bollen, 1989) and Bayesian netwBik$ (Pearl, 2000;
Spirtes et al., 1993) are widely applied to analyze causal relationships w engpirical studies.
A linear acyclic model that is a special case of SEM and BN is typically used to anefyusal
effects between continuous variables. Estimation of the model commonly nigeth® covariance
structure of the data and in most cases cannot identify the full structatéstl causal ordering and
connection strengths, of the model with no prior knowledge on the stru@®ea!, 2000; Spirtes
etal., 1993).

In Shimizu et al. (2006), a non-Gaussian variant of SEM and BN callecearlinon-Gaussian
acyclic model (LINGAM) was proposed, and its full structure was showbretalentifiable without
pre-specifying a causal order of the variables. This feature is a sigmifadvantage over the con-
ventional methods (Spirtes et al., 1993; Pearl, 2000). A non-Gaussitnodni® estimate the new
model was also developed in Shimizu et al. (2006) and is closely related foeindent component
analysis (ICA) (Hywarinen et al., 2001). In the subsequent studies, the non-Gaussiawoak has
been extended in various directions for learning a wider variety of SEMB(Hoyer et al., 2009;
Hyvarinen et al., 2010; Lacerda et al., 2008). In what follows, we reférgaon-Gaussian model
as LINGAM and the estimation method as ICA-LINGAM algorithm.

Most of major ICA algorithms including Amari (1998) and Hyninen (1999) are iterative search
methods (Hy#@rinen et al., 2001). Therefore, the ICA-LINGAM algorithms based on@#ealgo-
rithms need some additional information including initial guess and conveggeiteria. Gradient-
based methods (Amari, 1998) further need step sizes. However, larfitamic parameters are
hard to optimize in a systematic way. Thus, the ICA-based algorithms may gkistacal optima
and may not converge to a reasonable solution if the initial guess is baddgrelidimberg et al.,
2004).

In this paper, we propose a new direct method to estimate a causal ordeviaigables in the
LINGAM with no prior knowledge on the structure. The new method estimatesisatarder of
variables by successively subtracting the effect of each indeperderponent from given data
in the model, and this process is completed in steps equal to the number of ididesam the
model. It is not based on iterative search in ffegameter spaceand needs no initial guess or
similar algorithmic parameters. It guaranteedo converge to the right solution within a small
fixed number of steps if the dasdrictly follows the model, that is, if all the model assumptions
are met and the sample size is infinite. These features of the new method enablacturate
estimation of a causal order of the variables in a disambiguated and diceetdoire. Once the
causal orders of variables is identified, the connection strengths betieesariables are easily
estimated using some conventional covariance-based methods such agueass and maximum
likelihood approaches (Bollen, 1989). We also show how prior knoveesigthe structure can be
incorporated in the new method.
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The paper is structured as follows. First, in Section 2, we briefly revievidANI and the ICA-
based LINGAM algorithm. We then in Section 3 introduce a new direct methoe p&hformance
of the new method is examined by experiments on artificial data in Section 4 xpadreents on
real-world data in Section 5. Conclusions are given in Section 6. Prelimiaamts were presented
in Shimizu et al. (2009), Inazumi et al. (2010) and Sogawa et al. (2010)

2. Background

In this section, we first review LINGAM and the ICA-LINGAM algorithm (Shimigtial., 2006) in
Sections 2.1-2.3 and next mention potential problems of the ICA-basedthigan Section 2.4.

2.1 A Linear Non-Gaussian Acyclic Model: LINGAM

In Shimizu et al. (2006), a non-Gaussian variant of SEM and BN, whiclalied LINGAM, was
proposed. Assume that observed data are generated from a prepessented graphically by
a directed acyclic graph, that is, DAG. Let us represent this DAG Inyxan adjacency matrix
B={hi; } where evenyb;; represents the connection strength from a variaplte anotherx in the
DAG. Moreover, let us denote bi(i) a causal order of variableg in the DAG so that no later
variable determines or has a directed path on any earlier variable. (Aatineath from; to x; is a
sequence of directed edges such thas reachable fronx;.) We further assume that the relations
between variables are linear. Without loss of generality, each obsear&blex; is assumed to
have zero mean. Then we have

= > bijx+e, (1)

k(i) <k(i)
whereg is an external influence. All external influena@re continuous random variables having
non-Gaussiamlistributions with zero means and non-zero variancesgaaick independent of each
other so that there are no latent confounding variables (Spirtes et2R8).19
We rewrite the model (1) in a matrix form as follows:

X =Bx+e¢ 2

wherex is a p-dimensional random vector, af®icould be permuted by simultaneous equal row
and column permutations to Istrictly lower triangular due to the acyclicity assumption (Bollen,
1989). Strict lower triangularity is here defined as a lower triangular tstreevith all zeros on the
diagonal. Our goal is to estimate the adjacency ma&rby observing data only. Note that we do
notassume that the distribution ®fis faithful (Spirtes et al., 1993) to the generating graph.

We note that eachy; represents the direct causal effectxpfon x; and eacthy;j, the (i, j)-th
element of the matrixa=(I — B) 1, the total causal effect off onx; (Hoyer et al., 2008).

We emphasize thag is equal tog if no other observed variablg (j#i) inside the model has
a directed edge t®, that is, all thely; (j#i) are zeros. In such a case, an external influenie
observedasx;. Such arx; is called arexogenous observedriable. Otherwiseg is called arerror.
For example, consider the model defined by

X2 = €
X1 1.5x0+ ey,
X3 = 0.8x; —1.5% + €3,
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wherex; is equal toe, since it is not determined by eith&i or X3. Thus,x; is an exogenous
observed variable, arg] ande; are errors. Note that theexists at least one exogenous observed
variable %(=g) due to the acyclicity and the assumption of no latent confounders.

