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We show that a nonlinear, piecewise-smooth, planar dynamical system can exhibit canard phe-
nomena. Canard phenomena in nonlinear, piecewise-smooth systems can be qualitatively more
similar to the phenomena in smooth systems than piecewise-linear systems, since the nonlinearity
allows for canards to transition from small cycles to canards “with heads.” The canards are born
of a bifurcation that occurs as the slow-nullcline coincides with the splitting manifold. However,
there are conditions under which this bifurcation leads to a phenomenon called super-explosion,
the instantaneous transition from a globally attracting periodic orbit to relaxations oscillations.
Also, we demonstrate that the bifurcation—whether leading to canards or super-explosion—can be
subcritical.
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Fast/slow systems arise in many physical applications. In these systems, special trajectories
that remain near repelling slow manifolds for O(1) time, called canards, can arise in expo-
nentially small parameter ranges. They are born of a Hopf bifurcation in systems with an
‘S’-shaped fast nullcline, and always pass near one of the fold points of the nullcline. The
nature of the canard cycle is determined by the local dynamics near the fold as well as the
global dynamics of the full system. In a piecewise-smooth system the fast nullcline may not
be the graph of a differentiable function, so the local extrema might be corners. We call
the nullcline ‘2’-shaped or ‘Z’-shaped in the event of one or two corners, respectively. At a
corner the bifurcation and local dynamics can be completely different from what occurs at
a smooth fold. We find conditions under which planar piecewise-smooth fast/slow systems
exhibit canard cycles due to a non-smooth ‘Hopf-like’ bifurcation. If the conditions are not
met, the bifurcation causes the system to jump instantaneously from having a stable equilib-
rium to relaxation oscillations. This bifurcation is called a super-explosion, and we also find
conditions under which the system undergoes a subcritical super-explosion—that is, a stable
equilibrium and relaxation oscillation exist simultaneously. Finally, we apply the results in a
physical setting, examining a variant of Stommel’s ocean circulation model.

I. INTRODUCTION

In dynamical systems, a canard is a trajectory of a fast/slow system that remains near a repelling slow
manifold for O(1) time. In smooth, planar systems, a Hopf bifurcation may occur when the slow nullcline
transversely intersects the fast nullcline, also called the critical manifold, near a fold (i.e., local extremum).
If the fast nullcline is ‘S’-shaped, the Hopf cycles will grow to become relaxation oscillations. The transition
from Hopf cycles to relaxation oscillations happens in an exponentially small parameter range, and the
phenomenon is called a canard explosion.
The theory used to analyze fast/slow systems is called geometric singular perturbation theory (GSPT).

For an introduction to GSPT, we direct the reader to the paper by Jones [10]. The basics of GSPT break
down at fold points of the critical manifold because the fast and slow dynamics become tangent (i.e., there
is no separation of time scales locally). If the fast and slow nullclines do not intersect at a fold, then the
fold point is a singularity of the reduced problem. At a Hopf bifurcation, however, the fold point becomes a
removable singularity of the reduced problem and is called a canard point [12]. In the singular limit, a canard
point allows trajectories to cross from a stable branch of the critical manifold to an unstable branch of the
critical manifold (or vice versa). If the system is no longer smooth, but instead only piecewise-smooth, the
analog of a canard point may no longer be a removable singularity.
We will consider a nonlinear, piecewise-smooth, Liénard system of the form

ẋ = −y + F (x)
ẏ = ǫ(x− λ)

(1.1)

where

F (x) =

{

g(x) x ≤ 0
h(x) x ≥ 0

with g, h ∈ Ck, k ≥ 1, g(0) = h(0) = 0, g′(0) < 0 and h′(0) > 0, and we assume that h has a maximum at
xM > 0. The critical manifold

N0 = {y = F (x)}

is ‘2’-shaped with a smooth fold at xM and a corner (i.e., nonsmooth fold) at x = 0. An example of such a
critical manifold is shown in Figure 1. The line x = 0 where F (x) is not differentiable is called the splitting
line.
When λ = 0 in (1.1), the slow nullcline passes through the corner of the critical manifold creating the

analog of a canard point. There is still a ‘Hopf-like’ bifurcation at λ = 0, with a stable equilibrium existing for
λ < 0 and a stable periodic orbit for λ > 0, however the nonsmooth ‘canard point’ is no longer a removable
singularity of the reduced problem.



3

-1.0 -0.5 0.5 1.0 1.5 2.0 2.5 x
-0.5

0.5

1.0

1.5

2.0

2.5

3.0

y

FIG. 1: Example of a ’2’ shaped critical manifold.

