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Abstract

We elaborate on our proposal regarding a connection between global physics and

local galactic dynamics via quantum gravity. This proposal calls for the concept of

MONDian dark matter which behaves like cold dark matter at cluster and cosmological

scales but emulates modified Newtonian dynamics (MOND) at the galactic scale. In

the present paper, we first point out a surprising connection between the MONDian

dark matter and an effective gravitational Born-Infeld theory. We then argue that

these unconventional quanta of MONDian dark matter must obey infinite statistics,

and the theory must be fundamentally non-local. Finally, we provide a possible top-

down approach to our proposal from the Matrix theory point of view.
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1 Introduction

The fascinating problem of “missing mass”, or dark matter [1], has been historically iden-

tified on the level of galaxies. But the need for dark matter is in fact even more urgent at

larger scales. Dark matter is apparently required to yield: (1) the correct cosmic microwave

background spectrum shapes (including the alternating peaks); (2) the correct large-scale

structures; (3) the correct elemental abundances from big bang nucleosynthesis; and (4) the

correct gravitational lensing. Naturally dark matter has been accorded a prominent place in

the concordant ΛCDM model of cosmology [1] according to which cold dark matter (CDM),

dark energy (in the form of cosmological constant), and ordinary matter account for about

23%, 73%, and 4% of the energy and mass of the universe respectively.

However, at the galactic scale, dark matter does not fare nearly as well at the larger

scales. It can explain the observed asymptotic independence of orbital velocities on the size

of the orbit only by fitting data (usually with two parameters) for individual galaxies. It is

also not very successful in explaining the observed baryonic Tully-Fisher relation [2, 3], i.e.,

the asymptotic-velocity-mass (v4 ∝ M) relation. Another problem with dark matter is that

it seems to possess too much power on small scales (∼ 1− 1000 kpc) [4].

On the other hand, there is an alternative paradigm that goes by the name of modified

Newtonian dyanmics (MOND) [5, 6, 7], due to Milgrom. MOND stipulates that the acceler-

ation of a test mass m due to the source M is given by a = aN for a ≫ ac, but a =
√
aN ac

for a ≪ ac, where aN = GM/r2 is the magnitude of the usual Newtonian acceleration and

the critical acceleration ac is numerically related to the speed of light c and the Hubble

scale H as ac ≈ cH/(2π) ∼ 10−8cm/s2. With only one parameter MOND can explain rather

successfully the observed flat galactic rotation curves and the observed Tully-Fisher relation

[8]. Unfortunately there are problems with MOND at the cluster and cosmological scales.

Thus CDM and MOND complement each other well, each being successful where the

other is less so. We found it natural to combine their salient successful features into a

unified scheme which straddles the fields of astronomy and high energy physics. In our

previous work [9], by making use of a novel quantum gravitational interpretation of (dark)

matter’s inertia, we introduced the new concept of MONDian dark matter which behaves

like CDM at cluster and cosmological scales but emulates MOND at the galactic scale.

In this paper, after a short review of our proposal on MONDian dark matter, we first point

out a surprising connection between our proposal and an effective gravitational Born-Infeld

description of the MOND-like phenomenology of our dark matter quanta. Furthermore, we

stress that these unusual quanta of dark matter must obey the crucial property of infinite

statistics. We illustrate the properties of an essentially non-local theory that describes such

dark matter with infinite statistics. We naturally expect that such non-canonical dark matter

quanta should have dramatic signatures in high energy particle experiments.
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2 From Entropic Gravity to MONDian Dark Matter

Our previous proposal [9] makes crucial use of a natural relationship between gravity and

thermodynamics [10, 11]. The starting point is the recent work of E. Verlinde [10] in which

the canonical Newton’s laws are derived from the point of view of holography [12, 13, 14, 15].

Verlinde applies the first law of thermodynamics to propose the concept of entropic force

Fentropic = T
∆S

∆x
, (1)

where ∆x denotes an infinitesimal spatial displacement of a particle with mass m from the

heat bath with temperature T . Invoking Bekenstein’s original arguments concerning the

entropy S of black holes [16] he imposes ∆S = 2πkB
mc
~
∆x. With the help of the famous

formula for the Unruh temperature, kBT = ~a
2πc

, associated with a uniformly accelerating

(Rindler) observer [17, 18], he obtains Newton’s second law Fentropic = T∇xS = ma.