An exogenous observed variable is usually defined as an obsemiatlgahat is determined
outside of the model (Bollen, 1989). In other words, an exogenousreodxd variable is a variable
that any other observed variable inside the model does not have a diesige to. The definition
does not require that it is equal to an independent external influandethe external influences
of exogenous observed variables may be dependent. However, iilNBAM (2), an exogenous
observed variable is always equal to an independent external iofwkre to the assumption of no
latent confounders.

2.2 Identifiability of the Model

We next explain how the connection strengths of the LINGAM (2) can betiftlthas shown in
Shimizu et al. (2006). Let us first solve Equation (2) fofThen we obtain

X = Ae, (3)

whereA = (1 —B)~1 is a mixing matrix whose elements are called mixing coefficients and can
be permuted to be lower triangular as well due to the aforementioned fedtBraral the nature

of matrix inversion. Since the componentsedére independent and non-Gaussian, Equation (3)
defines the independent component analysis (ICA) modelHiyen et al., 2001), which is known

to be identifiable (Comon, 1994; Eriksson and Koivunen, 2004).

ICA essentially can estimate (andW = A~ = | — B), but has permutation, scaling and sign
indeterminacies. ICA actually givé§,ca=PDW, whereP is an unknown permutation matrix, and
D is an unknown diagonal matrix. But in LINGAM, the correct permutation marean be found
(Shimizu et al., 2006): the correktis the only one that gives no zeros in the diagondDdf since
B should be a matrix that can be permuted to be strictly lower triangulaWardl — B. Further,
one can find the correct scaling and signs of the independent compdnyenssng the unity on
the diagonal oWW=I—-B. One only has to divide the rows &W by its corresponding diagonal
elements to obtaikV. Finally, one can compute the connection strength m&tex| —W.

2.3 ICA-LINGAM Algorithm
The ICA-LINGAM algorithm presented in Shimizu et al. (2006) is describetbows:

ICA-LINGAM algorithm

1. Given a p-dimensional random vector X and its p x n observed data matrix X, apply an ICA
algorithm (FastICA of Hyvarinen 1999 using hyperbolic tangent function) to obtain an estimate
of A.

2. Find the unique permutation of rows of W=A"1 which yields a matrix W without any zeros on
the main diagonal. The permutation is sought by minimizing ¥;1/|W;;|.

3. Divide each row of W by its corresponding diagonal element, to yield a new matrix W with all
ones on the diagonal.
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4. Compute an estimate B of B using B =1 — W',

5. Finally, to estimate a causal order K(i), find the permutation matrix Pof B yielding a matrix
B = PBPT which is as close as possible to a strictly lower triangular structure. The lower-
triangularity of B can be measured using the sum of squared bjj in its upper triangular part
Yi<j Bﬁ for small number of variables, say less than 8. For higher-dimensional data, the fol-
lowing approximate algorithm is used, which sets small absolute valued elements in B to zero
and tests if the resulting matrix is possible to be permuted to be strictly lower triangular:

(a) Setthe p(p+ 1)/2 smallest (in absolute value) elements of B to zero.
(b) Repeat

i. Testif B can be permuted to be strictly lower triangular. If the answer is yes, stop
and return the permuted B, that is, B.

ii. Additionally set the next smallest (in absolute value) element of B to zero.

2.4 Potential Problems of ICA-LINGAM

The original ICA-LINGAM algorithm has several potential problems: i) M&SA algorithms in-
cluding FastICA (Hyarinen, 1999) and gradient-based algorithms (Amari, 1998) may notogav
to a correct solution in a finite number of steps if the initially guessed state is tlaoken (Himberg
et al., 2004) or if the step size is not suitably selected for those gradisatimethods. The appro-
priate selection of such algorithmic parameters is not easy. In contrast|gmurithm proposed in
the next section is guaranteed to converge to the right solution in a fixedanaridteps equal to the
number of variables if the datdrictly follows the model. ii) The permutation algorithms in Steps 2
and 5 are not scale-invariant. Hence they could give a differeewen wrongordering of variables
depending on scales or standard deviations of variables especiallytiweihave a wide range
of scales. However, scales are essentially not relevant to the ordénragiables. Though such
bias would vanish for large enough sample sizes, for practical sampte aizestimated ordering
could be affected when variables are normalized to make unit varianegdanple, and hence the
estimation of a causal ordering becomes quite difficult.

3. A Direct Method: DirectLiINGAM

In this section, we present a new direct estimation algorithm named DirectLNNGA

3.1 Identification of an Exogenous Variable Based on Non-Gaussianignd Independence

In this subsection, we present two lemmas and a cordliat ensure the validity of our algorithm
proposed in the next subsection 3.2. The basic idea of our method is agsfole first find an

exogenous variable based on its independence of the residuals of amoinplairwise regressions
(Lemma 1). Next, we remove the effect of the exogenous variable frorotttes variables using
least squares regression. Then, we show that a LINGAM also holdhdaesiduals (Lemma 2)
and that the same ordering of the residuals is a causal ordering foligirebobserved variables as

1. We prove the lemmas and corollary without assuming the faithfuln@étgSet al., 1993) unlike our previous work
(Shimizu et al., 2009).
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well (Corollary 1). Therefore, we can find the second variable in tlhisaeordering of the original
observed variables by analyzing the residuals and their LINGAM, thayiapplying Lemma 1 to
the residuals and finding an “exogenous” residual. The iteration of #fé=e removal and causal
ordering estimates the causal order of the original variables.

We first quote Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 18B@k it is used to
prove Lemma 1:

Theorem 1 (Darmois-Skitovitch theorem) Define two random variableg yand y as linear com-
binations of independent random variablgg=s1, ---, q):

y1= 21 iS, yz—XlB.s

Then, if y and y are independent, all variableg $or whicha;3; # 0 are Gaussian

In other words, this theorem means that if there exists a non-Gaiggs@mwhicha3;#0, y; and
y» are dependent.