Nonsmooth systems are often interesting in two ways: (1) the similarities they share with smooth systems
or (2) the ways they differ from smooth systems. This paper addresses both of those issues with regard to
systems of the form (1.1). First, we find conditions under which (1.1) exhibits canard phenomena similar to
its smooth counterpart. Second, we describe the dynamics when those conditions are not met.
In smooth, planar systems there have been three methods used to analyze the canard phenomenon. It was

first studied by Benoit et al. [1] using nonstandard analysis. Then Eckaus examined canards through the
lens of matched asymptotic expansions [8]. More recently, the popular mechanism for analyzing canards has
been a combination of blow-up techniques and dynamical systems. This idea was introduced by Dumortier
and Roussarie [7] and later utilized by Krupa and Szmolyan [12], [13]. Blow-up techniques are particularly
important to the examination of canards in higher dimensions where canard phenomena are robust [4]. While
canard cycles only exist for an exponentially small parameter range in planar systems, the persistence of
canard trajectories in higher dimensions has cast them in a new light. This new perspective has generated
increased interest in canards over the last decade.
Recently, mathematicians have begun to consider the possibility of canard-like phenomena in nonsmooth

systems [5], [14], [17], however the work to this point has been restricted to piecewise-linear systems. The
smooth canard explosion phenomenon involves an interplay of local dynamics near a canard point and
global dynamics leading to a periodic orbit. The examination of piecewise-linear systems is a large step in
understanding the local dynamics near a nonsmooth fold, however it cannot account for the nonlinear global
behavior. Indeed, nonlinearity is required for the transition from small canard cycles to the larger canards
with heads (see Figure 2). We generalize the analysis to nonlinear, piecewise-smooth systems of the form
(1.1).
In [5], Desroches et al. perform the local analysis near a nonsmooth canard point in a piecewise-linear

system. We generalize their results to piecewise-smooth systems of the form (1.1), allowing for nonlinear
effects. Desroches et al. also discover a new phenomenon called a super-explosion, which is unique to
piecewise-smooth systems. Under a super-explosion, the system bifurcates from having a stable equilibrium
instantaneously into relaxation oscillations, forgoing the small canard cycles. We find this phenomenon in
the nonlinear, piecewise-smooth case as well, however our more general setting allows us to demonstrate
a sub-critical super-explosion—the simultaneous existence of a stable equilibrium and a stable relaxation
oscillation.
The method of proof employs a shadow system, or smooth system that agrees with (1.1) on one side of

the splitting line. In most cases we will use

ẋ = −y + h(x)
ẏ = ǫ(x− λ)

(1.2)

as our shadow system. For x > 0, the systems (1.1) and (1.2) agree. It is often useful to consider a trajectory
with initial conditions in the right half-plane, following the flow until the trajectory hits the splitting line
{x = 0}. At this point, the vector fields no longer coincide, so the trajectory will behave differently in (1.1)
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(a) Singular canard cycle Γ(s), s ∈ (0, yM ).
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(b) Singular canard cycle Γ(s), s = yM .
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(c) Singular canard cycle Γ(s), s ∈ (yM , 2yM ). (d) A duck!

FIG. 2: Examples of the three types of singular canard cycles: (a) canard without head, (b) maximal
canard, and (c) canard with head.

than it will in (1.2). We will compare the different behavior for x < 0, utilizing what is known about canard
cycles in smooth systems.
In section II we state and prove the main results about the existence or lack of canard cycles in systems

of the form (1.1). Section III discusses a physical application in which canard cycles arise in a nonsmooth
system. Finally, we conclude with a discussion in section IV.

II. RESULTS

A. Shadow system lemma

As we state and prove our main results, we will consider systems of the form

ẋ = −y + F (x)
ẏ = ǫ(x− λ)

(2.1)

where

F (x) =

{

g(x) x ≤ 0
h(x) x ≥ 0

with g, h ∈ Ck, k ≥ 1, g(0) = h(0) = 0, g′(0) < 0 and h′(0) > 0, and we assume that h has a maximum at
xM > 0. The critical manifold

N0 = {y = F (x)}
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is ‘2’-shaped with a smooth fold at xM and a corner along the splitting line x = 0. We denote

M l = {(x, F (x)) : x < 0} = {(x, g(x)) : x < 0}
Mm = {(x, F (x)) : 0 < x < xM} = {(x, h(x)) : 0 < x < xM}
M r = {(x, F (x)) : x > xM} = {(x, h(x)) : x > xM}.

Since h′(0) exists, h(x) can be extended in the left half-plane, and at least locally, we have that h(x) ≤ g(x)
for x < 0. We assume that h(x) ≤ g(x) for all x < 0 and define the shadow system to be

ẋ = −y + h(x)
ẏ = ǫ(x− λ).

(2.2)

Since there are two distinct types of bifurcation that can lead to the formation of periodic orbits—one at
the smooth fold and one at the corner—we will consider each of those cases separately. In both cases, we
will consider the relative distance from the origin of trajectories in the nonsmooth system (2.1) and shadow
system (2.2) that enter the left half-plane x < 0 at the same point (0, y∗). The following lemma describes
the relationship of these trajectories.