Next, Verlinde considers an imaginary quasi-local (spherical) holographic screen of area

A = 4πr2 with temperature T . Assuming the equipartition of energy E = 1
2
NkBT with N

being the total number of degrees of freedom (bits) on the screen given by N = Ac3/(G~),

and employing the Unruh temperature formula and the fact that E = Mc2, he obtains

2πkBT = GM/r2 and recovers exactly the non-relativistic Newton’s law of gravity, namely

a = GM/r2.

But we live in an accelerating universe (in accordance with the ΛCDM model). Thus

we need a generalization [9] of Verlinde’s proposal [10] to de Sitter space with a positive

cosmological constant (which is related to the Hubble parameter H by Λ ∼ 3H2 after setting

c = 1). Since the Unruh-Hawking temperature as measured by a non-inertial observer with

acceleration a in the de Sitter space is given by
√

a2 + a20/(2πkB) [19, 20], where a0 =
√

Λ/3

[12], it is natural to define the net temperature measured by the non-inertial observer (relative

to the inertial observer) to be

T̃ =
1

2πkB

(

√

a2 + a20 − a0

)

. (2)

In fact, Milgrom has suggested in [21] that the difference between the Unruh tempera-

tures measured by non-inertial and inertial observers in de Sitter space, namely 2πkB∆T =
√

a2 + a20−a0, can give the correct behaviors of the interpolating function between the usual

Newtonian acceleration and his suggested MOND for very small accelerations. However, he

was not able to justify why the force should be related to the difference between the Unruh

temperatures measured by non-inertial and inertial observers in de Sitter space. Or, in his

own words: “it is not really clear why ∆T should be a measure of inertia”. As we will see in

the following, adopting Verlinde’s entropic force point of view allows us to justify Milgrom’s

suggestion naturally.

Following Verlinde’s approach, the entropic force, acting on the test mass m with accel-

eration a in de Sitter space, is obtained by replacing the T in Verlinde’s argument by T̃ for
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the Unruh temperature:

Fentropic = T̃ ∇xS = m

(

√

a2 + a20 − a0

)

. (3)

For a ≫ a0, the entropic force is given by Fentropic ≈ ma, which gives a = aN for a test mass

m due to the source M . But for a ≪ a0, we have Fentropic ≈ ma2/(2a0); and so the terminal

velocity v of the test mass m should be determined from ma2/(2a0) = mv2/r.

The observed flat galactic rotation curves (i.e., at large r, v is independent of r) and

the observed Tully-Fisher relation (the speed of stars being correlated with the galaxies’

brightness, i.e., v4 ∝ M) now require that a ≈ ( 2 aN a30 /π)
1

4 . 4 But that means

Fentropic ≈ m
a2

2 a0
= FMilgrom ≈ m

√
aNac , (4)

for the small acceleration a ≪ a0 regime. Thus we have recovered MOND — provided

we identify a0 ≈ 2πac, with the (observed) critical galactic acceleration ac ∼
√

Λ/3 ∼
H ∼ 10−8cm/s2. Thus, from our perspective, MOND is a phenomenological consequence

of quantum gravity. To recapitulate, we have successfully predicted the correct magnitude

of the critical galactic acceleration, and furthermore have found that global physics (in the

form of a cosmological constant) can affect local galactic motion!

Finally, to see how dark matter can behave like MOND at the galactic scale, we continue

to follow Verlinde’s holographic approach to write 2πkBT̃ = GM̃
r2

, by replacing the T and

M in Verlinde’s argument by T̃ and M̃ respectively. Here M̃ represents the total mass

enclosed within the volume V = 4πr3/3. Now it is natural to write the entropic force

Fentropic = m[(a2+a20)
1/2−a0] as Fentropic = maN [1+(a0/a)

2/π] since the latter expression is

arguably the simplest interpolating formula for Fentropic that satisfies the two requirements:

a ≈ (2aNa
3
0/π)

1/4 in the small acceleration a ≪ a0 regime, and a = aN in the a ≫ a0
regime. But we can also write F in another, yet equivalent, form: Fentropic = GM̃m/r2 =

G(M+M ′)m/r2, where M ′ is some unknown mass — that is, dark matter. These two forms

of F illustrate the idea of CDM-MOND duality [9]. The first form can be interpreted to

mean that there is no dark matter, but that the law of gravity is modified, while the second

form means that there is dark matter (which, by construction, is consistent with MOND)

but that the law of gravity is not modified.