Lemma 1 Assume that the input datastrictly follows the LINGAM (2), that is, all the model
assumptlons are met and the sample size is infinite. Deno;% liie residual when;xs regressed

onx;: rd =x - c?,\;(r?xj);')xj (i # j). Then a variable xis exogenous if and only if ¥s independent

of its residuals ) for all i # j.

Proof (i) Assume thai; is exogenous that |sgj_eJ Due to the model assumption and Equa-

tion (3), one can write;= a”xj+ (|7éj) wheree| =3 h+j &n€n andx; are independent, arg|
is a mixing coefficient fronx; to x; in Equation (3). The mixing coefficiert; is equal to the re-
gression coefficient whex is regressed oR; since CO\(x| Xj)=ajjvar(x;). Thus, the residua;(”
is equal to the corresponding error term, tha’rﬁé) e, . This implies tha; andr( )(:éf”) are
independent.

(if) Assume tha; is not exogenous, that ig; has at least one parent. Ligtdenote the (non-
empty) set of the variable subscripts of parent variableg.ofhen one can writgj = y hcp, bjnXn +
ej, wherex, andej are independent and ealsjp is non-zero. Let a vectoty, and a column vector
bp, collect all the variables if?; and the corresponding connection strengths, respectively. Then,
the covariances betweemj andx; are

E(xpXj) = E{xp(bhxp +€)}
= E(xp,bpxp) +E(xp€))
E (ij X?;J. )bpj . 4)

The covariance matrik (xp, x,Ej) is positive definite since the external influenegs$hat correspond

to those parent variableg in P; are mutually independent and have positive variances. Thus, the
covariance VectoE (xp,Xj) = E(Xp, x,Tjj)bpj in Equation (4) cannot equal the zero vector, and there
must be at least one variablg(i € P;) with which xj covaries, that is, cdx;,xj)#0. Then, for such
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a variablex; (i € Pj) that co\(x;,x;)#0, we have
() SOVNX))

! ' var(y)

cov(X, X;
= Xi—i( I J) Z bthh—l-Ej
var(x;j) Hép,

B {l bjiCOV(Xj,Xj)} cov(X;, Xj) b
= - i — jnXh
var(x;) var(x;) helhyi
cov(X;,X;) _
var(xj)

Each of those parent variablgs (including x;) in P; is a linear combination of external influences
other than ¢ due to the relation of, to &; thatx; = Y hep, bjnXn +€j = Yhep, bih (Tkt)<kn) @) +

ej , whereg ande; are independent. Thus, tln,@ andx; can be rewritten as linear combinations
of independent external influences as follows:

0 _ _bjiCOV(Xi,Xj) _ _COV(Xi,Xj) ‘
i {1 var(x;j) }<|;a"a> var(x;j) he%ﬁbjh (;ma)

cov(X,Xj)
“varg) ©

Xj = h;j bjh (t;ahta>+ej- (6)

The first two terms of Equation (5) and the first term of Equation (6) araticembinations of
external influences other thay, and the third term of Equation (5) and the second term of Equa-
tion (6) depend only ore; and do not depend on the other external influences. Further, all the
external influences including; are mutually independent, and the coefficient of non-Gaussian

onri(j) and that orx; are non-zero. These imply thq\(ﬂ'> andx; are dependent sincéj), Xj ande;
correspond tg1, Yo, sj in Darmois-Skitovitch theorem, respectively.
From (i) and (ii), the lemma is proven. |

Lemma 2 Assume that the input datastrictly follows the LINGAM (2). Further, assume that a
variable ¥ is exogenous. Denote b{/) a (p-1)-dimensional vector that collects the residuél% r
when all x of x are regressed on;x(i#j). Then a LINGAM holds for the residual vecto):

r() =BUr() 4 &li), whereBU is a matrix that can be permuted to be strictly lower-triangular by
a simultaneous row and column permutation, and elemergS)odire non-Gaussian and mutually
independent

Proof Without loss of generality, assume tHatin the LINGAM (2) is already permuted to be
strictly lower triangular and thatj=x;. Note thatA in Equation (3) is also lower triangular (al-
though its diagonal elements are all ones). Sixce exogenousg; are equal to the regression
coefficients wherx; are regressed on (i # 1). Therefore, after removing the effectsxaffrom x;
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by least squares estimation, one gets the first colunntofbe a zero vector, and does not affect
the residualssi(l). Thus, we again obtain a lower triangular mixing mati¥) with all ones in the

diagonal for the residual vectof!) and hence have a LINGAM for the vectol. [ |

Corollary 1 Assume that the input datestrictly follows the LINGAM (2). Further, assume that a
variable x is exogenous. Denote by;Ki) a causal order ofi?”. Recall that ki) denotes a causal
order of X. Then, the same ordering of the residuals is a causal ordering for tiggnat observed
variables as well: k;) (1) <k, (m) < k(I)<k(m).

Proof As shown in the proof of Lemma 2, when the effect of an exogenoushlariais removed
from the other observed variables, the secong-tb columns ofA remain the same, and the sub-
matrix of A formed by deleting the first row and the first column is still lower triangulais $hows
that the ordering of the other variables is not changed and provesribiéacp |

Lemma 2 indicates that the LINGAM for the{1)-dimensional residual vectof!) can be
handled as a new input model, and Lemma 1 can be further applied to the madsintate the
next exogenous variable (the next exogenous residual in fact). pfbiess can be repeated until
all variables are ordered, and the resulting order of the variable igptsseshows the causal order of
the original observed variables according to Corollary 1.