Lemma II.1. Consider the trajectory γn(t) = (xn(t), yn(t)) of (2.1) that crosses the y-axis entering the left
half-plane x < 0 at γn(0) = (0, yc). Also consider the analogous trajectory γs of the shadow system (2.2).
Then, the distance from the origin of γn is bounded by that of γs.

Proof. Define

R(x, y) =
x2 + y2

2
.

R will evolve differently in the nonsmooth and shadow systems when x < 0, so we denote Ṙn(x, y) and

Ṙs(x, y) as the time derivative of R in the nonsmooth and shadow systems, respectively. Then we have

Ṙn(x, y) = x(g(x) − y) + ǫy(x− λ)

Ṙs(x, y) = x(h(x) − y) + ǫy(x− λ).

Therefore, at a given point (x, y) we have

Ṙn(x, y)− Ṙs(x, y) = x[g(x)− h(x)] ≤ 0,

since g(x) ≥ h(x) and x ≤ 0, where equality only holds if x = 0. Thus, γn can never cross γs moving away
from the origin for x < 0 (i.e., the vector field of (2.1) points “inward” on the trajectory γs). Since γn and
γs coincide at (0, yc), it suffices to show that R(γn(δt)) < R(γs(δt)) for δt > 0 sufficiently small. Since the
vector fields of (2.1) and (2.2) coincide on the y-axis, we must use second order terms:

(

xn(δt)
yn(δt)

)

=

(

0 + ẋnδt+ ẍnδt
2 + . . .

yc + ẏnδt+ ÿnδt
2 + . . .

)

(

xs(δt)
ys(δt)

)

=

(

0 + ẋsδt+ ẍsδt
2 + . . .

yc + ẏsδt+ ÿsδt
2 + . . .

)

.

We have already seen that (xs(t), ys(t)) and (xn(t), yn(t)) agree for the 0
th and 1st order terms. Therefore,

the important terms are

ẍn = −ẏn + g′(0)ẋn = ǫλ− g′(0)yc
ẍs = −ẏs + h′(0)ẋs = ǫλ− h′(0)yc

and

ÿn = ǫẋn = −ǫyc
ÿs = ǫẋs = −ǫyc.
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FIG. 3: Relative slopes of vectors as discussed in the proof of Lemma II.1.

Both vector fields point left ( ẋ < 0 ) if and only if y > 0, so yc must be positive. Since ÿ is the same in
both systems, we look at the ẍ terms. Since −g′(0) > 0 > −h′(0), the smooth trajectory of the shadow
system moves further left than the nonsmooth trajectory for the same vertical change as in Figure 3. This
shows that the trajectory of the nonsmooth system enters immediately below (i.e., nearer to the origin) the
trajectory of the shadow system. Once γn is nearer to the origin than γs, it is bounded by γs, proving the
result.

Corollary II.2. Consider the trajectory γn(t) = (xn(t), yn(t)) of (2.1) that crosses the y-axis entering the
left half-plane x < 0 at γn(0) = (0, yc). Also consider the analogous trajectory γS of the system

ẋ = −y + F̃ (x)
ẏ = ǫ(x− λ)

(2.3)

where

F̃ (x) =

{

g̃(x) x ≤ 0
h(x) x ≥ 0

and g̃′(0) > g′(0). Then, the radial distance from the origin of γn is bounded by that of γS .

Proof. The proof of Lemma II.1 only used that g′(0) < h′(0), not requiring that g′(0) and h′(0) had different
signs. Thus, using (2.1) as the shadow system, a similar proof to that of Lemma II.1 gives the result.

B. Canards at the smooth fold

Theorem II.3. Fix 0 < ǫ ≪ 1. In system (2.1), assume g(0) = 0 = h(0), h′(0) > 0, and g′(0) < 0. Then
there is a Hopf bifurcation when λ = xM .

(i) If the Hopf bifurcation is supercritical, then it will produce canard cycles.

(ii) If the Hopf bifurcation is subcritical, then it will produce relaxation oscillations.

Remark. In general, Hopf bifurcations leading to canard explosions may not occur precisely at a fold. In
our case, since the slow nullcline is a vertical line (i.e., the ẏ equation has no y dependence), the bifurcation
happens when the slow nullcline intersects the fold.

Proof. Direct calculation shows that (2.1) undergoes a Hopf bifurcation at λ = xM . The criticality of the
Hopf bifurcation is determined as usual–the formula can be found in [9], for example–since it is a smooth
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FIG. 4: The set V for a given λ. The dashed curve is the periodic orbit of the shadow system. The bold
curve is the trajectory in the nonsmooth system. V is the set positively invariant set enclosed by the bold

curve and the y-axis.