Dark matter of this kind can behave as if there is no dark matter but MOND. There-

fore, we call it “MONDian dark matter” [9]. Solving for M ′ as a function of r in the two

acceleration regimes, we obtain M ′ ≈ 0 for a ≫ a0, and (with a0 ∼
√
Λ)

M ′ ∼ (
√
Λ/G)1/2M1/2 r , (5)

for a ≪ a0. This intriguing dark matter profile relates, at the galactic scale, dark matter

(M ′), dark energy (Λ) and ordinary matter (M) to one another. At the moment, it seems

4One can check this by carrying out a simple dimensional analysis and recalling that there are two

accelerations in the problem: viz, aN and a0.
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prohibitive to check this prediction in astronomical observations. As a remark, this dark

matter profile has been derived assuming non-relativistic sources and so it is only valid

within the galactic scale. When we enter the cluster or cosmic scale, we need to take into

account of the fully relativistic sources. This may explain why MOND works at the galactic

scale, but not at the cluster or cosmic scale. One of reasons is that, for the larger scales,

one has to use Einstein’s equations with non-negligible contributions from the pressure and

explicitly the cosmological constant, which have not been taken into account in the MOND

scheme [9].

In the above proposal for the dark matter profile, we have assumed spherical symmetry

and so it is solely dependent on r. Since both schemes of AQUAL [22] and QUMOND

[23] reduce to the MOND theory in the spherically symmetric limit, our proposal should

presumably be consistent with AQUAL and QUMOND in that limit. In principle, we could

generalize our derivation to accommodate the general case without spherical symmetry and

predict a dark matter disk to compare with AQUAL and QUMOND, but this is certainly

beyond the scope of the present paper.

3 Gravitational Born-Infeld Theory

As we have reviewed in the last section, our proposal combines the MONDian phenomenol-

ogy with the concept of dark matter. Since the thermodynamic argument we provided is

highly constrained (as in the formulae for the effective acceleration and hence the force law),

we would like to use the same constraint to likewise elucidate the concept of MONDian dark

matter. One way to do this is to look for various reformulations of MONDian phenomenol-

ogy. Given the specific form for the MONDian force law (3), our choices are limited. One

particularly useful reformulation is via an effective gravitational dielectric medium, moti-

vated by the analogy between Coulomb’s law in a dielectric medium and Milgrom’s law for

MOND [7, 24]. As we will show below, the form of the Born-Infeld Hamiltonian density for

electrodynamics resembles that of the MONDian force law (3). Interestingly, Milgrom has

also noted a similar connection between the nonlinear Born-Infeld electrostatics and MOND

theory [25]. Thus the effective gravitational medium for our case is precisely that of the

Born-Infeld type.

Now, we proceed to construct an effective gravitational Born-Infeld theory and point

out its remarkable connection to the MONDian phenomenology. First of all, the original

Born-Infeld (BI) theory [26] is defined with the following Lagrangian density (where ~E and
~B are the respective electric and magnetic fields)

LBI = b2



 1−

√

1− E2 −B2

b2
− ( ~E · ~B)2

b4



 , (6)

where b is a dimensionful parameter. In fact, if we set ~B = 0, it follows that b represents the
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maximal field strength allowed. The corresponding Hamiltonian density is given by [26]

HBI = b2





√

1 +
D2 +B2

b2
+

( ~D × ~B)2

b4
− 1



 . (7)

Next, we explore a gravitational analog of the Born-Infeld theory, in which the relevant field

strength is of a gravitational type. In particular, we set ~B = 0. Then, the corresponding

gravitational Lagrangian and Hamiltonian densities read as

Lg = b2

(

1−
√

1−
E2

g

b2

)

, (8)

Hg = b2

(
√

1 +
D2

g

b2
− 1

)

. (9)