To apply Lemma 1 in practice, we need to use a measure of independenbaswiot restricted
to uncorrelatedness since least squares regression gives resiggls uncorrelated with but not
necessarily independent of explanatory variables. A common indepeadecasure between two
variablesy; andy; is their mutual informatioMI (y1,y2) (Hyvarinen et al., 2001). In Bach and Jor-
dan (2002), a nonparametric estimator of mutual information was develspagikernel methods.
LetK; andK5 represent the Gram matrices whose elements are Gaussian kernebydheesets of

n observations of; andys,, respectively. The Gaussian kernel vall{g$y(li),y(lj)) and Kz(y(zi),yg))
(i,j=1,---,n) are computed by

Kiy W) = exp(—mz\lyﬁ')—y(l')Hz),

208 ) = oxp( = peals IR,

whereo>0 is the bandwidth of Gaussian kernel. Furtherdedenote a small positive constant.
Then, in Bach and Jordan (2002), the kernel-based estimator of mufiahation is defined as:

- 1. detky
Ml =——log——
kernel(Y1,Y2) > g detD,’
where
2
X = (Kl—l-%” K1Ko . |,
KoKq (Kz + n7K| )
n7K 2
D (K]_ + > |) OnK , |
2. Matlab codes can be downloadedhty://www.di.ens.fr/ ~ fbach/kernel-ica/index.htm

1232



DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

As the bandwidtho of Gaussian kernel tends to zero, the population counterpart of the &stima
converges to the mutual information up to second order when it is expardadd distributions
with two variablesy; andy, being independent (Bach and Jordan, 2002). The determinants of the
Gram matrice; andK; can be efficiently computed by using the incomplete Cholesky decompo-
sition to find their low-rank approximations of ramk (< n). In Bach and Jordan (2002), it was
suggested that the positive constamind the width of the Gaussian kermedre set tak =2 x 10732,
o=1/2forn> 1000 anck = 2 x 102, o =1 forn < 1000 due to some theoretical and computa-
tional considerations.

In this paper, we use the kernel-based independence measure. Vv dltate pairwise in-
dependence between a variable and each of the residuals and nettigaken of the pairwise
measures over the residuals. Let us denot® e set of the subscripts of variablgs that is,
U={1,---, p}. We use the following statistic to evaluate independence between a vafjaiid

its residuals |V = x — 25Xy wheny; is regressed oKy

i =X var(x;)

Tkernel(xj;U) = Z I\/A\Ikernel(xjvri(j))- (7)
ic0T#j

Many other nonparametric independence measures (Gretton et al. K¥a8kov et al., 2004) and
more computationally simple measures that use a single nonlinear correlatigarifién, 1998)
have also been proposed. Any such proposed method of indepencauld potentially be used
instead of the kernel-based measure in Equation (7).

3.2 DirectLiINGAM Algorithm

We now propose a new direct algorithm called DirectLINGAM to estimate a tawdaring and
the connection strengths in the LINGAM (2):

DirectLINGAM algorithm

1. Given a p-dimensional random vector X, a set of its variable subscripts U and a p x n data
matrix of the random vector as X, initialize an ordered list of variables K := 0 and m:= 1.

2. Repeat until p—1 subscripts are appended to K:

(a) Perform least squares regressions of X; on X;j for all i € U\K (i # j) and compute the
residual vectors r}) and the residual data matrix R() from the data matrix X for all
j € U\K. Find a variable xm, that is most independent of its residuals:

=arg min T, Xi; U\K),
Xm gjeu\K kernel( j \K)

where Tkermel is the independence measure defined in Equation (7).
(b) Append mto the end of K.
) Letx:=rM X :=RMm,

3. Append the remaining variable to the end of K.
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4. Construct a strictly lower triangular matrix B by following the order in K, and estimate the
connection strengths bjj by using some conventional covariance-based regression such as
least squares and maximum likelihood approaches on the original random vector X and the
original data matrix X. We use least squares regression in this paper.

3.3 Computational Complexity

Here, we consider the computational complexity of DirectLiNGAM compared wiith
ICA-LINGAM with respect to sample size and number of variablep. A dominant part of Di-
rectLINGAM is to compute Equation (7) for eaol in Step 2(a). Since it require®(np?M? +
p3M?3) operations (Bach and Jordan, 2002pin1 iterations, complexity of the step@np*M?2 +
p*M3), whereM (< n) is the maximal rank found by the low-rank decomposition used in the
kernel-based independence measure. Another dominant part is teesieg to estimate the matrix
B in Step 4. The complexity of many representative regressions includingasiesiguare algorithm
is O(np?). Hence, we have a total budget®fnp*M? + p*M3). Meanwhile, the ICA-LINGAM re-
quiresO(p*) time to find a causal order in Step 5. Complexity of an iteration in FastlCA proeed
at Step 1 is known to b®(np?). Assuming a constant numb@rof the iterations in FastICA steps,
the complexity of the ICA-LINGAM is considered to Cn? + p*). Though general evaluation
of the required iteration numbéris difficult, it can be conjectured to grow linearly with regards to
p. Hence the complexity of the ICA-LINGAM is presumed to®énp® + p*).

Thus, the computational cost of DirectLiNGAM would be larger than thatGA-LINGAM
especially when the low-rank approximation of the Gram matrices is not sieeffj that isM is
large. However, we note the fact that DirectLiNGAM has guaranteedsrgance in a fixed number
of steps and is of known complexity, whereas for typical ICA algorithms gioly FastICA, the
run-time complexity and the very convergence are not guaranteed.

3.4 Use of Prior Knowledge

Although DirectLiINGAM requires no prior knowledge on the structure, nedfieient learning can
be achieved if some prior knowledge on a part of the structure is availabdube then the number
of causal orders and connection strengths to be estimated gets smaller.