Hopf bifurcation. Assume bifurcation is supercritical. Let Γn
ǫ (λ) denote the family of stable periodic orbits

in the nonsmooth system, and Γs
ǫ(λ) denote the family for the smooth system. For some λG(ǫ), the system

undergoes a grazing bifurcation where the stable periodic orbit is tangent to the splitting line x = 1. If
Γs(λ) ⊂ {x > 0} (which happens for all λG < λ < xM ), then Γs = Γn.
Beyond the grazing bifurcation (i.e., for λ < λG), Γ

s crosses the y-axis transversely. Let yc > 0 be the y-
coordinate of the crossing, and let yd < 0 be the y-coordinate where Γs re-enters the right half-plane. Define
γn to be the trajectory of (2.1) through the point (0, yd). Without loss of generality, assume γn(0) = (0, yd).
Then there exists a time tc > 0 so that γn(tc) = (0, yc) and for all t ∈ [0, tc], γn coincides with Γs. By
Lemma II.1 for all t > tc, γn must be contained in the interior of Γs. In particular, there exists a pair (td, y

∗
d)

with td > tc and y∗d > yd, such that γn(td) = (0, y∗d). Let V be the set enclosed by the closed curve

∂V = {γn(t) : 0 ≤ td} ∪ {(0, y) : y∗d < yc}
The vector field of (2.1) is either tangent to or pointing inward on ∂V , so the Poincaré-Bendixson theorem

guarantees the existence of a stable periodic orbit on the interior of V (see Figure 4). This proves (i).
The proof is the same in the case of a subcritical bifurcation, however there may not be any periodic orbits

Γs(λ) that are contained entirely in the right half-plane.

There is a simple corollary to Theorem II.3.

Corollary II.4. Assume the shadow system (2.2) exhibits canard cycles (i.e., it satisfies assumptions (A1)-
(A4’) from [13]. Then the Γn(λ) are bounded by the stable canard orbits of the shadow system.

Given that canard explosion happens in smooth systems, the result should not be surprising. Perhaps more
surprising is the possibility of having canard cycles arise as a result of a nonsmooth, Hopf-like bifurcation
at λ = 0, explained in the following theorem. Figure 5 depicts the canard explosion at a smooth fold and a
corner as a result of supercritical Hopf bifurcations in (2.1) where

g(x) = (x− 1)2 − 1 and h(x) = −
(

x+
1

15

)2 (

x− 73

30

)

− 73

6750
. (2.4)
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(a) Nonsmooth canard cycles in the supercritical
case. The black orbits depict cycles before the

explosion at both the smooth fold and the corner.
The blue orbit is a post-explosion canard with head

at the corner. The red orbit is a post-explosion
canard with head at the smooth fold.
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(b) Amplitudes of nonsmooth canard cycles in the
supercritical case, showing the explosion at the

corner (on the left) and smooth fold (on the right).
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(c) A closer look at the explosion at the corner.
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(d) A closer look at the explosion at the fold.

FIG. 5: Images characterizing a canard explosion in non-smooth systems where ǫ = 0.2. The bifurcations
are supercritical at both the fold and the corner.

Because programs like AUTO require smooth systems, producing diagrams like those in Figure 5 can be
difficult. Figure 5a (as well as Figure 7) was produced using NDSolve in Mathematica. The system was
simulated with different values of λ—0.01415 for the small cycle at the corner, 0.0142 for the blue orbit,
1.595 for the red orbit, and 1.596 for the small cycle at the fold. The amplitude diagrams in Figures 5b-d,
were produced using the ode23s function in MATLAB. The system was allowed to equilibrate to a periodic
orbit for a number of fixed λ values—with more samples being chosen in the explosion regions (depicted in
Figures 5c and 5d). Then the maximum and minimum y coordinates of the orbit were calculated to obtain
the vertical amplitude of the orbit.

C. Conditions for the creation of canard cycles at the corner

Theorem II.5. In system (2.1), assume g(0) = 0 = h(0), h′(0) > 0, and g′(0) < 0. The system undergoes
a bifurcation for λ = 0 by which a stable periodic orbit Γn(λ) exists for 0 < λ < xM . There exists an ǫ0 such
that for all 0 < ǫ < ǫ0 the nature of the bifurcation is described by the following:

(i) If 0 < h′(0) < 2
√
ǫ, then periodic orbits Γn(λ) are born of a Hopf-like bifurcation as λ increases through

0. The bifurcation is subcritical if |g′(0)| < |h′(0)| and supercritical if |g′(0)| > |h′(0)|.



9

1 2

3

4

5

6

-1.0 -0.5 0.5 1.0 1.5 2.0 2.5 x

1

2

3

y

FIG. 6: An example of a set W which is positively invariant. The numbers indicate the 6 line segments li
forming the boundary ∂W .

(ii) If h′(0) > 2
√
ǫ, the bifurcation at λ = 0 is a super-explosion. The system has a stable periodic orbit

Γn(λ), and Γn(λ) is a relaxation oscillation. If |g′(0)| ≥ 2
√
ǫ, the bifurcation is supercritical in that no

periodic orbits appear for λ < 0. However, if |g′(0)| < 2
√
ǫ the bifurcation is subcritical, in that a stable

periodic orbit and stable equilibrium coexist simultaneously for some λ < 0.