For our reasoning, the Hamiltonian density is more relevant, and for a normalization purpose

(which will become clear in a moment), we start from the following normalized Hamiltonian

density which has an extra overall factor of 1
4π

:

Hg =
b2

4 π

(
√

1 +
D2

g

b2
− 1

)

=
1

4 π

(√

b4 + b2D2
g − b2

)

. (10)

Let A0 ≡ b2 and A ≡ bDg, then the Hamiltonian density becomes

Hg =
1

4 π

(

√

A2 + A2
0 − A0

)

. (11)

Assuming there exists an energy equipartition, then the effective gravitational Hamiltonian

density, which correspond to the energy, is equal to

Hg =
1

2
kB Teff , (12)

where Teff is an effective temperature associated which the energy through the equipartition

of energy. 5 But the Unruh temperature formula implies that

Teff =
~

2 π kB
aeff , (13)

5Note that this energy density is energy per unit volume. But we can regard it as energy per degree

of freedom by recalling that volume, which usually scales as entropy S, scales as the number of degrees of

freedom N in a holographic setting. Interestingly S ∼ N is one of the features of infinite statistics [27].
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where aeff is the effective acceleration. As a result, we obtain (after setting ~ = 1)

aeff =
√

A2 + A2
0 −A0 . (14)

For a given test mass m, the Born-Infeld inspired force law is then given by

FBI = m

(

√

A2 + A2
0 − A0

)

. (15)

Quite remarkably, FBI is of exactly the same form as the force law (3) derived in our previous

paper [9] as reviewed in section 2. In what follows, we give a physical interpretation of this

somewhat formal result and use it to illuminate the properties of the proposed MONDian

dark matter quanta.

4 MONDian Dark Matter and Infinite Statistics

In this section, we argue that the surprising connection between an effective gravitational

Born Infeld and the force law (3) points to the concept of infinite statistics for our MONDian

dark matter quanta. We argue that this is implied by the equivalence principle. Then we

discuss a toy model of a neutral scalar field obeying infinite statistics as a first step towards

a phenomenologically realistic model of MONDian dark matter.

First, let us use the equivalence principle within the logic of our argument. In the previous

section, the local gravitational fields ~A and ~A0 appeared in the surprising formal connection

between an effective gravitational Born-Infeld theory and our MONDian force law (3). The

validity of the equivalence principle suggests that we should identify (at least locally) the

local accelerations ~a and ~a0 with the local gravitational fields ~A and ~A0 respectively. Namely,

~a ≡ ~A, ~a0 ≡ ~A0 . (16)

In other words, the validity of the equivalence principle suggests that the temperature Teff

should be identified as:

Teff ≡ ~

2 π kB

(

√

a2 + a20 − a0

)

, (17)

which, in turn, implies that the Born-Infeld inspired force law takes the form

FBI = m

(

√

a2 + a20 − a0

)

, (18)

which is precisely the MONDian force law derived in (3). (For consistency, we check that a0,

the counterpart of the constant b in (10), is itself a constant, being proportional to
√
Λ.) We

thus conclude that the successful phenomenology of MONDian dark matter may actually be

described in terms of an effective gravitational Born-Infeld theory. 6

6We note that, by using the gravitational Born-Infeld and effective acceleration, we have no need to invoke

the gravitational “bits” in Verlinde’s scheme. Thus, in some sense, we have bypassed that scheme.
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The gravitational Born-Infeld Hamiltonian Hg is crucially related to the temperature Teff

via the energy equipartition Hg =
1
2
kB Teff . Now, this temperature Teff is obviously very low,

because of the factor of ~ (see Eq. (13) ). As an example, let us consider a typical acceleration

of order 10 ms−2. The corresponding effective temperature is of order Teff ∼ 10−20 K and

the effective characteristic energy scale is of order kB Teff ∼ 10−24 eV. Obviously, kB Teff is

much smaller than even the tiny neutrino masses of order 10−3 eV or the mass of any viable

cold dark matter candidate which has to be much heavier than 1 eV.