We present three lemmas to use prior knowledge in DirectLiINGAM. Let udi@fne a matrix
Ak”"":[a‘jﬁ”""] that collects prior knowledge under the LINGAM (2) as follows:

0 if x; doesnothave a directed path tq
gkw . 1 if x; has a directed path tq
e —1 if no prior knowledge is available to know if either

of the two cases abov® or 1) is true

Due to the definition of exogenous variables and that of prior knowledgexa&™, we readily
obtain the following three lemmas.

Lemma 3 Assume that the input datastrictly follows the LINGAM (2). An observed variablg x
is exogenous ifﬁ‘” is zero for all E£j.

Lemma 4 Assume that the input dasastrictly follows the LINGAM (2). An observed variablg x
is endogenous, that is, not exogenous, if there exist séigthiat a‘j‘i”W IS unity.
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Lemma 5 Assume that the input dasastrictly follows the LINGAM (2). An observed variablg x

does not receive the effect (pﬁb(a'j‘i”"" is zero.

The principle of making DirectLINGAM algorithm more accurate and fasteetam prior
knowledge is as follows. We first find an exogenous variable by appliyergma 3 instead of
Lemma 1 if an exogenous variable is identified based on prior knowledgs Wh do not have to
evaluate independence between any observed variable and its resiflmal€xogenous variable
is identified based on prior knowledge, we next find endogenous €rogenous) variables by
applying Lemma 4. Since endogenous variables are never exogenotasnwerrow down the
search space to find an exogenous variable based on Lemma 1. Wertban $kip to compute
the residual of an observed variable and take the variable itself as tHeak$ its regressor does
not receive the effect of the variable due to Lemma 5. Thus, we caeaethe number of causal
orders and connection strengths to be estimated, and it improves theccandacomputational
time. The principle can also be used to further analyze the residuals antthdime:xt exogenous
residual because of Corollary 1. To implement these ideas, we only haeplare Step 2a in
DirectLiINGAM algorithm by the following steps:

2a-1 Find such a variable(s) Xj (j € U\K) that the j-th row of AKW has zero in the i-th column
for all i € U\K (i # j) and denote the set of such variables by Uexo If Uexo is not empty, set
Uc 1= Uexo If Uexois empty, find such a variable(s) X;j (j € U\K) that the j-th row of AKW hag
unity in the i-th column for at least one of i € U\K (i # ]), denote the set of such variables by
Uend and set Ug := U \K\Ueng.

2a-2 Denote by V(J) a set of such a variable subscript i € U\K (i # j) that a™ = O for all j € Uc.
First set ri“)_:: x; for all i € V), next perform least squares regressions of X on X; for all
i € U\K\V{) (i # j) and estimate the residual vectors r}) and the residual data matrix R{J)
from the data matrix X for all j € Uc. If Uc has a single variable, set the variable to be X,

Otherwise, find a variable X, in U that is most independent of the residuals:

Xm = arg MinTiemel(Xj; U\K),
j€Uc
where Tkermel is the independence measure defined in Equation (7).

4. Simulations

We first randomly generated 5 data sets based on sparse networksaciileombination of number
of variablesp and sample size (p=10, 20, 50, 100n=500, 1000, 2000):

1. We constructed thp x p adjacency matrix with all zeros and replaced every element in the

lower-triangular part by independent realizations of Bernoulli rangtariables with success
probability s similarly to Kalisch and Bhlmann (2007). The probability determines the
sparseness of the model. The expected number of adjacent variabbshofariable is given
by s(p—1). We randomly set the sparsenes® that the number of adjacent variables was 2
or 5 (Kalisch and Bhimann, 2007).

2. We replaced each non-zero (unity) entry in the adjacency matrix biya rendomly chosen
from the interval[—1.5,—0.5] U [0.5,1.5] and selected variances of the external influences
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Figure 1: Left: Scatterplots of the estimatggby DirectLiNGAM versus the true values feparse
networks. Right: Scatterplots of the estimaltgdoy ICA-LINGAM versus the true values
for sparsenetworks.

g from the interval[1,3] as in Silva et al. (2006). We used the resulting matrix as the data-
generating adjacency matrik

3. We generated data with sample sizlky independently drawing the external influence vari-
ablesg from various 18 non-Gaussian distributions used in Bach and Jor@ag)hcluding
(a) Student with 3 degrees of freedom; (b) double exponential; (cdumijf(d) Student with
5 degrees of freedom; (e) exponential; (f) mixture of two double exptiads; (g)-(h)-(i)
symmetric mixtures of two Gaussians: multimodal, transitional and unimodal; ¢{))(&pn-
symmetric mixtures of two Gaussians, multimodal, transitional and unimodal; (R{p)n)
symmetric mixtures of four Gaussians: multimodal, transitional and unimodalgfg))
nonsymmetric mixtures of four Gaussians: multimodal, transitional and unimodalFi§-
ure 5 of Bach and Jordan (2002) for the shapes of the probabilitytgémsctions.

4. The values of the observed variabte@ere generated according to the LINGAM (2). Finally,
we randomly permuted the orderxf

Further we similarly generated 5 data sets based on dense (full) netitaiis, full DAGs with ev-
ery pair of variables is connected by a directed edge, under each atiobiof number of variables
p and sample siza. Then we tested DirectLINGAM and ICA-LINGAM on the data sets generated
by sparse networks or dense (full) networks. For ICA-LINGAM, the imaxn number of iterations
was taken as 1000 (Shimizu et al., 2006). The experiments were conauncéestandard PC using
Matlab 7.9. Matlab implementations of the two methods are available on the web:
DirectLINGAM: http://www.ar.sanken.osaka-u.ac.jp/ ~ inazumi/dlingam.html ,
ICA-LINGAM: http:/iwww.cs.helsinki.filgroup/neuroinf/lingam/

We computed the distance between the Buend ones estimated by DlrectLlNGAM and ICA-
LINGAM using the Frobenius norm defined as