Proof. The system always has a unique equilibrium pλ = (λ, F (λ)), and direct computation of the corre-
sponding eigenvalues shows that

µ±(λ) =



















g′(λ)±
√

[g′(λ)]2 − 4ǫ

2
, λ < 0

h′(λ) ±
√

[h′(λ)]2 − 4ǫ

2
, λ > 0.

(2.5)

For 0 < λ < xM we have h′(λ) > 0, so both eigenvalues have Re(µ±) > 0 and the equilibrium pλ is
unstable. To demonstrate the existence of a stable periodic orbit Γn(λ), it suffices to show that there is
a positively invariant set containing pλ. Consider the set W as shown in Figure 6. The boundary ∂W is
composed of six line segments lj for j = 1, 2, . . . 6. Choose any point (x̂, 0) with x̂ < 0.

l1 = {(x, y) : y = m1(x− x̂), m1 < 0 is O(1), x̂ ≤ x ≤ λ}
l2 = {(x, y1) : y1 = m1(λ − x̂), λ ≤ x ≤ x2 = (h−1(y1) + 1)}
l3 = {(x2, y) : y1 < y < y3 = h(xM )}

l4 =

{

(x, y) : y = m4(x− x2) + y3 where m4 >
g(x̂)− y3
λ− x2

is O(1)

}

l5 = {(x, y5) : y5 = m4(λ − x2) + y3, x̂ < x < λ}
l6 = {(x̂, y) : 0 < y < y5}
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Note that W can be made as large as needed. The vector field points inward on ∂W and the Poincaré-
Bendixson theorem guarantees the existence of an attracting periodic orbit Γn(λ) for 0 < λ < xM . The Γn

created through the bifurcation at λ = 0 will differ in amplitude depending on h′(0).
First, we consider the case where 0 < h′(0) < 2

√
ǫ. If |g′(0)| < 2

√
ǫ as well, the bifurcation at λ = 0 is a

nonsmooth Hopf bifurcation as described by Simpson and Meiss [19]. We define

µu = h′(0)

µs = |g′(0)|
ωu =

√

(4ǫ− [h′(0)]2)

ωs =
√

(4ǫ− [g′(0)]2),

and

Λ =
µu

ωu

− µs

ωs

.

According to [19], the nonsmooth Hopf bifurcation is subcritical if Λ < 0 and supercritical if Λ > 0. We have

Λ < 0 ⇐⇒ µu

ωu

<
µs

ωs

⇐⇒ h′(0)
√

[4ǫ− g′(0)]2 < |g′(0)|
√

4ǫ− [h′(0)]2

⇐⇒ 4ǫ[h′(0)]2 − [h′(0)]2 · [g′(0)]2 < 4ǫ[g′(0)]2[h′(0)]2 · [g′(0)]2

⇐⇒ [h′(0)]2 < [g′(0)]2.

Therefore, there is a subcritical nonsmooth Hopf bifurcation when h′(0) < |g′(0)| and supercritical nonsmooth
Hopf bifurcation when h′(0) > |g′(0)|. Corollary II.2, also guarantees the existence of canard cycles for the
case where |g′(0)| > 2

√
ǫ. The bifurcation in that case is a stable node-to-unstable focus. The canard cycles

in the system with a node will be contained in the cycles for the system with a nonsmooth Hopf (stable
focus-to-unstable focus) bifurcation. This proves assertion (i).
Next, we consider the case where h′(0) ≥ 2

√
ǫ. In this case, for λ > 0 (but bounded away from xM ),

the equilibrium pλ is an unstable node. Let µ2 ≥ µ1 > 0 be the strong and weak unstable eigenvalues
corresponding to pλ. Also, let v1,2 = (x1,2, y1,2) be the associated eigenvectors. Then for i = 1, 2 we have

h′(λ)xi − yi = µixi
ǫxi = µiyi.

This implies that the slope of the eigenvector

v2 =
ǫ

µ2
.

Now, µ2 depends on ǫ, however µ2 → 2h′(λ) 6= 0 as ǫ→ 0. Thus v2 → 0 as ǫ→ 0. Therefore, there exists an
ǫ0 such that for all 0 < ǫ < ǫ0, the strong unstable trajectory must enter the region of phase space x > xM ,
pass over the point (xM , h(xM )) and proceed to the left-half plane. Since the vector field of (2.1) points
into the left half-plane along the y-axis for y > 0, the strong unstable trajectory must re-enter the right
half-plane somewhere below y = 0. Following the trajectory further, it must continue downward to the right
until it reaches the y-nullcline x = λ at some point (λ, ŷ) where ŷ < h(λ). Let V be the region enclosed by
the trajectory described above and the line segment along x = λ connecting ŷ and h(λ). All trajectories in
W that start outside of V are bounded outside of V (see Figure 8a). Therefore Γn(λ) must be a relaxation
oscillation, and the bifurcation must be a super-explosion, as depicted in Figure 7.
Suppose also that g′(0) ≥ 2