Recall that the equipartition theorem in general states that the average of the Hamilto-

nian is given by

〈H〉 = −∂ logZ(β)

∂β
, (19)

where β−1 = kBT and Z denotes the partition function. To obtain 〈H〉 = 1
2
kB T per degree

of freedom, we require the partition function to be of the Boltzmann form

Z = exp(−β H ) . (20)

To be a viable cold dark matter candidate, the quanta of our MONDian dark matter are

expected to be much heavier than kB Teff . One may think that it suffices to use the con-

ventional quantum-mechanical Bose-Einstein or Fermi-Dirac statistics, but they would not

lead to 〈H〉 = 1
2
kB T per degree of freedom. As a result, the validity of Hg = 1

2
kB Teff for

very low temperature Teff somehow requires a unique quantum statistics with a Boltzmann

partition function. But this is precisely what is called the infinite statistics [28] as described

by the Cuntz algebra (a curious average of the bosonic and fermionic algebras [28])

ai a
†
j = δij . (21)

Thus, by invoking infinite statistics, the assumption of energy equipartition Hg = 1
2
kB Teff ,

even for very low temperature Teff , is justified.

One may reason that the above arguments for infinite statistics also apply to Verlinde’s

original proposal [10] which invokes energy equipartition, and accordingly he should need

introducing infinite statistics as well. This would be true if he assumed that the typical

mass scale of the quanta of microscopic degrees of freedom (or “bits” in his terminology) on

the holographic screen is much heavier than kB Teff . However, it is not necessary for him to

make such an assumption, thereby the requirement for infinite statistics is evaded. It could

well be that the typical mass scale of the quanta of his “bits” is much lighter than kB Teff .

In that case, it is in the high temperature limit, and then he can safely use the Boltzmann

partition function to obtain the energy equipartition formula. As a result, whether Verlinde

requires infinite statistics or not would not change any of his results. 7 On the contrary, to

7Verlinde only invokes energy equipartition for the “bits” (the unknown microscopic degrees of freedom)

on the holographic screen. In his picture, all matter is emergent from these “bits” and the emergent particles
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be a viable cold dark matter candidate, the quanta of our MONDian dark matter must be

much heavier than kB Teff . This means that infinite statistics is an essential ingredient to

our proposal.

Therefore, we have two rather striking observations: (i) the relation between our force law

that leads to MONDian phenomenology and an effective gravitational Born-Infeld theory; (ii)

the need for infinite statistics of some microscopic quanta which underly the thermodynamic

description of gravity implying such a MONDian force law.

It is natural to ask: How would infinite statistics mesh with an effective gravitational

Born Infeld theory and what would such a connection imply for the physical properties

of MONDian dark matter? Here we recall some facts from string theory as a theory of

quantum gravity. It is well known that in the open string sector, one naturally induces

Born-Infeld theories [30], in general of a non-Abelian kind [31]. Furthermore, in the case of

a non-perturbative formulation of string theory via Matrix theory [32] (a light-cone version

of M-theory), it has been argued that infinite statistics arises naturally [33, 27]. This Matrix

theory is non-Abelian, but is of the Yang-Mills and not Born-Infeld kind. However, non-

Abelian Born-Infeld like extensions of Matrix theory exist in various backgrounds [31], and

thus infinite statistics should naturally emerge in that context as well. Thus, from the Matrix

theory point of view, we should expect that infinite statistics and an effective theory of the

gravitational Born-Infeld type are closely related. This may serve as a top-down justification

for the assumption of the energy equipartition Hg =
1
2
kB Teff which requires the imposition

of infinite statistics.

As we have argued earlier, with the validity of energy equipartition and the equivalence

principle, the successful phenomenology of MONDian dark matter could be described in

terms of an effective gravitational Born-Infeld theory which leads to the correct MONDian

force law. But we just showed that the validity of this energy equipartition requires some

nonstandard degrees of freedom to obey infinite statistics. It is these nonstandard degrees

of freedom in the effective gravitational Born-Infeld theory that generates the gravitational

fields and leads to the correct MONDian force law. As is well-known, any modifications to

general relativity must either introduce new local degrees of freedom or violate the principle of

general covariance (and hence the equivalence principle) [34]. Since we keep the equivalence

principle intact in our arguments and do not introduce any new local gravitational degrees

of freedom, we do not modify general relativity. Thus these nonstandard degrees of freedom

in the effective gravitational Born-Infeld theory will essentially manifest as new particle

degrees of freedom. Since these new particle degrees of freedom when quantized with infinite

can obey infinite statistics or other statistics. But when ordinary matter particles emerge from these “bits”,

they obey bosonic or fermionic statistics. How this happens is beyond the scope of this paper. In short, it

appears that quantum gravitational degrees of freedom obey infinite statistics though this fact is irrelevant in