\/trace{ Btrue — B)T (Burue — B) .
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Sparsenetworks Sample size
500 1000 2000
DirectLINGAM dim.= 10| 048 031 0.21

dim.= 20| 1.19 0.70 0.50
dim.= 50| 257 1.82 1.40
dim. =100| 5.75 4.61 235
ICA-LINGAM dim.= 10| 3.01 0.74 0.65
dim.= 20| 9.68 3.00 2.06
dim. = 50| 20.61 20.23 12.91
dim. =100| 40.77 43.74 36.52
DirectLINGAM with dim.= 10| 048 030 0.24
prior knowledge (50%) dim.= 20 1.00 0.71 0.49
dim.= 50| 247 175 1.19
dim. =100| 494 389 227

Dense(full) networks Sample size
500 1000 2000
DirectLINGAM dim.= 10| 045 046 0.20

dim.= 20| 146 153 1.12
dim.= 50| 4.40 457 3.86
dim. =100| 7.38 6.81 6.19
ICA-LINGAM dim.= 10| 1.71 2.08 0.39
dim.= 20| 6.70 3.38 1.88
dim. = 50| 17.28 16.66 12.05
dim. =100| 34.95 34.02 32.02
DirectLINGAM with dim.= 10| 045 0.31 0.19
prior knowledge (50%) dim.= 20 0.84 0.90 041
dim.= 50| 248 186 1.56
dim. =100| 4.67 3.60 261

Table 1: Median distances (Frobenius norms) betweenBraed estimated® of DirectLiNGAM
and ICA-LINGAM with five replications.

Tables 1 and 2 show the median distances (Frobenius norms) and medianational times (CPU
times), respectively. In Table 1, DirectLINGAM was better in distancds afid gave more accurate
estimates oB than ICA-LINGAM for all of the conditions. In Table 2, the computation amooint
DirectLINGAM was rather larger than ICA-LINGAM when the sample size wasdéased. A main
bottleneck of computation was the kernel-based independence measwevei, its computation
amount can be considered to be still tractable. In fact, the actual elapsadiene approximately
one-quarter of their CPU times respectively probably because the GiPldurecores. Interestingly,
the CPU time of ICA-LINGAM actually decreased with increased sample sizenme s@ases. This
is presumably due to better convergence properties.

To visualize the estimation results, Figures 1 and 2 give combined scatterplbésestimated
elements oB of DirectLINGAM and ICA-LINGAM versus the true ones for sparse netkgoand
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Sparsenetworks Sample size
500 1000 2000
DirectLINGAM dim.= 10| 15.16 sec. 37.21sec. 66.75 sec.
dim.= 20| 1.56min. 5.75min. 17.22min.
dim. = 50| 16.25min. 1.34 hrs. 2.70 hrs.
dim.=100| 2.35hrs. 21.17 hrs. 19.90 hrs.
ICA-LINGAM dim.= 10| 0.73sec. 0.41 sec. 0.28 sec.
dim.= 20| 5.40sec. 2.45 sec. 1.14 sec.
dim.= 50| 14.49sec. 21.47sec. 32.03sec.
dim. =100| 46.32sec. 58.02sec. 1.idn.
DirectLINGAM with dim.= 10| 4.13sec. 17.75sec. 30.95 sec.
prior knowledge (50%) dim. = 20 28.02sec. 1.6&in. 4.98min.
dim.= 50| 7.62min. 28.89min. 1.09 hrs.
dim. =100| 48.28min.  1.84 hrs. 7.51 hrs.
Dense(full) networks Sample size
500 1000 2000
DirectLINGAM dim.= 10| 8.05sec. 24.52sec. 49.44 sec.
dim.= 20| 1.00min. 4.23min. 6.91min.
dim. = 50| 16.18min. 1.12 hrs. 1.92 hrs.
dim. =100| 2.16 hrs. 8.59 hrs. 17.24 hrs.
ICA-LINGAM dim.= 10| 0.97 sec. 0.34 sec. 0.27 sec.
dim.= 20| 5.35sec. 1.25 sec. 4.07 sec.
dim.= 50| 15.58sec. 21.01sec. 31.57 sec.
dim. =100| 47.60sec. 56.57sec. 1.86n.
DirectLINGAM with dim.= 10| 2.67 sec. 5.66 sec. 12.31 sec.
prior knowledge (50%) dim.= 20 5.02sec. 31.70sec. 38.35sec.
dim.= 50| 46.74sec. 2.8&in. 5.00min.
dim. =100| 3.19min. 10.44min. 19.80min.

Table 2: Median computational times (CPU times) of DirectLiNGAM and ICA-LiN@avith five
replications.

dense (full) networks, respectively. The different plots corredpordifferent numbers of variables
and different sample sizes, where each plot combines the data foedifatjacency matricé&and
18 different distributions of the external influenge® ). We can see that DirectLiNGAM worked
well and better than ICA-LINGAM, as evidenced by the grouping of the datats onto the main
diagonal.

Finally, we generated data sets in the same manner as above and gave isoreopriedge
to DirectLINGAM by creating prior knowledge matricé&™ as follows. We first replaced every
non-zero element by unity and every diagonal element by zefo-ifi — B)~! and subsequently
hid each of the off-diagonal elements, that is, replaced it-fhywith probability 05. The bottoms
of Tables 1 and 2 show the median distances and median computational times. dinpirically
confirmed that use of prior knowledge gave more accurate estimates arablaputational times
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Figure 2: Left: Scatterplots of the estimatafby DirectLiNGAM versus the true values fdense
(full) networks. Right: Scatterplots of the estimatgdby ICA-LINGAM versus the true
values fordensgfull) networks.

in most cases especially for dense (full) networks. The reason woalthply be that for dense
(full) networks more prior knowledge about where directed paths exast ikely to be given and
it narrowed down the search space more efficiently.