√
ǫ. Then, for λ < 0 the equilibrium pλ is a stable node. It is the global

attractor of the system (similar to the piecewise-linear case in [5]) since, the strong stable trajectory to pλ
bounds trajectories above the node in the left half-plane. Since no stable periodic orbits can coexist with
pλ, we say the bifurcation is supercritical.
On the other hand, if g′(0) < 2

√
ǫ, pλ is a stable focus. For λ < 0, |λ| sufficiently small, there exists a

β ∈ (g(λ), h(xM )) such that the trajectory through (0, β) spirals around pλ and enters the right half plane
below (0, 0). The dynamics in the right half-plane are governed by an unstable node in the shadow system
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FIG. 7: The stable orbit of a super-explosion (blue). The system used is (2.1) with g(x) = (x− 1)2 − 1, and
h(x) = −(x+ 1)2(x− 1.5)− 1.5 with ǫ = 0.2 and λ = 0.001. The line x = λ (red) is the slow nullcline.
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(a) The set W \ V for λ = 0.014.
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(b) The set W \ V ′ for λ = −0.05.

FIG. 8: Positively invariant sets demonstrating the existence of attracting periodic orbits for (a) the
standard (supercritical) super-explosion and (b) the subcritical super-explosion. W is the region bounded
by the six (green) line segments as in Figure 6. The sets enclosed by the bold trajectory are (a) V or (b) V ′.

(2.2). After entering the right half-plane, the trajectory through β must proceed to cross M r and reenter
the left half-plane at (0, β′) where β′ > β. If we let V ′ denote the region enclosed by the trajectory through
(0, β) and the line segment along the y-axis connecting β to β′, then V ′ is a negatively invariant set. We
can choose W large enough so that V ′ ⊂ W . The set W \ V ′ is positively invariant and contains no stable
equilibria (see Figure 8b). Therefore, there must be an attracting periodic orbit Γn(λ) inside W \ V ′. Since
an attracting equilibrium and an attracting periodic orbit coexist simultaneously, we call this a subcritical
super-explosion. This proves assertion (ii).

There are two simple corollaries to Theorem II.5. The first corollary treats the case of a ‘Z’-shaped critical
manifold.

Corollary II.6. Consider the system with two corners and no smooth folds:

ẋ = −y + F (x)
ẏ = ǫ(x− λ)

(2.6)

where

F (x) =







g(x) x ≤ 0
h(x) 0 ≤ x ≤ xM
f(x) xM ≤ x
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with g, h, f ∈ Ck, k ≥ 1, g(0) = h(0) = 0, f(xM ) = h(xM ) g′(0) < 0, h′(x) > 0 for all 0 < x < xM , and
f ′(xM ) < 0. The system undergoes a bifurcation for λ = 0 by which a stable periodic orbit Γn(λ) exists for
0 < λ < xM . There exists an ǫ0 such that for all 0 < ǫ < ǫ0 the nature of the bifurcation is described by the
following:

(i) If 0 < h′(0) < 2
√
ǫ, then canard cycles Γn(λ) are born of a Hopf-like bifurcation as λ increases through

0. The bifurcation is subcritical if |g′(0)| < |h′(0)| and supercritical if |g′(0)| > |h′(0)|.

(ii) If h′(0) > 2
√
ǫ, the bifurcation at λ = 0 is a super-explosion. The system has a stable periodic orbit

Γn(λ), and Γn(λ) is a relaxation oscillation. If |g′(0)| ≥ 2
√
ǫ, the bifurcation is supercritical in that no

periodic orbits appear for λ < 0. However, if |g′(0)| < 2
√
ǫ the bifurcation is subcritical, in that a stable

periodic orbit and stable equilibrium coexist simultaneously for some λ < 0.

Proof. The proof is the same as that of Theorem II.5, only we use (2.1) as our shadow system.

The second corollary is an immediate application of Lemma II.1.

Corollary II.7. Fix ǫ > 0. Assume the shadow system (2.2) satisfies the assumptions (A1)-(A4’) from
[13] for a canard point at (xm, h(xm)) where xm < 0. Also assume that 0 < h′(0) < 2

√
ǫ in the nonsmooth

system (2.1). Then for fixed λ ∈ (0, xM ), Γn(λ) is bounded by the periodic orbit Γs of the shadow system.
Furthermore, if the criticality parameter A < 0 and |xm| < λs(

√
ǫ), then the periodic orbits Γn(λ) created

through the Hopf-like bifurcation will be canard cycles and the system (2.1) will undergo a canard explosion.

We have demonstrated that there are two types of nonsmooth bifurcations in which periodic orbits appear
before the parameter reaches the bifurcation value. We will show that these are truly subcritical bifurcations.
That is, as the bifurcation parameter moves away from the bifurcation value, the periodic orbits are destroyed.