Verlinde’s case. Nevertheless, we cannot help but wonder whether quantum gravity is actually the origin of

particle statistics and that the underlying statistics is infinite statistics. Is it possible that ordinary particles

that obey Bose or Fermi statistics are actually some sort of collective degrees of freedom? For a discussion

of constructing bosons and fermions out of particles obeying infinite statistics, see [29].
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statistics leads to the correct MONDian force law, we identify them as our MONDian dark

matter quanta quantized with infinite statistics.

In order to discuss the particle phenomenology of MONDian dark matter, we need a

relativistic field theory of infinite statistics. It is known that any theory of infinite statistics

is fundamentally non-local 8 (albeit consistent with Lorentz and CPT invariance) [28]. As far

as we know, such a complete field-theoretical description of infinite statistics is not available

at present and thus we have to start from scratch. Here we present a toy model of a neutral

scalar field obeying infinite statistics (see also [35]) and postpone a full treatment of this

problem to the future. We start with the Klein-Gordon equation

(∂2 +m2)φ(x) = 0 . (22)

Since φ is a Hermitian field operator, it can be expanded as

φ(x) =

∫

dωk

(

a(~k) e−ik·x + a†(~k) eik·x
)

, (23)

where dωk ≡ d3k

(2π)32
√

~k2+m2

with k · x ≡
√

~k2 +m2 t− ~k · ~r. The annihilation operator a and

creation operator a† obey the infinite statistics algebra

a(~k)a†(~k′) = 2 k0 (2 π)3 δ(3)(~k − ~k′) , (24)

where k0 ≡
√

~k2 +m2, and

a(~k) |0〉 = 0 = 〈0| a†(~k) . (25)

The Wightman function is given by

∆(+)(x− y) = 〈0|φ(x)φ(y)|0〉

=

∫

dωk e
−ik·(x−y), (26)

where we have used Eqs. (23 - 25). The Feynman propagator

∆F (x− y) ≡ −i 〈0|T (φ(x)φ(y))|0〉 , (27)

is given, in terms of the Wightman functions, by

∆F (x− y) = −i θ(x0 − y0)∆(+)(x− y)− i θ(y0 − x0)∆(+)(y − x) (28)

=

∫

d4k

(2π)4
e−ik·(x−y)

k2 −m2 + iǫ
. (29)

8That is, the fields associated with infinite statistics are not local, neither in the sense that their observ-

ables commute at spacelike separation nor in the sense that their observables are pointlike functionals of the

fields.
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Eq. (29) can be shown to be equal to Eq. (28) by two different ways. One way is by explicitly

performing the integration over k0 in Eq.(29) to yield Eq. (28). Another way is to show that

the Feynman propagator is a Green’s function for the Klein-Gordon equation, i.e.,

(∂2
x +m2)∆F (x− y) = −δ4(x− y), (30)

by applying (∂2
x + m2) on Eq. (28) and using the fact that the Wightman function solves

the Klein-Gordon equation and that, with the aid of Eq. (26), ∆(+)(x− y) = ∆(+)(y− x) at

equal time x0 = y0.

From Eq. (29), it is obvious that we get back the conventional result for the scalar

propagator and non-locality is not manifest. Mathematically, this is because only the term

〈0|a a†|0〉 gives a non-zero contribution to the propagator. The commutator of a and a†, which

is absent in the infinite statistics case, is not required for the calculation of the propagator.

But while non-locality is not manifest in the propagator, it is not completely lost. The reason

is that the equal-time commutator [φ(x), φ(y)]|x0=y0 is non-zero, which is a manifestation of

non-locality.