5. Applications to Real-world Data

We here apply DirectLiINGAM and ICA-LINGAM on real-world physics amt®logy data. Both
DirectLiINGAM and ICA-LINGAM estimate a causal ordering of variables @novide a full DAG.
Then we have two options to do further analysis (Hymen et al., 2010): i) Find significant di-
rected edges or direct causal effeasand significant total causal effeag with A=(1 — B)~1; ii)
Estimate redundant directed edges to find the underlying DAG. We demeratraxample of the
former in Section 5.1 and that of the latter in Section 5.2.

5.1 Application to Physical Data

We applied DirectLiINGAM and ICA-LINGAM on a data set created from agibgl system called
a double-pendulum, a pendulum with another pendulum attached to its eird\lttd, 1986) as
in Figure 3. The data set was first used in Kawahara et al. (2011)ralfeata consisted of four
time series provided by Ibaraki University (Japan) filming the pendulwstesy with a high-speed
video camera at every 0.01 second for 20.3 seconds and then reatlihg position using an image
analysis software. The four variables wéke the angle between the top limb and the verti€al,
the angle between the bottom limb and the vertiaat, the angular speed &k or 6; andwy: the
angular speed dd, or 8,. The number of time points was 2035. The data set is available on the
web: http://www.ar.sanken.osaka-u.ac.jp/ ~inazumi/data/furiko.html

In Kawahara et al. (2011), some theoretical considerations baseceatothain knowledge
implied that the angle speeds andw, are mainly determined by the anglés and6, in both
cases where the swing of the pendulum is sufficiently sral/b; ~ 0) and where the swing is not
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DirectLiINGAM ICA-LINGAM

Figure 4: Left: The estimated network by DirectLiINGAM. Only significant diezl edges are
shown with 5% significance level. Right: The estimated network by ICA-LINGAM
No significant directed edges were found with 5% significance level.

Figure 5: Left: The estimated network by PC algorithm with 5% significancd.leR@ght. The
estimated network by GES. An undirected edge between two variables maaitisette
is a directed edge from a variable to the other or the reverse.

very small. Further, in practice, it was reasonable to assume that thezenavéatent confounders
(Kawahara et al., 2011).

As a preprocessing, we first removed the time dependency from theatawising the ARMA
(AutoRegressive Moving Average) model with 2 autoregressive temi$anoving average terms
following Kawahara et al. (2011). Then we applied DirectLINGAM and ICINGAM on the
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preprocessed data. The estimated adjacency maBio&€;, 6,, w; andw, were as follows:

01 0 W Wy

0, / O 0 0 0
o 6, | —023 0 0 o0
DirectLiNGAM 9039 -288 0 ol
w, \ 565 9464 -011 O
01 0 W Wy
6, / O 0 0 0
. 0, | 145 0 0 o0
ICA —LINGAM 10882 -5273 0 0

wp \ 21626 11250 -1.89 O

The estimated orderings by DirectLINGAM and ICA-LINGAM were identicalt the estimated
connection strengths were very different. We further computed their @%dence intervals by
using bootstrapping (Efron and Tibshirani, 1993) with the number of baptseplicates 10000.
The estimated networks by DirectLiNGAM and ICA-LINGAM are graphicallysim in Figure 4,
where only significant directed edges (direct causal effagisare shown with 5% significance
level2 DirectLINGAM found that the angle speeds andw, were determined by the anglés
or B,, which was consistent with the domain knowledge. Though the directedfextged, to 6,
might be a bit difficult to interpret, the effect 8§ on 8, was estimated to be negligible since the
coefficient of determination (Bollen, 1989) 6§, that is, 1—var(é2)/var(éz), was very small and
was 0.01. (The coefficient of determinationcwf and that ofw, were 0.46 and 0.49, respectively.)
On the other hand, ICA-LINGAM could not find any significant directedesisince it gave very
different estimates for different bootstrap samples.

For further comparison, we also tested two conventional methods (SpideSlgmour, 1991;
Chickering, 2002) based on conditional independences. Figurevisshe estimated networks by
PC algorithm (Spirtes and Glymour, 1991) with 5% significance level and @B&kering, 2002)
with the Gaussianity assumption. We used the Tetrddtévrun the two methods. PC algorithm
found the same directed edge fré@non w, as DirectLiNGAM did, but did not found the directed
edge fromB, on wy,. GES found the same directed edge frépron 8, as DirectLiINGAM did, but
did not find that the angle speeas andw, were determined by the angl@sor 6.

We also computed the 95% confidence intervals of the total causal edfeetsing bootstrap.
DirectLiINGAM found significant total causal effects froéa on 8-, from 6; on wy, from 6; on wy,
from B2 on w1, and fromB, on w,. These significant total effects would also be reasonable based
on similar arguments. ICA-LINGAM only found a significant total causatefffrom6, on wy.

Overall, although the four variabldy, 6,, w; andw, are likely to be nonlinearly related ac-
cording to the domain knowledge (Meirovitch, 1986; Kawahara et al., 2@idfectLiNGAM gave
interesting results in this example.