Proposition II.8. In a system of the form (2.1) suppose there exists an m < 0 such that g′(x) ≤ m < 0
for all x < 0. Then there exists a K > 0 such that if λ < −K, the system has no periodic orbits.

Proof. The idea of the proof amounts to using a variation of Dulac’s criterion [9] for the non-existence of
periodic orbits. Define

G(x, y) = (F (x) − y, ǫ(x− λ)),

so G(x, y) is the vector field. We will need to use the divergence ∇ ·G often, and direct computation shows

∇ ·G = F ′(x).

First, if λ < 0, the only equilibrium lies in the left half-plane. Since any periodic orbit of a planar system
must encircle an equilibrium, there can be no periodic orbits entirely contained in the set x ≥ 0.
Second, there can be no periodic orbits entirely contained in the left-half plane. We will show this by

contradiction. Suppose there is a periodic orbit Γ, and define D to be the region enclosed by Γ. Then

∇ ·G ≤ m < 0 for all x < 0.

Therefore,
∫ ∫

D

∇ ·Gdxdy < 0.

By the divergence theorem
∫

Γ

(n · F )ds =
∫ ∫

D

∇ · Fdxdy.

However, Γ is a trajectory, so
∫

Γ

(n ·G)ds = 0,

and we have a contradiction.
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FIG. 9: Important sets for the proof of Proposition II.8. ∇ ·G < 0 is negative on the interior of the triangle
D∗(λ) (blue). ∇ ·G|D > 0 on a region bounded by the rectangle R(λ) (red).

We will show that there are no periodic orbits that cross x = 0 in a similar way. Suppose there is a periodic
orbit which crosses x = 0. Then it must do so twice; let p1 = (0, y1), p2 = (0, y2) with y1(λ) > 0 > y2(λ) be
the points where Γ intersects the y-axis. Also, define B(λ) = y1(λ)− y2(λ). Note that B(λ) is the maximum
vertical amplitude of the periodic orbit in the region x ≥ 0. Let k be the maximum slope of h(x) on the
interval 0 ≤ x ≤ xM . Since F ′(x) ≥ 0 on the set x ∈ [0, xM ], we know

∫ ∫

D∩{x≥0}

∇ ·Gdxdy ≤
∫ ∫

R(λ)

∇ ·Gdxdy ≤ kxMB(λ),

where R(λ) is the rectangle with B(λ) forming the left side and having width xM . Next, let p0 = (x0, y0)
be the point where Γ intersects the fast nullcline y = g(x), for x0 < λ. Define B1(λ) to be the line segment
connecting p0 to p1 and B2(λ) to be the line segment connecting p0 to p2. Then B1 and B2 have constant
slope (for fixed λ). Let D∗(λ) be the interior of the triangle enclosed by B(λ), B1(λ), and B2(λ). Then D

∗

must lie entirely inside D. Along B1 near p1, the vector field must point outside of D∗. Since the slopes
of the vectors are monotonically decreasing along B1, if Γ were ever to cross B1 somewhere other than the
endpoints, Γ would be trapped inside D∗. This would contradict that p0 lies on Γ. A similar argument in
reverse time shows that Γ cannot cross B2. Figure 9 shows the sets D∗(λ) and R(λ).
If we let A(λ) be the area of the region D∗(λ), then

A(λ) >
|λ|
2
B(λ).

Since g′(x) ≤ m < 0, we have

∫ ∫

D∩{x<0}

∇ ·Gdxdy <
∫ ∫

D∗

∇ ·Gdxdy < m
λ

2
B(λ).

Thus, if λ < 2xM
k
m
, we can conclude

∫ ∫

D

Gdxdy < 0.

Therefore, by the divergence theorem, Γ cannot be a periodic orbit.

III. APPLICATION IN OCEAN CIRCULATION

One might wonder if there are physical systems in which knowledge of canard orbits at a corner is useful.
We present here a variation of Stommel’s thermohaline circulation model [20]. Stommel’s original model
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from 1961 contains a ’2’-shaped bifurcation curve producing two saddle-node bifurcations: one at a corner
and one a fold. Incorporating a parameter into the model as a slow state variable transforms the model into
a fast/slow system in the form of (1.1). It seems likely that systems with similar nonsmooth saddle-node
bifurcations could be approached in the same way, where some combination of Theorem II.3, Theorem II.5,
and Corollary II.6 apply.
In [11] it is shown that the dimensionless Stommel model reduces to the simple nonsmooth system

ẏ = µ− y −K|1− y|y, (3.1)

which has equilibria at

µ =

{

(1 +K)y −Ky2 for y < 1
(1−K)y +Ky2 for y > 1

(3.2)

The nature of the system depends on K, as seen in Figure 10.
If K < 1, then dµ/dy > 0 for all y except y = 1 where the derivative is discontinuous. Thus, for K < 1 the

curve of equilibria µ = µ(y) is monotone increasing. The system (3.1) has a unique equilibrium solution. The
equilibrium is globally attracting, and it is important to remember that the solution corresponds to a unique
stable circulation state (i.e., direction and strength). However, if K > 1 the system exhibits bistability for
a range of µ values. While µ(y) is still monotone increasing for y > 1, the curve has a local maximum at
y = (1 +K)/(2K) < 1. Thus for