We thus conclude that this toy model is illuminating to some extent, and indeed it could

serve as a preliminary model for MONDian dark matter. However, we will not explore it

further. This is because we are more interested in the particle physics phenomenology of

the non-locality associated with MONDian dark matter. Such phenomenological studies will

crucially rely on a non-local propagator of the infinite statistics quanta, as well as their

interactions with the Standard Model particles. In contrast, non-locality in this toy model

is only manifest in the equal-time commutator [φ(x), φ(y)]|x0=y0 ; but it is not clear that

it will lead to any direct and observable phenomenological consequences. Undoubtedly, for

the particle physics phenomenology of MONDian dark matter to be relevant, we will need

a full description which involves a truly non-local field theory of infinite statistics quanta.

Investigating the precise nature of such a non-local theory is the next step in our research

program. However, the proposal that MONDian dark matter quanta should be described by

a non-local theory of infinite statistics, with ultimate origins in quantum gravity, is already

quite remarkable, and this feature of MONDian dark matter uniquely distinguishes our

suggestion from other phenomenological models of dark matter.

We end this section with the following observation on the phenomenology of MONDian

dark matter. On the one hand, infinite statistics has been associated with the physics of

quantum gravitational quanta such as D0-branes in particular backgrounds [33] as well as

with black hole physics (as in the work of Strominger [33]). On the other hand, there are

existing proposals arguing for the relevance of primordial black holes in the physics of dark

matter [36], and, what is more important, for experimental searches for such primordial black

holes [36]. Naturally we are led to conjecture that the application of the same experimental

techniques may be relevant in the observational search of MONDian dark matter with infinite

statistics.
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5 Conclusion: Infinite Statistics and Quantum Grav-

ity

In this paper, we have further developed our proposal for MONDian dark matter which

unifies the salient features of cold dark matter (CDM) and the phenomenology of modified

Newtonian dynamics (MOND). The MONDian dark matter behaves like CDM at cluster and

cosmological scales but emulates MOND at the galactic scale. We have pointed out a surpris-

ing connection between our proposal and an effective gravitational Born-Infeld description

of the MOND-like phenomenology of our dark matter quanta. Furthermore, we have argued

that these unusual quanta of dark matter must obey the crucial property of infinite statistics.

Thus, MONDian dark matter has to be described as an essentially non-local theory for such

infinite statistics quanta. Such a theory would be fundamentally quantum gravitational and

thus distinguished from the usual phenomenological models of dark matter.

We conclude by presenting a possible top-down approach to our proposal. As already

mentioned, it is quite natural to expect that quantum gravity in some form of Matrix Theory

[32], has a non-abelian Born Infeld extension. If one concentrates on the U(1) part of that

theory, which would correspond to a “center of mass” sector of the full quantum theory of

gravity, one will in principle expect to derive an effective gravitational Born-Infeld theory of

the kind discussed in this paper. Also Matrix theory [33] allows for infinite statistics being a

theory of large (infinite size) matrices. Thus it would be possible to envision a gravitational

Born-Infeld Hamiltonian which, in conjuction with the equipartition theorem that is true for

infinite statistics, would imply the temperature formula and thus the force law derived in

our previous paper [9]. Finally, by invoking the equivalence principle in this thermodynamic

limit, we would be able to derive the exact formula [
√

a2 + a20 − a0] from which we could

deduce the MONDian scaling at galactic distances.

This scenario would imply that quantum gravity (in the guise of M-theory) is really

behind MONDian dark matter and its implications for particle physics as well as astronomy

on the galactic and extragalactic scales. In this discussion, we would need to take account

of holography (i.e. a matrix model description) in the cosmological asymptotically de Sitter

background [37], which will be quite non-trivial. One simple idea would be to envision a

matrix model (inspired by Matrix theory [32])

L = Tr

(

1

2
( ∂M )2 +m2

M
2 + g V (M)OSM

)

, (31)

where M is an infinite dimensional square matrix. The mass term m2 and the “Yukawa”

coupling g are phenomenological parameters. Here V (M) denotes some effective potential

(for simplicity, we can envision a quartic term M4) and OSM is the relevant standard model

operator that describes the necessary coupling to the dark matter sector. The mass param-

eter m could be related to the cosmological SUSY breaking mechanism of Banks [38] if the

matrix M has fundamental origins in Matrix theory in a cosmological de Sitter background.
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However this topic is beyond the scope of our present work and we leave it for further study

in the future.
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