5.2 Application to Sociology Data

We analyzed a data set taken from a sociological data repository ontdredncalled General
Social Survey l{ttp://www.norc.org/GSS+Website/ ). The data consisted of six observed vari-

3. The issue of multiple comparisons arises in this context, which we woultbligeidy in future work.
4. Tetrad IV is available dtttp://www.phil.cmu.edu/projects/tetrad/
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Figure 6: Status attainment model based on domain knowledge (Duncanl&7a&), A directed
edge between two variables in the figure means that there could be a dedgede-
tween the two. A bi-directed edge between two variables means that the résation
modeled. For instance, there could be latent confounders between thaévwecould be
a directed edge between the two, or the two could be independent.

ablesx;: father's occupation levek,: son’s incomexs: father's educationys: son’s occupation
level, xs: son’s educationxs: number of siblings.Xs is discrete but is relatively close to be contin-
uous since it is an ordinal scale with many points.) The sample selection wadsated based on
the following criteria: i) non-farm background; ii) ages 35 to 44; iii) whiig;male; v) in the labor
force at the time of the survey; vi) not missing data for any of the covarigiigyears 1972-2006.
The sample size was 1380. Figure 6 shows domain knowledge about theal calations (Duncan

et al., 1972). As shown in the figure, there could be some latent condosibetweemx; andxs, X1
andxg, or x3 andxs. An objective of this example was to see how our method behaves whemsuch
model assumption of LINGAM could be violated that there is no latent confeund

The estimated adjacency matrid@sy DirectLINGAM and ICA-LINGAM were as follows:

DirectLINGAM :

ICA — LINGAM

X1 X2 X3 X4 Xg
X1 0 0 319 010 041
Xo | 3348 0 45284 42287 164545
X3 0 0 0 0 055
X4 0 0 017 0 461
X5 0 0 0 0 0
X6 0 0 0 0 0
X1 X2 X3 X4 X5
X1 0 0 093 0 —0.68
X2 | 5070 0 —-31.82 20084 6563
X3 0 0 0 0 024
’ 017 0 -0.40 0 -0.14
X5 0 0 0 0 0
X5 0 0 0 0 —0.08

1

242

X6
021
34796
—0.18
-0.19 |’
-0.12
0

X6
—0.20
33604
-0.27
-0.14
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We subsequently pruned redundant directed etigeis the full DAGs by repeatedly apply-
ing a sparse method called Adaptive Lasso (Zou, 2006) on each vaaiathligs potential parents.
See Appendix A for some more details of Adaptive Lasso. We used a matlabniewpiation in
Sjostrand (2005) to run the Lasso. Then we obtained the following prutjadency matriceB:

X1 X2 X3 X4 X5 X6

x1/0 O 319 0 0 0

X[ 0O O 0 42287 0 0

. . x3] O O 0 0 055 0
DirectLINGAM x| 0 0 0 0 461 0 ,

xs| O O 0 0 0 -012

Xs \0 O 0 0 0 0

X1 Xo X3 X4 X5 X6

Xx1/0 O 093 0 0 0

X 0O O 0 20084 0 0

. x3] O O 0 0 024 O

ICA — LINGAM w| 0 o 0 0 014 ©

xs| O O 0 0 0 0

Xs \0O O 0 0 —-0.08 O

The estimated networks by DirectLINGAM and ICA-LINGAM are graphicallywsin in Fig-
ure 7 and Figure 8, respectively. All the directed edges estimated bytDIN&&AM were reason-
able to the domain knowledge other than the directed edgexgoison’s education tas: father's
education. Since the sample size was large and yet the estimated model vitdly rooirrect, the
mistake on the directed edge betwegandxsz might imply that some model assumptions might be
more or less violated in the data. ICA-LINGAM gave a similar estimated networdiduine more
mistake thaks: number of siblings is determined by: son’s education.

Further, Figure 9 and Figure 10 show the estimated networks by PC algavithr6% signif-
icance level and GES with the Gaussianity assumption. Both of the convdmetizods did not
find the directions of many edges. The two conventional methods fourasarrable direction of
the edge betweexn : father's occupation anxs: father’s education, but they gave a wrong direction
of the edge betweex : father's occupation ang: son’s occupation.

6. Conclusion

We presented a new estimation algorithm for the LINGAM that has guarantaeergence to
the right solution in a fixed number of steps if the data strictly follows the modd,igha all
the model assumptions are met and the sample size is infinite. Further, the meithalghas
known computational complexity. This is the first algorithm specialized to estimateiNGAM.
Simulations implied that the new method often provides better statistical perfoertteanrta state of
the art method based on ICA. In real-world applications to physics andlsgyg, interesting results
were obtained. Future works would include i) assessment of practidahpance of statistical tests
to detect violations of the model assumptions including tests of independsrettoh and Girfi,
2010); ii) implementation issues of our algorithm to improve the practical compugtdficiency;
iii) extensions of our algorithm to more general cases including the casesaatit confounders
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Figure 7: The estimated network by DirectLINGAM and Adaptive Lasso.ds@id directed edge
is reasonable to the domain knowledge.
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Figure 8: The estimated network by ICA-LINGAM and Adaptive Lasso. éselid directed edge
is reasonable to the domain knowledge.

(Hoyer et al., 2008; Kawahara et al., 2010) or nonlinear relationsé€Helyal., 2009; Mooij et al.,
2009) and iv) comparison of our method and related algorithms on manyretiderorld data sets.
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Appendix A. Adaptive Lasso

We very briefly review the adaptive Lasso (Zou, 2006), which is a maoathe Lasso (Tibshirani,
1996). See Zou (2006) for more details. The adaptive Lasso is a rezgiilan technique for variable
selection and assumes the same data generating process as LINGAM:

X = Z binj +€.
k(i) <k(i)
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A big difference is that the adaptive Lasso assumes that the set of etettipl parent variables
xj thatk(j)<k(i) is known and LINGAM estimates the set of such variables. The adaptiv@Las
penalizes connection strengthsin L, penalty by minimizing the objective function defined as:

|bij |

A il
k(i1 =k [Bif 1Y

Xi — }E b”Xj
k(J)<k(i)

whereA andy are tuning parameters alﬁlq is a consistent estimate bfj. In Zou (2006), it was
suggested to select the tuning parameters by five-fold cross validatido abthinb; j by ordinary
least squares regression. The adaptive Lasso has a very attyacipearty that it asymptotically
selects the right set of such variablgghatby; is not zero, wheré(j)<k(i).
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