1 < µ <
(1 +K)2

4K

there are three equilibria. The system is bistable with the outer two equilibria being stable, and the middle
equilibrium being unstable. Figure 11 shows the bifurcation diagram for K > 1.
It is hypothesized that the hysteresis loop implicitly appearing in Figure 11 is important to understanding

variability in paleoclimate data, specifically with regard to rapid warming events in the North Atlantic
[2, 6, 18]. The bifurcation diagram suggests µ is the key to generating oscillatory behavior (when K > 1),
so we include µ as a dynamic variable. We assume that µ evolves according to long-term average cloud
formation, and that y affects this process in a negative way. Also, since µ was a parameter of the physical
system, it is assumed to evolve on a longer time scale than y. Thus it makes sense to consider the system

ẏ = µ− y −K|1− y|y
µ̇ = ǫ(λ− y),

(3.3)

where K > 1. Here, we will look at this model as it relates to Theorem II.5. For a more complete discussion
of this model, see [16].
The critical manifold of (3.3) is precisely the set of equilibria of (3.1) depicted in Figure 10b. As λ

decreases through 1, the system undergoes a nonsmooth Hopf bifurcation as outlined by Theorem II.5. That
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(b) K > 1

FIG. 10: Equilibria of (3.1) for different values of µ in the cases (a) K < 1 and (b) K > 1.
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FIG. 11: Bifurcation diagram for (3.1). ψ = 1− y.

is, if K < 1 + 2
√
ǫ canard cycles appear at the corner. However, if K > 1 + 2

√
ǫ the system undergoes a

super-explosion. In either case, the slope of the right stable branch is greater than 1, so the bifurcation is
supercritical.
In the context of the ocean model (3.3), a stable equilibrium indicates a stable circulation state (direction

and strength). When y < 1 the ocean transports water poleward along the surface (sometimes called a
‘positive’ circulation), and when y > 1 water is transported from the pole to the equator along the surface
(called a ‘negative’ circulation). The bifurcation that occurs as λ decreases through 1 indicates a change in
the system from a stable negative circulation state to a periodically reversing circulation. If canard cycles
are created through the bifurcation, then, near the bifurcation point, the circulation will oscillate between
weak circulation states in each direction. Under a super-explosion, however, the circulation will oscillate
between a weak negative (equatorward) circulation and a strong positive (poleward) circulation. Thus,
immediately after bifurcation, the relaxation oscillation created by the super-explosion is reminiscent of the
desired hysteresis loop–a contrast to the headless canard cycles that will not reach the left stable branch of
the critical manifold corresponding to a strong poleward circulation.

IV. DISCUSSION

In this paper, we have demonstrated the existence of canard cycles in planar nonsmooth fast/slow systems
with a piecewise-smooth ‘2’-shaped critical manifold, pushing the theory beyond piecewise linear systems.
Through comparison with smooth shadow systems, we have shown that the amplitudes of canard cycles in
nonsmooth systems are bounded by the amplitudes of canard cycles in corresponding smooth systems. As
we see in Figure 5, it is possible for a corner to produce canards with head, and there is a delay between the
bifurcation and the explosion phase. This is a contrast to the piecewise-linear case, where the quasi-canards
are unable to produce the variety with heads, and the explosion phase begins immediately upon bifurcation.
In this respect, it is possible for a nonlinear, piecewise-smooth system to exhibit canards that are closer to
their smooth cousins.
On the other hand, the splitting line is essential for super-explosion. The instantaneous transition from

a globally attracting equilibrium point to relaxation oscillations is a product of the nonsmooth nature of
the system. Whether the bifurcation produces canard cycles or causes an instantaneous jump to relaxation
oscillations is determined by the slope of the repelling branch of the critical manifold at the splitting line; the
slope of the attracting branch (relative to that of the repelling branch) only serves to determine the criticality
of the bifurcation. These slopes indicate the degree to which there is a local blending of time scales between
the fast and slow variables. Canard cycles require a local time-scale blending–at least on the side of splitting
line containing the repelling branch of the critical manifold. The possibility of a strong time-scale separation
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at a corner suggests that it is somehow easier for a nonsmooth system to exhibit relaxation oscillations,
which is made apparent through super-explosions.

This paper does not put to bed entirely the theory of canards in piecewise-smooth planar systems. We
considered specifically the case where the splitting line and slow nullcline were both vertical lines (i.e.,
orthogonal to the fast direction) ensuring that the ’Hopf-like’ bifurcations occur precisely at a fold or corner.
If the slow nullcline were to depend on the slow variable y, the bifurcation point no longer occurs at a fold
or corner, complicating the analysis.
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